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Abstract

In recent years, the accuracy of edge detection on
several benchmarks has been significantly improved by
deep-learning-based methods. However, the prediction
of deep neural networks is usually blurry and needs
further post-processing including non-maximum sup-
pression and morphological thinning. In this paper,
we demonstrate that the blurry effect arises from the
binary cross entropy loss, and crisp edges could be
obtained directly from deep convolutional neural net-
works. We propose to learn edge maps as the repre-
sentation of local contrast with a novel local contrast
loss. The local contrast is optimized in a stochastic way
to focus on specific edge directions. Experiments show
that the edge detection network trained with local con-
trast loss achieves high accuracy comparable to previ-
ous methods and dramatically improves the crispness.
We also present several applications of the crisp edges,
including image completion, image retrieval, sketch gen-
eration and video stylization.

Keywords: Please provide 4–6 keywords, separated with
comma.

1. Introduction

Edge detection is a basic problem in computer vision.
Edges can reveal object boundaries and prominent struc-
tures in images, which is meaningful for visual semantics
understanding and image editing. Edge detection meth-
ods usually output a float value for each pixel which rep-
resents the edge confidence. Then the confidence map
is binarized with a user-specified threshold, resulting in
a two-value edge map. Traditional edge detection meth-
ods [16, 3, 18, 25, 29, 31] rely on low-level features and
could predict properly aligned crisp edges. However, these
methods are unlikely to suppress the high-contrast textures
while maintaining the low-contrast object boundaries.

The success of convolutional neural networks (CNN)
in fundamental computer vision problems such as image
recognition [34, 13], object detection [9, 30] and segmen-
tation [4, 12] shows CNN’s great capability of encoding vi-

sual semantics from large-scale datasets. Recently proposed
CNN-based edge detectors [40, 24, 21, 11] significantly im-
proved the accuracy of edge prediction on several bench-
marks [1, 27, 26] and achieved performance superior to hu-
man. In these prior papers, edge detection is regarded as
a per-pixel classification problem, similar to semantic seg-
mentation task [4]. A drawback of these methods is that
the output of CNN is blurry. Post-processing steps, includ-
ing non-maximum suppression and morphological thinning,
are required for the computation of precision, recall and F-
measure. As pointed out by Huan et al. [15], the mixing
operation on feature maps, side outputs as well as upsam-
pling operations lead to thick and blurry edge predictions.
CED [37] tried to tackle the problem with U-net [32] struc-
ture. Some prior works [6, 15] proposed auxiliary losses
and specific network structure modification to predict thin
edges, i.e., to improve the crispness. These strategies could
reduce the thickness of output edges to some extent, but the
accuracy of CNN’s raw output is still far from satisfactory.

In this paper, we claim that the CNN architecture can
predict crisp edges if it is trained with appropriate loss func-
tion. Different from the semantic segmentation problem [4],
viewing edge detection as a binary classification problem is
not a good formulation because the proportion of the “edge”
category is far less than that of the “non-edge” category.
During training, a reweighted binary cross entropy (BCE)
loss is usually adopted to balance the prediction of the two
categories, where “edge” pixels have weights much larger
than “non-edge” pixels. In addition, this factor needs to be
carefully tuned for different training sets. The emphasis on
edge label in the loss function results in thicker and blur-
rier predictions. Owing to its apparent drawback, we totally
discard the BCE loss in this work. Our core observation is
that edges should reflect the local contrast at semantic level.
We propose a novel local contrast loss to train the edge de-
tection network. An affinity term is used to measure the
similarity of neighboring pixel pairs. We desire that pixels
of the same type (both edge or both non-edge) should have
high similarity, while pixels of different types should have
low similarity. Our method does not impose regularization
on the side outputs because the low-resolution edge predic-
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tions are imprecise and would lead to thick structures after
upsampling. Directly minimizing the whole loss function is
inefficient, so we introduce a stochastic strategy that opti-
mizes the local contrast for specific edge directions in each
training iteration. The most significant difference between
our work and previous work is that the BCE loss is removed
and the local contrast loss plays an essential role in the op-
timization process. We also introduce an L1 regression loss
to eliminate the ambiguity. The CNN architecture proposed
in CATS [15] is adopted here.

