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Abstract

Existing GAN-based generative methods are typi-
cally used for semantic image synthesis. We pose the
question of whether GAN-based architectures can gen-
erate plausible depth maps and find that existing meth-
ods have difficulty in generating a reasonable depth
map to represent the 3D scene structure due to the lack
of global geometric correlation. To this end, we pro-
pose the DepthGAN, a novel method of generating a
decent depth map with a semantic layout as input for
further constructing and manipulating well-structured
3D scene point clouds. Specifically, we first build a
feature generation model with a cascade of semantic-
aware transformer blocks to obtain depth features with
global structure information. In our semantic-aware
transformer block, we propose the mixed attention mod-
ule and semantic-aware layer normalization module to
better exploit the semantic consistency for depth fea-
tures generation. Moreover, we present a novel seman-
tic weighted depth synthesis module, which generates
adaptive depth interval for the current scene. Then we
generate the final depth map by using a weighted com-
bination of semantic-aware depth weights in different
depth ranges. In this manner, we obtain a more accurate
depth map. Finally, we conduct extensive experiments
on indoor and outdoor datasets and demonstrate that
the proposed DepthGAN achieves superior performance
both on quantitative and visual effects in the depth gen-
eration task.

Keywords: Depth Generation; generative model; trans-
former;scene generation.
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1. Introduction

With the rapid development of technologies of computer
vision and computer graphics, 3D scene generation has be-
come important in a variety of downstream applications,
such as virtual scene construction, AR and VR, etc.

However, existing 3D generation methods mainly fo-
cus on generating a single object with the representation
of point clouds [58, 33], voxels [63], meshes [56, 55] and
implicit representations [39, 20], or optimizing the scene
layout of retrieved 3D models for the scene construction
[36, 11]. The limited fitting capability of 3D genera-
tion models and the complexity of object relations in 3D
scenes make it extremely challenging to generate 3D rep-
resentations of scenes containing diverse objects directly.
Moreover, optimizing existing 3D models is computation-
ally friendly while lacking flexibility. Hence, the solu-
tion to generating complex 3D scenes still remains an open
problem. Compared with manually building 3D scenes
with multiple objects, visual designers typically prefer con-
trollable and simple input, such as 2D semantic layouts
[25, 40, 38] or sketches [9, 21, 6]. However, due to the
insufficient input information, it is impractical to straightly
construct 3D scenes from the simplified 2D constraints
above. Inspired by the works of depth estimation task
[59, 60], the depth map is a viable 2.5D medium that mea-
sures the distance between the objects and the camera in
stereoscopic space, and it can be regarded as the transition
from 2D images to 3D scenes.

Therefore, we focus on a new task of generating an accu-
rate and reasonable depth map with a simple semantic lay-
out as input to further construct the 3D scene for visual de-
signers. To the best of our knowledge, this is the first work
that explores depth generation that only uses a semantic lay-
out as input for constructing 3D scenes. With given cam-
era parameters, the 3D scene can be precisely constructed
once the depth map is reasonably generated, as shown in
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Figure 1. We generate different depth maps (row 2) by manipulat-
ing the input semantic layout (row 1). Given a fixed camera in the
center of the room and the corresponding appearance of the scene
and edited objects, we further construct the point clouds from gen-
erated depth maps with either the color of class labels (row 3) or
appearance (row 4). For better visualization, we colorize the depth
map, where blue is close and red is far.

Fig. 1. Since the depth map provides accurate geometric
relations, the 3D scene can be fully represented within this
lower-dimensional space.

For this purpose, we first conducted depth generation by
previous Conv-based conditional image generation models
[25, 40, 47] yet receiving unsatisfied results which include
incorrect depth interval or improper depth structure. The
receptive field of the convolution architecture is limited to
a local scope [37] and the feature aggregation is confined
to pixels inside the scope. Hence, most existing Conv-
based methods for depth generation cannot accurately pre-
dict the global geometric correlation between different ob-
jects which makes the generated depth incoherent in terms
of visual perception. In addition, existing GAN-based con-
ditional generative models adopt a simple manner of con-
volution layers and nonlinear activation to obtain the out-
put image from generated high-resolution features. Since
the depth maps have more structural regularity than color
images, such a simple layer cannot fully model the depth
distribution, leading to stretched or squeezed depth interval
and unsmoothed depth maps.

Accordingly, to address the limitations above, we pro-
pose the DepthGAN, which redefines depth generation as a
feature generation and depth synthesis task. In the feature
generation part (Sec. 3.1), to better generate global features
in the semantic-guided generation, we propose a semantic-
aware transformer block with mixed attention and semantic-
aware layer normalization, efficiently improving the consis-
tency between the generated feature and the semantic input.

Moreover, we replace the output layer in the previous gen-
erative methods with a semantic weighted depth synthesis
module (Sec. 3.2) to generate an accurate depth map. We
first predict the depth intervals within a scene and then syn-
thesize the final depth map by a weighted combination to in-
tegrate local and global features with semantic information.
Equipped with the above modules, the proposed DepthGAN
achieves state-of-the-art results on both indoor and outdoor
scene datasets, demonstrating the effectiveness of our ap-
proach on depth generation. Furthermore, our DepthGAN
can perform scene manipulation with a simple modification
to the input, as shown in Fig. 1. Meanwhile, we also gener-
ate the appearance by proposed semantic-aware transformer
blocks together with depth generation task. Thus, we can
enable the scene generation from a simply handcrafted se-
mantic layout, as shown in our video demos.

Overall, our contributions are summarized as follows:

• We propose a novel generation-synthesis approach for
the new depth generation task with only the semantic
layout as input. It provides an effective and control-
lable solution for 3D scene generation.

• We present a semantic-aware transformer block with
mixed attention and semantic-aware layer normaliza-
tion to take advantage of rich global information of
depth and semantic layout for generating depth fea-
tures.

• A semantic weighted depth synthesis scheme is intro-
duced to generate the final depth map with the input
of generated depth features, which is superior both in
terms of quantitative metrics and visual effects.

2. Related Work

2.1. GAN-based Semantic Image Synthesis.

Generative Adversarial Networks [22] have achieved im-
pressive results in unconditional [5, 29, 16] and conditional
[25, 43, 28] image generation. Semantic image synthesis is
a task that takes the semantic layout as input, which pro-
vides pixel-level class labels, and outputs a natural image
with semantic guidance.

Pix2Pix [25] first introduces an encoder-decoder archi-
tecture and a patch-based discriminator to handle this prob-
lem. SPADE proposed a method to modulate the activa-
tions in the normalization layers using the semantic in-
put to guide the generation direction, which frees the en-
coder block, enabling a coarse-to-fine generation. Follow-
ing works including [64, 46, 38, 45] learn the normaliza-
tion layers using style, semantic, or instance input. CC-
FPSE [34] predicts conditional separated convolution ker-
nels from the input semantic layout, and introduces a fea-
ture pyramid semantic-embedding discriminator for seman-
tic alignment. OASIS [44] re-designed the discriminator



with a semantic segmentation network for semantic align-
ment. LGGAN [48, 47] proposed a local class-specific and
a global image-level generator to learn a local-global fea-
ture generation. SCGAN [53] learned semantic vectors to
parameterize spatially conditional convolution and normal-
ization. While depth generation requires more global fea-
ture awareness, thus we introduce a cascade of transformer-
based blocks for a coarse-to-fine depth feature generation.

2.2. Monocular Depth Estimation.

A depth map measures the spatial structure of a scene,
which is a low-dimensional but efficient representation of
the 3D scene. Monocular depth estimation [17, 31, 19, 51],
mainly focuses on regressing dense depth maps from im-
ages. Nevertheless, poor edge quality and the lack of global
information are common problems of CNN-based depth es-
timation models. [65] explicitly introduced a pre-trained
semantic segmentation network to guide depth boundaries
due to the high quality of edges in the semantic map. In
addition to CNN-based structures, generative models [1, 8]
and vision transformers [41] have also been applied to depth
estimation tasks. Recently, [3, 4] perform a global statisti-
cal analysis on depth bins to further predict the depth map
in a classification-regression manner. In the task of depth
estimation, the dense depth map can be further used to re-
construct 3D scenes, which inspires us a time-saving choice
to generate a 3D scene by the depth map. Nevertheless,
color images are required as input in the depth estimation
task, obtaining 3D scenes in this way is difficult to meet the
requirements of the simplicity of manipulation and variabil-
ity for visual designers. To this end, we propose a new task
of depth generation utilizing only the semantic layout as in-
put, which is different from the depth estimation task with
the input of color images.

2.3. Vision Transformers.

The seminal work [13] propose a pure transformer [7]-
based architecture for discriminative vision tasks, which en-
ables a global feature aggregation and extraction in images.
Cvt [57] introduces convolutions into vision transformers
to enhance the local attention. Swin transformer combines
the local and global attention by calculating the attention in
a local shifted window, leading to a huge improvement in
vision transformers. Recently, researchers begin to explore
the migration of using vision transformers in GANs for gen-
erating better global features in complex images. [32, 26]
have improved rapidly in image generation tasks due to the
superior global feature aggregation capability of multi-head
self-attentions(MSAs). However, the generation quality of
these methods is not proportional to the time consumption
due to the quadric computing efficiency of the default vision
transformers, which makes it difficult for a high-resolution
generation. Recent works [12, 35, 50] propose to calculate
MSAs in local windows, leading to the linear computational
efficiency. [61] prove the feasibility of using block-wised
attention for unconditional high-resolution image genera-
tion. In this work, we observe that exploiting vision trans-
formers with more global information is suitable for the new
conditional depth generation task.