We evaluated our method on two well-known bench-
marks: BSDS [1] and NYUDv2 [27]. The results indi-
cate that using the proposed local contrast loss could signif-
icantly improve the crispness. Without any post-processing
operation, the raw output of our method significantly out-
performs previous models that were trained mainly with
BCE loss. With standard post-processing process, our
method’s performance is still comparable to the state-of-
the-art approaches, though predicting thinner edges, namely
less positive labels, is inherently unhelpful to improve the F-
measure. We also used a density measure similar to [36] and
variance of edge confidence to evaluate the edge simplicity,
showing the improvement on crispness gained from the lo-
cal contrast loss. Ablation study was conducted to study the
effect of side outputs, the choice of balancing parameters
and alternative network design.

The CNN-predicted crisp edge map has good visual
quality, and is also useful in other scenarios. We show its
capability for four applications: image completion, sketch-
based image retrieval, sketch generation and video styliza-
tion. As proposed in [28], image completion could be sep-
arate into two steps: the completion of edge map and the
completion of RGB channels with the guidance of edges.
We show that the CNN-predicted crisp edge could serve as
a better intermediate guidance. Sketches are widely utilized
in image retrieval as the input query. The sketch-based im-
age retrieval model [23] learns a joint feature embedding
for the sketch domain and image domain, and the similar-
ity is evaluated in the feature space. We show that crisp
edge maps extracted from training images could be added
into the training sketch set to improve the retrieval accuracy.
Generating thin sketch drawings are uneasy due to the diffi-
culty of optimization. We exhibit that the proposed learning
framework could be easily adapted to a sketch dataset [19]
with additional finetuning. Besides, we show that the crisp
edges could improve visual effect of a video stylization al-
gorithm [39].

In summary, our main contributions are:

• We propose that a novel local contrast loss is supe-
rior to BCE loss for training deep edge detection net-
work. Our approach achieves high accuracy compara-
ble to state-of-the-art detectors under standard evalua-
tion while significantly improves the edge crispness.

• We propose an efficient and effective optimization
scheme to train the CNN model with local contrast
loss.

• We propose four applications of the new crisp edge
detection model: image completion, image retrieval,
sketch generation and video stylization.

2. Related Work

Edge detection was studied in the early years of com-
puter vision as a fundamental problem. Sobel operator [16]
and zero-crossing based edge detection [35] are pioneer-
ing works. The Canny edge detector [3] is built on the
Sobel operator and is more robust due to the bi-threshold
design. There are various methods focusing on low-level
color and texture features, including Statistical Edges [18],
Pb [25] and mean-shift [29]. The resulting edges of those
approaches are usually crisp. However, they usually fail to
capture high-level semantics and suppress strong textures.

As convolutional neural network (CNN) shows its capa-
bility of modeling visual semantics, CNN based edge de-
tectors are developed in recent years. HED [40], COB [24],
RCF [21], BDCN [11] are representative methods. These
methods adopt VGG-net [34] pretrained on ImageNet [5]
as the backbone to extract multi-level semantic features,
and use different strategies to fuse these features for edge
prediction. In general, hierarchical edge predictions are ob-
tained from different feature layers, and then these side out-
puts are fused for the final prediction. HED uses the fi-
nal layer of each stage of VGG to generate edge maps at
different scales (from original resolution to 1

16 ×
1
16 size),

while RCF fuses all feature layers that have the same reso-
lution. COB additionally predicts the contour orientations
and constructs a hierarchical boundary map. It can also pro-
vide object proposals for object detection and semantic seg-
mentation. BDCN utilizes a more complicated fusion strat-
egy for side outputs combining a deep-to-shallow pass and
a shallow-to-deep pass, which can improve the accuracy of
detection.

Typically, learning-based methods are aware of high-
level semantics, and can predict more accurate results on
benchmarks such as Berkeley Segmentation Dataset [1].
The performance could be even better than human anno-
tators. However, these method could only perform well un-
der the standard evaluation protocol, which contains post-
processing steps including non-maximum suppression and
morphological thinning. The raw output of neural networks
is cluttered and can not be directly used for many applica-
tions.