3. Method

As illustrated in Fig. 2, we present a novel depth gen-
eration architecture, DepthGAN, which consists of a depth
feature generation stage (Sec. 3.1) and a depth map syn-
thesis stage (Sec. 3.2). Starting from a one-hot seman-
tic layout S ∈ NH×W×C , we first adopt a cascade of
semantic-aware transformer blocks to generate the depth
feature F ∈ RH×W×E . Then we utilize F to generate the
adaptive depth interval and apply a semantic-weighted com-
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Figure 2. Overview of our DepthGAN. Our framework involves two stages: (1) depth feature generation and (2) semantic weighted depth
synthesis. We first employ a cascade of semantic-aware transformer (SAT) blocks to generate depth features with semantic alignment.
Then we adopt an encoder-decoder to generate the semantic weight map and a DIWG module to generate the depth interval and the depth
weight map. Finally, the depth map is synthesized through a semantic weighted combination.



bination to obtain the final depth map D ∈ RH×W , which
is semantically aligned with the semantic layout S.

3.1. Depth Feature Generation

Unlike generating the appearance, depth map generation
mainly focuses on global features, such as the geometric
and spatial structure within the scene. In order to capture
global information, we construct an architecture comprised
of a series of Swin transformer [35] blocks as our baseline
to better generate the global attention features. It takes the
downsampled low-resolution semantic layout as the input of
this stage and generates the depth feature with upsampling
in a coarse-to-fine manner.

However, the baseline method cannot effectively align
the generated features with the input semantic layout due to
the lack of semantic constraints in the generation process.
To address this issue, we propose a semantic-aware trans-
former (SAT) block, which introduces a semantic positional
encoding (SPE), a mixed attention module, and a semantic-
aware layer normalization (SALN) module to guide the di-
rection of feature generation, as shown in Fig. 3 (a).
Semantic Positional Encoding. In the SAT block, we first
aim to better let the layers know the semantic position infor-
mation on each input scale. Thus, we utilize a learned se-
mantic embedding from the semantic layout as a positional
encoding, as shown in Fig. 3 (a).
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Figure 3. (a) The semantic-aware transformer (SAT) block. (b)
The proposed mixed attention. (c) The proposed semantic-aware
layer normalization (SALN).

For the input feature maps F ∗ of shape RHF×WF×EF

in each input scale, where EF , HF ,WF are the spatial res-
olution, we embed the one-hot semantic input S of shape
NH×W×C to the same scale as F ∗ by learned convolution

kernels with different stride parameters, denoted as S∗:

S∗ = Conv(S). (1)

Thus the SPE is adaptive for different feature scales. We
then add the embedded semantic input S∗ to the input
feature maps F ∗, enabling the SAT block to perceive the
global semantic information for each pixel. Different from
the learned positional encoding in the default transformer
blocks which encodes the relative position of pixels, our
SPE can involove the semantic information and further im-
prove the feature generation quality and semantic align-
ment.
Mixed Attention. Although the baseline utilizes self-
attention by calculating queries, keys, and values from the
features, this method ignores the interaction between fea-
tures and semantics. To this end, we propose a simple yet
effective strategy, named Mixed Attention, as shown in Fig.
3 (b). Instead of calculating the attention between tokens of
features, we adopt additional semantic queries:

Mixed Attn = Softmax(
(QF +QS)K

T
F√

dk
+ E)VF , (2)

where QF ,KF , VF represent the query, key, and value ma-
trices projected by the features, and QS is the query matrix
from the semantic input. The relative positional encoding
E is added as a bias term.

Compared to self-attention in Swin Transformer, our
mixed attention enables the feature aggregation between
features and semantics at the same time, leading to better
semantic-aware generation.
Semantic-aware Layer Normalization. To better match
semantic features and depth features in the SAT block, we
propose the semantic-aware layer normalization to learn a
parameterized affine transformation and fuse the semantic
information to the features, as shown in Fig. 3 (c). Given the
input feature tokens FT , the output tokens F̂T are calculated
as:

F̂T =
γ(ST )

σ
⊙ (FT − µ) + β(ST ), (3)

where γ, β are vectors learned by a simple MLP-ReLU-
MLP architecture with the semantic tokens ST . Here ⊙ is
the element-wise multiplication between two vectors. µ and
σ denote the mean and standard deviation of FT .

With learned scaling and bias vectors γ, β, the affine
transformation is adaptive with the semantic input and
varies with respect to different token positions, which facil-
itates the matching of different features without introducing
unstable training.

3.2. Semantic Weighted Depth Synthesis

Especially, the depth map has more structural regularity
in the feature distribution. However, the simple output man-
ner in previous GAN-based image generation methods lacks



the capability to model the accurate depth map. Inspired
by the Adabins [3] from the depth estimation task, we pro-
pose the semantic weighted depth synthesis (SWDS) stage,
which generates the depth interval from the depth features
of the previous stage and conducts a semantic weighted
depth synthesis scheme to obtain the final depth map, as
shown in Fig 2.