Many researchers have investigated how to improve the
crispness of edge maps outputted by CNN model. CED [37]
tries to tackle this problem by modifying the network struc-
ture. It progressively increases the resolution of feature



maps by a backward-refining scheme. Other following
works considered to introduce auxiliary loss functions for
better crispness supervision. For example, the reciprocal
of the dice coefficient is adopted in LPCB [6]. CATS [15]
introduces a boundary tracing function and a texture sup-
pression function as a complement of the original weighted
BCE loss. These additional functions considers the statis-
tics in a local patch to suppress thick structure and errors
on texture regions. A novel unmixing block is introduced
in CATS [15] to fuse multi-resolution side outputs. The raw
output from CNN are directly compared to ground-truth la-
bel to obtain the precision, recall and F-measure without
post-processing, which could reflect its crispness. These
methods could reduce the thickness of the predicted edges
to some extent. As reported in CATS [15], there exists a dra-
matic performance gap between the raw output and the post-
processed edge map (around 0.1 on BSDS [1] and around
0.3 on NYUDv2 [27]). We propose a novel contrast loss
that can dramatically improve the edge crispness.

3. Method

Different from prior works that investigated various
CNN architectures and feature fusion strategies for edge de-
tection, our work focus on the design of loss function and
training strategy. We adopt the RCF-CATS network archi-
tecture proposed in [15], which uses the VGG-16 [34] back-
bone for feature extraction and predicts multi-resolution
edge maps by fusing all layers of features. The multi-
resolution edge maps are fused with an unmixing block.
This block generates weight maps from the multi-resolution
side outputs through 3 convolution layers. The final edge
prediction is the weighted average of multi-resolution edge
maps. For more details about the network architecture,
please refer to the prior works [21, 15]. We propose to use
a novel local contrast loss, instead of the well-known BCE
loss, for network training. Meanwhile we remove the super-
vision on side outputs because the coarse outputs tend to be
blurry and might hinder the crispness of the final edge map.

Fig. 1 illustrates the differences between our method and
traditional methods. We take the RCF model [21] as an
example. Note that for previous models the multi-resolution
side outputs are all supervised by BCE loss. Since we do not
regularize these maps, they could be arbitrary latent codes
in our model.

3.1. Rethinking the Classification Formulation

The edge detection problem has been widely regarded as
a per-pixel binary classification problem. Given the ground-
truth edge mask E and non-edge mask N , the error of out-
put probability map O is measured by the weighted binary
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Figure 1. Comparison between traditional deep edge detection
method and our crisp edge detection method. We adopt a novel
local contrast loss to replace BCE loss and also remove the losses
for side outputs that lead to thick structures.

cross entropy loss:

Lbce =−
∑
p

(w1E(p) logO(p)

+ w2N(p) log(1−O(p))),

(1)

where p represents a pixel. Note that in practice, some pix-
els labelled by minor annotators are regarded as unknown,
so they will not be considered in the loss function. This
loss is computed on each pixel independently. However, the
edges reflects local structure and the relation in the local
patch should be taken into consideration and directly mod-
elled. Since the label distribution is highly unbalanced, the
weight w1 for edge pixels is much higher than w2. Since
it is difficult to find the optimal well-aligned edges, the net-
work tends to predict much more pixels around strong struc-
tures as edge in order to decrease the training loss. Another
problem is that the several edge maps (side outputs) are
predicted from multi-resolution features. The coarse maps
could only capture major structures and need to be upsam-
pled using bilinear interpolation. Therefore, the final edge
map, no matter how the side outputs are fused, has thick
structures in confident region and is blurry in ambiguous
region. Auxiliary loss functions proposed in [6, 15] could
relieve this problem to some extent. It is because they ex-
plicitly model the inter-pixel relation. However, these meth-
ods still predict thick edges because they retain the BCE
loss as major supervision. To obtain crisp edges from CNN,
we totally discard the BCE loss and propose a novel loss



for better supervision. We will first introduce the local con-
trast on the output of deep neural networks, and derive a
local contrast loss for an edge map. Then we provide an
efficient and effective strategy to optimize the network with
local contrast loss.

3.2. Deep Local Contrast

The basic way to detect edge on an image I is computing
the gradient field in the color space or monochrome space.
In concrete, to measure the contrast in direction v = −→pq,
where p and q are neighboring pixels, we can estimate the
length of directional derivative:

| ∂I
∂v
| = |I(q)− I(p)|. (2)

This index reflects the strength of edges at a certain direc-
tion. Specifically, the Sobel [16] operator evaluates the edge
strength in horizontal and vertical direction.

For edge detection tasks, pixels are divided into two cat-
egories: edge and non-edge. Given the output of CNN O,
we define the similarity of pixel p and q as:

s(p, q) = e−|O(p)−O(q)|/σ. (3)

We restrict the output O(p) ∈ (0, 1) by applying a sigmoid
layer at the end of the neural network. In our experiments,
we set σ = 0.05. Let E represents the mask of edge pix-
els and N represents the mask of non-edge pixels. Ideally,
pixels belonging to different categories should have lower
similarity (namely higher contrast) while those in the same
category should have higher similarity (namely lower con-
trast). Thus we can construct three loss terms for pixel pair
(p, q):

lpos(p, q) = E(p)E(q) (1− s(p, q)) , (4)

lneg(p, q) = N(p)N(q) (1− s(p, q)) , (5)

lcross(p, q) = (E(p)N(q) +N(p)E(q)) s(p, q). (6)

The first term lpos is effective when p, q are both edge pix-
els; the second term lneg is effective when they are non-edge
pixels, while the last term supervises the cross-type pairs.
Then we could define corresponding losses on the pixel p
as the sum of all paired terms in its neighborhood:

l̂pos(p) =
∑

q∈Ns1
(p)

lpos(p, q), (7)

l̂neg(p) =
∑

q∈Ns2
(p)

lneg(p, q), (8)

l̂cross(p) =
∑

q∈Ns3 (p)

lcross(p, q). (9)

Here Ns(p) represents an s × s patch centered at p. We
adopt different neighborhood patch sizes s1, s2, s3 for com-
puting l̂pos, l̂neq, l̂cross. Since the edges are sparse in the
image, we choose smaller s1 to focus on local connec-
tions. To suppress large textured region, the choice of s2
should be relatively large. Intuitively, setting a large patch
size could improve the learning of image semantics, but
the local details could be neglected. We set the sizes as
s1 = 3, s2 = 19, s3 = 11 for our model, and we will dis-
cuss the choice of patch size in experimental section. Each
contrast loss is then summed up across the image and nor-
malized into [0, 1] by dividing it by the number of effective
pairs.

The local contrast term does not specify the category la-
bel (0 or 1). Therefore, we introduce L1 loss for regulariza-
tion. Let G represent the ground-truth edge map, the recon-
struction loss is defined as:

Lrec =
∑
p

|O(p)−G(p)|. (10)

We use different notations for ground-truth map G and E
because there could be multiple annotations for one image.
We would discuss the definition of G and E in the experi-
mental section.

3.3. Optimization Scheme

Similar to the tracing loss proposed in [15], the loss
functions in Eq. 7, 8 and 9 consider the edge distribution
in the whole patch. One could traverse all neighboring
pixel pairs in the image and calculate the contrast term
on these pairs. However, this loss function requires large
amounts of computation and is uneasy to optimize. We pro-
vide a simple approach to optimize the objective by esti-
mating the whole contrast with one paired contrast in the
neighborhood. We randomly choose a direction vector v,
and compute all neighboring pixel pairs (p, q) satisfying
q = p+v on the edge map. Note that the neighborhood size
of lpos, lneg, lcross are different, so we sample three differ-
ent directions for the three terms independently. Then we
derive the stochastic loss function:

Lpos =

∑
p lpos(p, p+ v1)∑
pE(p)E(p+ v1)

, (11)

Lneg =

∑
p lneg(p, p+ v2)∑
pN(p)N(p+ v2)

, (12)

Lcross =

∑
p lcross(p, p+ v3)∑

p (E(p)N(p+ v3) +N(p)E(p+ v3))
. (13)

The total loss function used in practice is:

L = λpLpos + λnLneg + λcLcross + λrLrec. (14)



The offset vector vi, i ∈ {1, 2, 3} is uniformly sampled in
the si × si region. Note that the vector vi represents the
normal direction of a group of edges, meaning that in each
iteration the model learns to predict edges at a certain di-
rection. The step size of vi could also vary so that image
structures at different scales could be taken into considera-
tion. The model would learn the edges at all directions and
multiple scales after enough training iterations, equivalent
to the minimization of the total contrast loss term described
in Eq. 7, 8 and 9. We will display the effectiveness of the
stochastic optimization strategy in ablation study.

4. Experiment

4.1. Datasets and Settings

We trained and evaluated our local-contrast-based model
on two popular edge detection benchmarks: BSDS [1] and
NYUDv2 [27]. The VGG-16 parameters [34] pretrained
on ImageNet [5] was adopted as initialization for feature-
extraction module. The learning rate was set as 0.0001 ini-
tially and was decreased by a factor of 0.1 every 10 epochs.
The model was trained over 30 epochs. We adopted stan-
dard data augmentation including scaling, rotation and hor-
izontal flipping.