In this stage, we first design a depth interval and weight
generation (DIWG) module to enable the depth interval and
weight generation for the scene. Meanwhile, we propose to
use an encoder-decoder architecture to compute the seman-
tic weight map W from S and better utilize the semantic
input. Finally, we utilize a semantic weighted combination
module to fuse them and synthesize the final depth map.
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Figure 4. The proposed DIWG module. The module takes the fea-
ture map and semantic map as input and outputs the depth interval
and depth weight map.

As shown in Fig 4, the DIWG module first embeds the
input feature F and the semantic input S into patches, de-
noted as FT and ST . Then we adopt two SAT blocks to
enable semantic-aware feature generation. Note that, we do
not add a global positional encoding here since the window
size in the SAT block is set to be the same as the embedded
feature map, thus the relative positional encoding here can
be regarded as a global one. The output embedding from
one of SAT blocks is projected by a linear perceptron with
softmax to yield an N bins length vector b. Like Adabins
[3], the bin centers c(b) are calculated via post-process:

c(bi) = dmin + (dmax − dmin)(
bi
2
+

i−1∑
j=1

bj), (4)

where c(bi) is the center depth of the ith bins. dmax and
dmin are the maximum and the minimum depth values of
the dataset.

Meanwhile, we obtain the depth weight map via a pixel-
wise dot product between the generated feature embedding

of another SAT block and the input feature F . Note that, the
depth weight map contains rich local-global feature similar-
ities while serving as a key-query process.

On the other hand, we compute the semantic weight map
W with the encoder-decoder architecture. Then, we apply
an element-wise multiplication between W and the depth
weight map to obtain a semantic-aware depth weighted
map, which aggregates the additional semantic informa-
tion for a weighted generation. Next, the semantic-aware
depth weighted map is converted to a weighted probabil-
ity depth distribution map PW via softmax. Finally, the
depth value for each pixel is calculated from a weighted
combination with the corresponding probability distribu-
tion: d̂ =

∑
i c(bi)p

W
i .

In the SWDS stage, we fuse the semantic information to
the depth map and disentangle the bins generation with the
depth weight map generation by two separate SAT blocks,
enabling more accurate and reasonable depth maps.

3.3. Loss Functions

The generator and the discriminator are trained alterna-
tively, where we adopt the hinge loss in the discriminator
for distinguishing real/fake. The generator is optimized
by multiple losses, including the hinge-based adversarial
loss, discriminator feature matching loss LFM (x̂, x), and
the perceptual loss LP (x̂, x), following the previous works
[27, 40, 52]:

LD =− Ex,S [H(D(x, S))]− Ex̂,S [H(D(x̂, S))],

LG =− Ex̂,S [D(x̂, S)] + λPEx̂,SLP (x̂, x)

+ λFMEx̂,SLFM (x̂, S),

(5)

where x is a real depth map, x̂ is a generated depth map,
and S is the semantic layout. λP , λFM denote the weights
for the perceptual loss and feature matching loss. H is the
hinge function, λ = 1 if I is a real image and −1 if I is a
generated image:

H(I) = min(0,−1 + λI). (6)

4. Experiments

4.1. Implementation

Datasets. We benchmark our approach over Structured3D
[62], Stanford2D3D [2], and Visual KITTI (VKITTI) [18]
datasets. Here we show details about the datasets following:

• Structured3D is rendered with synthetic scenes in
panorama images. The geometric structure is distorted
in the panorama images on the sphere grid, and ac-
curate depth generation is difficult with conventional
convolution kernels [10]. Therefore, we re-project the
panorama images in Structured3D to perspective views
by reverse gnomonic projection [49], as shown in Fig.



5. Following the official split, we choose scene 0 to
scene 2999 for training, scene 3000 to scene 3249 for
validation, and scene 3250 to scene 3499 for testing,
resulting in 109494 training images and 10122 testing
images of virtual indoor scenes.

(a)  Panorama (b)  CubeMap

(c)  Semantic and Depth pairs of 6 perspective images

Gnomonic
Projection

Figure 5. Explanation of the re-projection in Structured3D. (a) The
panoramic image on the sphere grid. (b) Cubemap by reverse
gnomonic projection. (c) Semantic layout and depth map pairs
of 6 perspective views in the scene, viewed in color. Note that
the same color box in (a) and (b) represents the same part from a
spherical view to a perspective view.

• Stanford2D3D is scanned with RGB-D cameras in the
real-world scene with both perspective and panorama
images. Following the official split, we choose the per-
spective images in areas 1, 2, 3, 4, and 6 for training
and area 5 for testing. Stanford2D3D contains 52093
training images and 17593 testing images of real-world
indoor scenes.