For BSDS dataset, 300 images are used for training and
the test set contains 200 images. There are several ground-
truth edge maps created by different annotators. These edge
maps are averaged and the result is denoted by Avg. The
pixels labeled by enough annotators are considered as con-
fident positive samples, and we do not calculate the loss
on other ambiguous pixels. In concrete, the edge mask E,
non-edge mask N for contrast loss and the guidance G for
reconstruction loss are defined as:

E(p) =

{
1, Avg(p) > 0.33,

0, otherwise.
(15)

N(p) =

{
1, Avg(p) = 0,

0, otherwise.
(16)

G(p) = 1−N(p). (17)

We view all pixels labelled by at least one annotator as pos-
itive for the calculation of L1 loss to encourage the predic-
tion of positive label. However, pixels with little confidence
are not calculated in the local contrast loss function, where
E(p) = N(p) = 0. We set the weighting factors λp = 0.5,
λn = 0.5, λc = 1 and λr = 1 for BSDS dataset.

The NYUDv2 training set contains 795 images and the
corresponding test set contains 654 images. We trained and
evaluated our model using RGB images only. We set the
weighting factors λp = 0, λn = 1, λc = 1 and λr = 1
for the experiment because we observe that the output of
NYUDv2 model is thicker than that of BSDS model and it

is more important to suppress texture regions. The setting
of learning rate is the same as BSDS. Since there is only one
ground-truth edge annotation in this dataset, we directly set

E(p) = G(p) = Avg(p), N(p) = 1−Avg(p), (18)

4.2. Standard Evaluation

The standard evaluation protocol (SEval) has been
widely adopted in prior works. It contains a non-maximum
suppression step and a morphological thinning step before
matching. The predicted edge map is evaluated by matching
the ground-truth labels. The threshold for tolerant matching
distance is set as 0.0075 for BSDS and 0.011 for NYUDv2
as previous works did. The output map is binarized un-
der different thresholds in (0, 1). Precision, recall and F-
measure are calculated for each binary map. The optimal
dataset scale (ODS) and optimal image scale (OIS) value
are computed for both datasets.

Table 1 reports the ODS and OIS F-measure of different
methods on two datasets. Our method achieves accuracy
comparable to state-of-the-art methods such as CATS [15]
on standard evaluation, indicating that the local contrast loss
provides adequate guidance for the edge detection task. We
need to emphasize that increasing the thickness of edge map
is helpful to improve the F-measure, especially the OIS met-
ric, as more edges are predicted with different confidence.
However, it would hinder the visual quality of the edge map
and those type of edge map is difficult to be used in other
applications. Fig. 2 and 3 exhibit some qualitative edge re-
sults. Additional result of our method is provided in the
supplementary material.

4.3. Crispness Evaluation

The crispness-emphasized evaluation (CEval) is pro-
posed by Huan et al. [15], in which the raw output of CNN
is directly matched with ground-truth labels to obtain pre-
cision and recall, without any post-processing. We follow
this setting and report the ODS and OIS F-measure in Ta-
ble 2. Our method achieves significant improvement under
CEval, which could also be easily observed in Fig. 2 and 3.
The CEval accuracy on BSDS dataset gets much closer to
the SEval accuracy, which means that the raw outputs may
be directly used in many applications.

We also introduce another density metric, similar to the
sparsity term proposed in [36], to evaluate the crispness of
the edge map. We compute the average “density of the edge
map by taking the sum in 5 × 5 patches. The edge density
metric is defined as:

D =

∑
p

(
O(p)

∑
q∈N5(p)

O(q)
)

∑
pO(p)

. (19)

Previous deep-learning-based methods tend to predict am-
biguous values in (0, 1) using multi-scale fusion strategy.



(a) Image (b) RCF (c) BDCN (d) CATS (e) Ours (f) Ground Truth

Figure 2. Qualitative comparison on BSDS dataset [1]. Our methods is compared with prior works including RCF [21], BDCN [11] and
CATS [15].

(a) Image (b) RCF (c) BDCN (d) CATS (e) Ours (f) Ground Truth

Figure 3. Qualitative comparison on NYUDv2 dataset [27]. Our methods is compared with prior works including RCF [21], BDCN [11]
and CATS [15].

It can improve the performance under F-measure at the ex-
pense of visual quality and simplicity. We compute the vari-
ance of non-zero pixels to reveal the distribution of edge
confidence.

The result in Table 3 shows that our method produces
thinner edges with lower density. The high variance of our
method indicates that the proposed method tend to make
more confident predictions (either 0 or 1) compared with

RCF and CATS-RCF.

4.4. Ablation Study

In this subsection, we investigate the influence of net-
work design, loss function and side outputs. The ablation
study is conducted on BSDS and the result is presented in
Table 4.

Without the unmixing block (namely the final convolu-



Table 1. Standard evaluation on BSDS dataset [1] and NYUDv2
dataset [27]. We report and compare the ODS and OIS F-measure
for the post-processed edge map.

Method BSDS NYUDv2
ODS OIS ODS OIS

Human 0.803 0.803 - -
OEF [10] 0.746 0.770 - -
N4-Fields [8] 0.753 0.769 - -
DeepContour [33] 0.757 0.776 - -
HFL [2] 0.767 0.788 - -
CEDN [42] 0.788 0.804 - -
DeepBoundary [17] 0.789 0.811 - -
COB [24] 0.793 0.820 - -
CED [37] 0.794 0.811 - -
AMH-Net [41] 0.798 0.829 - -
DCD [20] 0.799 0.817 - -
LPCB [6] 0.800 0.816 0.739 0.754
HED [40] 0.793 0.811 0.722 0.737
RCF [21] 0.799 0.815 0.745 0.759
BDCN [11] 0.807 0.822 0.748 0.762
CATS-RCF [15] 0.805 0.822 0.752 0.765
Ours 0.805 0.818 0.749 0.761

Table 2. Crispness-emphasized evaluation on BSDS dataset [1]
and NYUDv2 dataset [27]. We report and compare the ODS and
OIS F-measure for raw edge map.

Method BSDS NYUDv2
ODS OIS ODS OIS

HED 0.588 0.608 0.387 0.404
RCF 0.585 0.604 0.398 0.413
BDCN 0.636 0.650 0.426 0.450
CATS-RCF 0.705 0.716 0.474 0.488
Ours 0.766 0.776 0.557 0.568

Table 3. Results of edge density and confidence variance on BSDS
dataset [1] and NYUDv2 dataset [27]. These two metrics are com-
puted on raw edge maps.

Dataset Method Density Variance

BSDS
RCF 13.34 0.069

CATS-RCF 11.66 0.083
Ours 11.18 0.110

NYUDv2 CATS-RCF 13.80 0.090
Ours 13.04 0.097

tional fusion layers) introduced by [15], the network turns
back to the RCF architecture, which would bring a slight
drop on SEval accuracy. Meanwhile, the performance gap
under CEval indicates that the unmixing block is essential

Table 4. Ablation study on BSDS dataset [1]. We evaluated alter-
native network structure and optimization strategy. When remov-
ing the unmixing block, the model returns to the original RCF ar-
chitecture. We removed the L1 loss, the contrast loss lpos between
positive pairs, added the side output loss to assess their influence.
We tried identical neighborhood sizes for different types of pixels
and found that it is inferior to our final settings. We also show that
optimizing the contrast loss at random directions is better than cal-
culating the whole contrast in an iteration. The output edge map
was processed under standard evaluation (SEval) and crispness-
emphasized evaluation (CEval).

Method SEval CEval
ODS OIS ODS OIS

w/o unmixing block 0.803 0.814 0.683 0.685
w/o L1 loss 0.800 0.809 0.658 0.658
w/ side output loss 0.799 0.811 0.680 0.681
w/o lpos 0.805 0.822 0.705 0.716
s1 = s2 = s3 = 5 0.803 0.815 0.652 0.652
w/o random dir. 0.803 0.812 0.677 0.677
ours 0.805 0.818 0.766 0.776

for thin edge predictions, which is consistent with the find-
ing in [15]. Removing the L1 loss would make the opti-
mization more difficult, and also decrease the F-measure.
The supervision on side outputs (i.e., multi-resolution inter-
mediate edge maps)is proven to be unnecessary because the
result on coarse level is inaccurate, and the local contrast
loss is not a good supervision for the coarse output. Re-
moving the similarity term lpos for positive pixel pairs can
improve the SEval accuracy, but would bring lots of spiny
structure in the prediction and lower the CEval accuracy.
Fig. 4 shows two examples of this effect. The choice of
neighborhood size is also important for edge crispness. We
test identical neighborhood size s1 = s2 = s3 = 5 and find
that the CEval accuracy would drop a lot. Sampling random
directions when calculating the local contrast can not only
accelerate the loss computation, but also improve the CEval
accuracy. We believe that it is because in each iteration the
network can focus on certain edge directions, making the
optimization easier.