• VKITTI is a photo-realistic synthetic video dataset
designed to learn and evaluate computer vision models
for several video understanding tasks: object detection
and multi-object tracking, scene-level and instance-
level semantic segmentation, optical flow, and depth
estimation. We choose scenes 0, 2, 18, and 20 for train-
ing and scene 6 for testing. Thus, we get 18560 train-
ing images and 2700 testing images of outdoor scenes.
The semantic labels are obtained from the provided in-
stance labels by the color mapping in each scene pro-
vided in the dataset.

The minimum depth value is set to 0, and the maximum
depth value is 655.35 meters for VKITTI while is 10 meters
for the other indoor datasets.
Evaluation Metrics. We adopt Fréchet Inception Dis-
tance(FID) [23] to measure the Wasserstein-2 distance be-
tween the distribution of generated depth map and that of
the ground truth depth. Moreover, seven standard evalua-
tion metrics in depth estimation tasks [14, 3] are evaluated

for depth accuracy, including mean absolute error (MAE),
root mean square error (RMSE), absolute relative error (Abs
Rel), square relative error (SqRel) and threshold percentage
(δn):

- MAE = 1
N

∑N
i=1 |di − d̂i|;

- RMSE =
√

1
N

∑N
i=1 |di − d̂i|2;

- AbsRel = 1
N

∑N
i=1 |di − d̂i|/d̂i;

- SqRel = 1
N

∑N
i=1 |d2i − d̂2i |/d̂i;

- Threshold percentage δn is the percentage of pixels
satisfying max(di

d̂i
, d̂i

di
) < 1.25n, n ∈ {1, 2, 3},

where d and d̂ are ground truth depth and generated depth
respectively.

Additionally, we calculate the PSNR of generated depth
maps:

PSNR = 20log10
MAXd

RMSE
, (7)

where MAXd is the max depth value of the dataset for the
depth generation.
Training and Testing Details. Different from the task of
image generation, the depth values are stored as 32-bit float
values, which are then normalized to [0, 255.0] by dividing
the maximum depth value of the scenes. At the testing, the
FID is calculated directly by the normalized depth values
ranging from 0 to 255.0, while other metrics are calculated
by re-scaling generated float depth values back to the orig-
inal format of the dataset without losing accuracy. For the

Table 1. Detail architecture of our DepthGAN. Input size and Dim
are the shapes of the input feature map and semantic embedding in
the SAT block. SAT-8 means an SAT block with an input resolu-
tion of 8×8. In the SAT block, h is the number of heads in MSAs,
d is the depth of SAT blocks, and w is the window size of mixed
attention. In the SWDS module, p is the patch size of the patch
embedding for both the feature map and the semantic layout, and
MLP-256 is the 256-dimensional MLP for depth interval. We use
bilinear upsampling for the upsampling layers.

-
Input size Dim Module Architecture Up

8× 8 512 SAT-8 {h-16, d-2, w-8} ✓
16× 16 512 SAT-16 {h-16, d-2, w-8} ✓
32× 32 512 SAT-32 {h-16, d-2, w-8} ✓
64× 64 256 SAT-64 {h-16, d-2, w-8} ✓
128× 128 128 SAT-128 {h-8, d-2, w-8} ✓
256× 256 64 SAT-256 {h-4, d-2, w-8}

256× 256 64 SWDS
p-16

SAT-16, MLP-256
SAT-16



discriminator, we apply the Spectral Norm to all the lay-
ers. We adopt the Adam optimizer [30] with a learning rate
0.0001 for the generator and 0.0004 for the discriminator
following TTUR [24], and set β1 = 0 and β2 = 0.999. The
weight for the perceptual loss is 10. Our models are trained
on 8 TITAN RTX GPUs, with a batch size of 32. The train-
ing and generated resolution is 256× 256 for Structured3D
and Stanford2D3D datasets, and 256× 512 for the VKITTI
dataset. All results presented are obtained after training 50
epochs.
Network Architecture. In this section, we provide the de-
tailed model architecture for a 256 × 256 resolution depth
generation, as shown in Tab. 1.

4.2. Comparison Experiments

In this sub-section, we provide quantitative and visual
comparisons to prove the effectiveness of our DepthGAN.
We compare with previous semantic image synthesis meth-
ods including Pix2pixHD [25], SPADE [40], CC-FPSE
[34], LG-GAN [48], SEAN [64], OASIS [44], and SAFM
[38] with the same training strategy. For OASIS, we use
their default setting but remove the 3D noise part to avoid
the randomness in the generated depth map for better accu-
racy.

Note that in the depth generation, we use a one-hot se-
mantic layout as input for the accurate evaluation, unlike
the input noise map commonly used in semantic image syn-
thesis tasks for a multi-style generation. Thus we can learn
a unique depth distribution from an input semantic layout
without randomness. Meanwhile, using a semantic layout
instead of noise as input enables a fully controllable depth
generation. As shown in Fig. 1 and the video demo, the
generated depth map only changes among the edited ob-
jects, while the remaining parts keep consistent.