5. Application

5.1. Edge-Guided Image Inpainting

Image inpainting aims to faithfully complete some part
of the image that is corrupted or manually erased. A fea-
sible approach is to predict the completed edge map as
a guidance for the completion of color content, as intro-
duced in [28]. We maintain the general framework of the
Edge-Connect method and evaluate several edge alterna-
tives for guidance, including Canny [3], RCF [21] and our
crisp edges. The network has supervision both on the out-



(a) Image (b) Without lpos (c) Ours

Figure 4. Comparison of using loss term lpos for positive pairs or
not during training. Without lpos, the network will predict spiny
structures with lower visual quality.

Table 5. Results of edge-guided image inpainting. We used Edge-
Connect model as the inpainting network and trained it with dif-
ferent types of edges as intermediate guidance, including Canny
(used in prior paper), RCF and our crisp edge. We report four
metrics on image quality: PSNR, SSIM, MAE and FID.

Edge Used PSNR SSIM MAE FID
Canny (original) 30.468 0.9400 0.0190 1.301
RCF 30.473 0.9395 0.0196 1.973
Ours 31.305 0.9474 0.0179 1.226

Table 6. Sketch-based image retrieval on TUBerlin dataset. The
original training sketch set was augmented by edge maps from
RCF or our proposed method. We report retrieval accuracy (per-
centage) using raw features and using 32, 64, 128 bits hash code.

Training data Raw 32 bits 64 bits 128 bits
Original 83.063 80.016 81.238 81.970
+ RCF edge 82.588 80.044 82.026 82.393
+ Our edge 84.817 83.073 84.082 83.764

Table 7. Density evaluation for different sketch generation method.
We evaluated on the test set proposed in PhotoSketching (PS) [19].
Our proposed model can generate much thinner edges.

Method PS Ours Pretrained Ours Finetuned
Density 16.22 11.58 11.68

put image and the intermediate edge map. The facial image
dataset Celeba [22] is utilized to train the inpainting model
separately.

Table 5 reports four image quality measures includ-
ing peak signal to noise ratio (PSNR), structural similarity
(SSIM) [38], mean absolute error (MAE) and Frechet In-
ception Distance (FID) [14]. We found that the crisp edge
is a better intermediate form for image completion task, as
it conveys much semantic information and is easier to be
learned by neural networks. Fig. 5 shows several examples

Figure 5. Examples of image completion using Edge-Connect and
CNN predicted crisp edges. First row: input image with irregular
mask; second row: predicted edges; third row: inpainted image
guided by edges from the first stage network; last row: ground-
truth image.

of the completed edge map and the completed image.

5.2. Sketch-Based Image Retrieval

Retrieving images from large database using sketch has
been widely studied. The main-stream approaches learn a
joint feature embedding for data from image domain and
sketch domain. Then the feature similarity between query
sketch and image in the database is computed for retrieval.
Collecting hand-drawn sketches requires lots of time and
effort. A simple way to gather training data is to utilize
automatic generated edge maps. We used the output of our
crisp edge model pretrained on BSDS [1] as augmented data
to retrain the DASE model proposed in [23]. Examples of
original and augmented data are displayed in Fig. 6. We
computed the edge maps for all training images and added
them to the training sketch set. Let xi be the feature vector
of an image or sketch and yi the corresponding category
label. A learnable feature center cj is assigned to the j-th



(a) Sketch (b) Image (c) Crisp Edge

Figure 6. Data augmentation in sketch-based image retrieval. In
TUBerlin dataset, the sketches (a) and images (b) are unpaired. We
extracted the crisp edge maps (c) from the training images using
the proposed model, and add them into the training sketch set to
boost the retrieval performance.

category. The DASE loss is defined as

l(xi, yi) = − log
e−m

2||xi−cyi ||
2

e−m
2||xi−cyi ||2 +

∑
j 6=yi e

−||xi−cj ||2
.

(20)
The parameter m is gradually increased from 1 to 4 dur-
ing training to ensure that the feature vector xi would find
its nearest neighbor that belongs to class yi. The crisp
edges, serving as pseudo sketch data, however, do not need
to achieve such high classification confidence, so we let
m = 1 for these training edges in the whole training pro-
cess.

Table 6 illustrates the retrieval accuracy on TUBerlin [7]
dataset. For each object category, we reserved 10 sketches
for query. The retrieval is conducted by nearest neighbor
search in the feature space. The feature vector could be
mapped into binary hash codes to reduce the memory stor-
age. We set the length of hash code as 32, 64, 128 bits and
report the retrieval accuracy separately. Adding the crisp
edges into the training sketch set made apparent improve-
ment on the accuracy under all settings. The accuracy of
128 bits hashing is slightly lower than that of 64 bits hash-
ing, possibly because of over-fitting in the hashing step.

5.3. Sketch Generation

Sketch is a simple form for human to depict objects or
scenes. PhotoSketching [19] is a CNN-based method for
sketch generation. The deep sketch generation model pro-
posed in [19] is trained with adversarial loss and a modified
L1 loss that measures the minimum distance among sev-
eral sketches drawn by annotators. We provide an easy way
to transfer our crisp edge detection model to a crisp sketch
generation model. We adopted the our model pretrained

on BSDS and finetuned it on the sketch dataset proposed
by [19], which contains 800 training images, 100 validation
images and 100 test images. We only use the local con-
trast loss for fintuning (λp = 0, λn = 1, λc = 1, λr = 0)
because the network has been well initialized.

Fig. 7 displays several examples of the new sketch gen-
eration approach. The PhotoSketching model [19] can only
predict thick structures due to the limitation of their loss
function design. Human usually pay more attention to de-
tail inside the main object, while the edge detection net-
work pretrained on BSDS dataset focuses on boundaries.
The finetuning process can ensure that our model predicts
edges visually similar to man-made sketches. Our model
predicts much thinner edges, so that more detailed struc-
tures can be extracted. Table 7 reports the density metric
defined in Eq. 19 and verifies our model’s superiority.

5.4. Video Stylization

Edges are important cues in stylization applications, be-
cause the stylization process needs to simplify the image
content and emphasize important structures. We show the
use of our crisp edge detection method for a real-time video
abstraction algorithm [39]. The original paper adopted the
Difference of Gaussian (DoG) algorithm to extract edges
for rendering. In Fig. 8, we compare different cartooniza-
tion styles with original DoG edges, RCF edges [21] and
our crisp edges. The crisp edges can better illustrate the
important image structures. The sequential results could be
found in the supplementary material.

6. Conclusion

In this paper, we propose a novel formulation for the
deep-learning-based edge detection problem. We introduce
the concept of local contrast and design a local contrast loss
for network supervision. The local contrast loss is calcu-
lated on neighboring pixel pairs, and aims to maximize the
similarity between pixels within the same category while
minimize the cross-type similarity. We also propose an ef-
fective stochastic method to optimize the total local contrast
by sampling several edge directions in each training itera-
tion. Using the novel loss function and training strategy, we
could obtain crisp edges directly from CNN architecture.
The predicted edges still achieves high accuracy compara-
ble to the state-of-the-art methods under the standard evalu-
ation protocol and significantly improve the accuracy under
crispness-emphasized evaluation.

The raw output of neural network can be directly used
without any post-processing steps. We display four possi-
ble applications using the new crisp edge detection network,
including image completion via edge prediction and guid-
ance, sketch-based image retrieval, sketch generation and
video stylization.

In the future, we would like to explore other scenarios



(a) Image (b) PhotoSketching (c) Ours Pretrained (d) Ours Finetuned (e) Human Drawing

Figure 7. Sketch generation from images. The PhotoSketching method [19] generates thick sketches and might neglect thin structures.
Our crisp edge detection model finetuned on sketch dataset can better predicts important structures in the image and our result is closer to
human drawing.

(a) Input Image (b) Without Edges (c) With DoG Edges (d) With RCF Edges (e) With Our Edges

Figure 8. Crisp edges for video cartoonization. We apply the real-time video abstraction algorithm with several types of edges. Edges
predicted by our method can emphasize the prominent image structures with better visual effects.

where the local contrast supervision could be adopted, for
example, in semantic segmentation and image stylization. It
would also be interesting to investigate more powerful loss
functions for edge detection task and the generation of other
thin-scale structures, such as line art.
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