Quantitative Comparison. Tab. 2 shows the performance
of the depth maps generated by our approach and the com-
petitors on the proposed new tasks. Our approach leads to
decisive improvement and performs consistently better than
previous approaches, which demonstrates the effectiveness
of the proposed approach. With the generation-synthesis
strategy, we generate depth maps with more accurate depth
values and higher PSNR. In particular, our method improves
MAE by around 20% and PSNR by around 5% for the aver-
age of three datasets over the second-best competitor, which
means the proposed strategy is more capable of generating
accurate depth than the convolution-nonlinear manner in the
previous methods for this task. Moreover, our generated
depth maps outperform the competitors by 28% on the FID

Table 2. Comparison of performance with previous approaches on multiple datasets. The better performances are in bold.

Dataset Method MAE ↓ AbsRel ↓ SqRel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑ PSNR ↑ FID ↓

Structured3D

Pix2pixHD 0.1587 0.1325 0.1162 0.2062 84.52 93.73 96.64 21.63 128.20
SPADE 0.1366 0.1447 0.0781 0.1536 86.61 94.51 96.93 22.42 119.59

CC-FPSE 0.0946 0.0903 0.0353 0.1297 91.46 97.68 99.04 27.19 87.62
LGGAN 0.1362 0.1229 0.0893 0.1489 88.03 95.63 97.56 23.41 114.02
SEAN 0.1037 0.0863 0.0481 0.1268 89.47 97.05 98.75 26.69 75.34
OASIS 0.1199 0.1173 0.0532 0.1631 87.47 95.83 98.12 24.40 166.51
SAFM 0.0981 0.0826 0.0419 0.1187 90.64 97.45 98.61 27.79 61.58
Ours 0.0613 0.0590 0.0228 0.0888 95.37 98.67 99.40 30.53 37.38

Stanford2D3D

Pix2pixHD 0.5424 0.2985 0.5507 0.7801 69.36 84.97 90.97 17.25 335.98
SPADE 0.5820 0.2981 0.3662 0.7910 60.54 83.07 92.10 19.37 201.53

CC-FPSE 0.3662 0.1822 0.1466 0.5385 76.66 92.70 97.20 23.88 185.87
LGGAN 0.3381 0.1866 0.1435 0.5637 77.65 92.92 97.25 22.23 254.65
SEAN 0.4208 0.2068 0.1883 0.6057 72.28 90.99 96.56 21.67 157.37
OASIS 0.4037 0.2441 0.2635 0.6252 71.23 89.79 97.43 22.79 172.55
SAFM 0.3788 0.1927 0.1604 0.5559 74.17 91.86 96.98 22.19 238.06
Ours 0.2831 0.1380 0.1168 0.4898 83.90 95.21 98.19 23.95 130.45

VKITTI

Pix2pixHD 24.689 0.3989 31.784 53.373 52.47 81.16 92.92 21.74 668.24
SPADE 20.014 0.3384 13.675 38.607 55.64 80.95 91.49 24.60 510.08

CC-FPSE 18.760 0.2869 11.559 35.376 64.63 84.90 92.67 25.40 764.08
LGGAN 15.089 0.2605 12.331 34.091 67.45 88.34 94.26 25.70 470.11
SEAN 18.719 0.2996 16.393 38.919 66.52 84.48 91.21 24.55 569.56
OASIS 13.214 0.2657 8.439 30.263 64.40 86.71 93.17 26.68 493.30
SAFM 15.220 0.2548 10.754 31.702 64.17 87.15 93.42 26.40 454.41
Ours 10.973 0.2315 7.181 26.388 69.47 89.16 94.55 27.02 291.78
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Figure 6. Depth maps comparison on Structured3D and Stanford2D3D. Blue is close and red is far.
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Figure 7. Depth maps comparison on VKITTI. Blue is close and
yellow is far.

score, proving that the distribution of generated depth maps
is closer to the ground truth distribution.
Visual Comparison. As shown in Fig. 6 and Fig. 7, our ap-
proach shows compelling quality in generating more accu-
rate depth maps with reasonable structure correlation, bet-
ter matching the ground truth depth distribution. With the
global depth features generated by the SAT block, our gen-
erated depth maps can better represent the structure of com-

plex scenes, such as chairs in rows 3 of Fig 6. Especially for
small and far semantic regions, our approach can generate
correct depth values, see the plants of row 1 and the door
of row 4 in Fig. 6. Moreover, since we generate the depth
interval for the scene and utilize a semantic-aware weighted
combination, our generated depth maps show more accurate
geometric correlation and can better capture the depth vari-
ation within the semantic regions, see row 2 in Fig. 6 and
the depth of trees in Fig. 7.

4.3. Ablation Study

We conduct experiments on the Structured3D dataset to
verify the effectiveness of each component in our method.

Table 3. Ablation study on the network architecture. Starting from
the baseline architecture, we prove the effectiveness of each pro-
posed component.

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
Baseline 0.1709 0.2086 17.65 307.16
+ SPE 0.1382 0.1749 20.81 226.94
+ SALN 0.0843 0.1015 26.90 77.24
+ Mixed Attn 0.0755 0.0826 29.58 50.11
+ SWDS (Ours) 0.0613 0.0590 30.53 37.38

Main Ablation. As shown in Tab. 3, starting from a cas-
cade of Swin blocks as our baseline method, we gradually
add each component to the framework. Compared with the
baseline, adding a semantic position embedding (SPE) on
each scale brings improvement because it encodes extra se-



mantic positions. The semantic-aware layer normalization
(SALN) greatly improves the performance and training sta-
bility by matching semantic and depth features. Moreover,
the mixed attention enables feature aggregation among dif-
ferent features at the same time. Finally, replacing the out-
put layer with the proposed semantic weighted depth syn-
thesis (SWDS) module makes the generated depth values
more accurate.

Table 4. Comparison of performance with the respect to the choice
of the discriminator.

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
Multiscale 0.0613 0.0590 30.13 37.38

FPSE 0.0736 0.0739 29.02 52.39
OASIS 0.9640 0.0878 26.59 66.41

Ablation on the Discriminator. In Tab. 4, we explore the
discriminator choice for depth generation. We obtain better
quantitative results by the multiscale design [25]. The FPSE
[34] and OASIS [44] perform worse because the pixel-
wised semantic alignment in the discriminator leads to clear
semantic boundaries while introducing a drastic change in
the depth of adjacent objects, which is also shown in row 1
of the 5 and 6 columns in Fig. 6.
Ablation on the SWDS. In Tab. 5, we replace the out-
put layer in the semantic image synthesis approaches by our
proposed SWDS. The improvements indicate the effective-
ness of the SWDS module. Meanwhile, we observe that the
worse performance the original approach does, the better
improvement the SWDS achieves.

Table 5. Different methods with SWDS, denoted by †.

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
SPADE 0.1366 0.1447 22.42 119.59
SPADE† 0.1225 0.1208 24.96 108.35
OASIS 0.1199 0.1173 24.40 166.51

OASIS † 0.1084 0.1145 25.82 104.67
SEAN 0.1037 0.0863 26.69 75.34
SEAN† 0.0921 0.0789 28.46 62.57

Ablation on Adabins. We compare our proposed SWDS
with the original adabins [3] design for the depth synthesis.

We note that there are two main differences. On the one
hand, we disentangle the bins generation from the depth
weight map generation. In detail, we utilize an SAT block
and the following MLP to generate the depth interval and
use another SAT block to generate the depth map. Adabins
simply use a transformer to predict both depth bins and the
weight, which leads to entanglement between different fea-
tures. On the other hand, we propose to use a semantic
weight map by the encoder-decoder architecture for the se-
mantic weighted depth synthesis. The semantic weight map

is especially suitable for the task of synthesizing depth maps
using the semantic layout, which is not involved in Adabins.

Table 6. Comparison of performance with our SWDS and original
adabins.

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
Adabins 0.0756 0.0671 29.69 48.24
SWDS 0.0613 0.0590 30.53 37.38

As a result, our generated depth maps obtain more accu-
rate depth interval, enabling better performance in the depth
evaluation metrics as shown in Tab. 6. Moreover, the pro-
posed semantic weighted synthesis also enhances the qual-
ity of semantic alignment in the generated depth maps, lead-
ing to a better FID score.

Table 7. Comparison of performance with the respect to the choice
of the loss function. Per, SSIM, and SI are perceptual loss, struc-
tural similarity loss, and scale-invariant loss respectively.

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
SSIM 0.0807 0.7781 28.69 45.89

Per 0.0613 0.0590 30.53 37.78
Per+SI 0.0781 0.0689 29.36 56.95

Ablation on Loss Functions. We conduct additional ex-
periments on the loss functions commonly adopted in depth
estimation tasks for depth generation, as shown in Tab. 7.
Replacing the perceptual loss (Per) with the Structural Sim-
ilarity loss (SSIM) [54] leads to worse results in our method
since the local window size in the SSIM loss functions leads
to block artifacts. Additionally, adding a Scare-Invariant
(SI) loss [15] introduces a threadlike unsmooth issue dur-
ing the adversarial training, which also reduces the perfor-
mance.

4.4. MultiModel

Furthermore, we extend our method to generate both
depth and appearance with smeantic input. Specifically, we
first introduce appearance supervision to our approach and
train a model with two branches for depth and appearance
generation respectively. Then, we simply adopt the same
design for the two branches with cascades SAT blocks and
upsampling. As shown in Fig. 9, we share the SAT blocks
in the low-resolution generation since the salient features
such as edges are mainly generated at low resolutions. Fi-
nally, we use the SWDS module for the depth synthesis
and a Conv-Tanh layer for the appearance generation. As
shown in Fig. 8, we can generate 3D point cloud scene with
different appearances using only a simple semantic layout
as input, which better meets the visual designers’ require-
ments. Moreover, the shared generation can supervise the
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Figure 8. Samples by our two-branch model for generating appearance and depth at the same time. The point clouds are constructed with
the generated appearance. For the depth map, blue is close and red is far.
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Figure 9. The depth-appearance generation architecture. We take
as input the semantic layout and output the depth map and the
appearance simultaneously.

depth features with appearance features, which also helps
improve the depth generation quality ( see Tab. 8). Please
see more results with the handcrafted semantic layout as in-
put in the supplementary video demos.

In addition, to further verify the influence of the appear-
ance branch on the generated depth quality, we adopt dif-
ferent discriminators in the appearance branch, as shown in
the Tab. 9. The multiscale discriminator in the appearance
branch achieves better depth quality, while FPSE and OA-

Table 8. Comparison of performance between the depth genera-
tion with the depth-appearance generation, denoted by D and D-A
respectively.

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
D 0.0613 0.0590 30.53 37.38

D-A 0.0598 0.0582 31.01 32.35

Table 9. Comparison of our appearance branch with different ap-
pearance discriminators.

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
FPSE 0.0614 0.0591 31.15 36.26

OASIS 0.0618 0.0596 31.25 36.47
Multiscale 0.0598 0.0582 31.01 32.35

SIS discriminators perform similarly to our single-branch
model even with the help of appearance, see Tab. 8. The
reason is that the over-emphasis on semantic boundaries in
the shared blocks will lead to a depth disparity at the object
edges, see Tab. 4. Thus with the multiscale discriminator in
the appearance branch, our depth generation achieves more
continuous depth quality. The results also show the differ-
ence between depth generation and image generation.

4.5. 3D Scene Generation

Apart from generating depth maps, our method can gen-
erate the 3D scene point cloud to further demonstrate the
effectiveness of our depth generation. Given the depth map



of a perspective view and a fixed camera intrinsic parameter,
we can simply generate the point clouds through a pinhole
camera model as shown in Fig. 1. For better visualization,
we project the generated depth maps within a scene in the
Structured3D dataset back to the panorama image and then
construct the whole 360◦ scene with given camera param-
eters. As shown in Fig. 10, the accurate geometric details
and the flatness of the wall show the compelling quality of
our generated depth maps.

Figure 10. The constructed point clouds by our generated depth
maps. We use the appearances from the dataset and crop the ceil-
ing for visualization.

4.6. The difference with depth estimation

Here we explain the key differences between depth gen-
eration with depth estimation. Depth estimation models ex-
tract rich features of the input image and utilize these fea-
tures to guide depth prediction. But with a semantic layout
as input, we cannot extract enough features. Thus we need
adversarial training to guide the model to generate the fea-
tures. We tried to retrain depth estimation models, such as
Adabins [3], Midas [42] and DPT [41] using a semantic
layout as input, but do not receive satisfying output. Thus,
depth generation is quite different from depth estimation,
we can not use a depth estimation model to predict a dense
depth map from a semantic layout. With the help of adver-
sarial training, the depth generation model can generate a
depth map from sparse features in the semantic layout in a
coarse-to-fine manner.

4.7. Limitation

For one thing, with a 256 × 256 resolution depth gen-
eration, the constructed sparse point clouds contain 65536
points. Generating point clouds with higher resolution is
time-consuming for training. For another thing, the depth
map measures the distance between the surface of the ob-
jects and the camera. The regions that are not visible to the
camera can not be constructed by our method, thus the point
clouds are partial. To further address the occlusion issue for
3D modeling, an interesting future work is to further con-
duct an additional point cloud completion module from the
partial point clouds generated by our method.

Another issue is for the users, the shape of the actual
drawn object is sometimes not as standard as objects in the

training set, especially for indoor objects. That will also
lead to artifacts. Our future work is to increase the robust-
ness of the model to irregular objects.

5. Conclusion

We propose a novel method dubbed DepthGAN for the
proposed depth generation task with the input of semantic
layout, which provides an effective and controllable solu-
tion for complex 3D scene generation for the first time.
First, we build a cascade of semantic-aware transformer
blocks with proposed semantic-aware layer normalization
and mixed attention, enabling a semantic-based depth fea-
ture generation. The generated depth features are then uti-
lized to synthesize the depth map using our proposed se-
mantic weighted depth synthesis module. Extensive eval-
uations are verified on multiple datasets and both quanti-
tative and qualitative results demonstrate that our approach
achieves valid generation of the depth maps and 3D scenes.
Furthermore, our method can perform scene manipulation
by simply editing the layout input, which is crucial for vi-
sual designers. We will also explore generating more 3D
representations such as meshes and implicit functions from
a semantic layout in future works.
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