
PCRTAM-Net: A Novel Pre-activated Convolution Residual and Triple Attention
Mechanism Network for Retinal Vessel Segmentation

Huadeng Wang, Zizheng Li, Xipeng Pan, Zhenbing Liu, Rushi Lan and Xiaonan Luo
Guangxi Key Laboratory of Image and Graphic Intelligent Processing,

Guilin University of Electronic Technology
Guilin, 541004,China

whd@guet.edu.cn

Idowu Paul Okuwobi
School of Artificial Intelligence, Guilin University of Electronic Technology

Guilin, 541004, China
paulokuwobi@guet.edu.cn

Bingbing Li
Department of PathologyGanzhou Municipal Hospital

Ganzhou, 341000, China
libingbing19932021@126.com

Abstract

Retinal images play an important role in early diag-
nosis of ophthalmic diseases. Automatic segmentation
of retinal vessels in color fundus images is challenging
due to the morphological differences between the reti-
nal vessels and the low contrast background, while mod-
els struggle to capture representative and discrimina-
tive retinal vascular features. To fully utilize the struc-
tural information of the retinal blood vessels, we propose
a novel deep learning network termed Pre-activated
Convolution Residual and Triple Attention Mechanism
Network (PCRTAM-Net). The proposed model uses
the pre-activated dropout convolution of the residual
method to improve the feature learning ability of the
network. Residual atrous convolution spatial pyramid
is integrated into both ends of the network encoder to
extract multiscale information and improve blood vessel
information flow. A triple attention mechanism is pro-
posed to extract the structural information between ves-
sel contexts and to learn long range feature dependen-
cies. We evaluated PCRTAM-Net on four publicly avail-
able DRIVE, CHASEBD1, STARE, and HRF datasets.
Our model achieves an ACC of 97.10%, 97.70%, 97.68%
and 97.14%, and an F1 of 83.05%, 82.26%, 84.64% and
81.16%, respectively. The results show that the pro-
posed PCRTAM-Net can extract more detailed retinal
vessels and performed better than the state-of-the-art

methods in retinal vessel segmentation.

Keywords: retinal image segmentation, triple attention
mechanism, atrous convolution, residual network, mul-
tiscale feature

1. Introduction

There are a certain number of capillaries in the human
retina, and their morphological changes are not only
closely related to ophthalmic dis-eases but also reflect the
symptoms of a variety of other cardio vessel diseases, such
as diabetes, hypertension, arteriosclerosis, etc [10]. The
retinal fundus image is an important tool for doctors to
diagnose various ophthalmic diseases and other related
diseases. However, due to the complex morphology of
the retinal blood vessels and the lack of a high definition
of fine blood vessels, the efficiency of manual diagnosis
is relatively low, and subjectivity is likely to exist [12].
Therefore, automatic segmentation of retinal fundus blood
vessel images has good research significance and clinical
application value. However, retinal image segmentation is
still a challenging task due to several constraints. Firstly,
the morphology and size of the blood vessels in retinal
images vary greatly. For example, blood vessel in fundus
images usually vary between 1 and 20 pixels. Secondly,
the retinal vessel tree has many closely connected tiny
blood vessels, which are generally difficult to separate from
other non-vessel structures. Thirdly, factors such as noise
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during retinal image acquisition and exudates produced by
lesions making the segmentation task a difficult process.
Faced with these challenges, researchers have put in a lot of
effort [7] to overcome these issues. The initial research ap-
proach [5] is to segment retinal vessels using hand-crafted
features. Although these methods have achieved good
results in the reported research works, but traditional image
processing using hand-crafted features technique cannot
represent the complex semantics of retinal blood vessels.
Consequently, in a relatively large datasets and data with
multiple complex situations, these techniques are liable to
perform poorly. In recent years, deep convolution neural
network (DNN) methods [13] have achieved remarkable
results in medical image segmentation tasks. These net-
works have become very popular and useful in medical
image segmentation problems. U-Net [16] and its various
variants, have been improved from a fully convolution
network for semantic segmentation, to a network that
further improved retinal vessel segmentation performance.
These variants are based on a symmetric encoder-decoder
structure, where convolution layers and down sampling
layers are continuously stacked to obtain retinal vessel
features. Although these U-Net variants achieve good
performance, but they are insufficient for the fundus image
segmentation challenge. Two main disadvantages limit
their application in modern medical applications. Ideally,
due to factors such as noise, low resolution, and poor
contrast, and the general U-shaped variant structure cannot
stably segment all the blood vessel features. In addition,
there is a lack of multiscale information from the retinal
images of complex blood vessels. It is very challenging
to develop a single vessel structure model suitable for
robust extraction of multi-source vessel images under
interference factors. To overcome the above limitations
and further improve the performance of retinal vessel
segmentation, we propose a retinal vessel segmentation
network with a pre-residual attention mechanism to extract
vessel structures from retinal images, termed Pre-activated
Convolution Residual and Triple Attention Mechanism
Network (PCR-TAM-Net). Our network is implemented
based on the encoder-decoder structure and then consists of
three core modules. Firstly, to better extract the boundary
vessel features, we study the convolution layer of the basic
network and propose a residual method based on pre-
activated dropout convolution (Res-PDC) to capture more
microvessel features to assist in the segmentation of vessel
structure. Secondly, to extract multiscale information
and improve blood vessel information flow, the residual
atrous convolution spatial pyramid method (Res-ACSP)
is used at both ends of the encoder. Finally, to fully learn
the vessel features, as well as the structural information
between vessel contexts, various attention mechanisms are
investigated, and a triple attention mechanism (TAM) is

proposed. The proposed PCRTAM-Net is validated on four
publicly available retinal vessel datasets, and the results
show that the proposed PCRTAM-Net performed better
than the state-of-the-art methods. In summary, the main
contributions of our paper are as follows.

(1) A retinal vessel segmentation network with a pre-
residual attention mechanism is proposed, which extracts
adequate vessel tree features from fundus images with
complex vessel structures.

(2) A residual method based on pre-activated dropout
convolution (Res-PDC) is proposed, which replaces the
convolution block in the deep learning network and en-
hances the generalization ability by discarding random
parts of the vessel structure so that the information on the
vessel features can be fully extracted.

(3) To effectively utilize the multiscale information of
complex blood vessels, the residual atrous convolution
spatial pyramid method (Res-ACSP) is used at both ends
of the encoder, so that the extracted information flow is
improved. The channel and spatial attention modules
are studied between the connected layers of the decoder,
and a triple attention mechanism (TAM) is proposed to
effectively utilize the multi-channel space for vessel feature
normalization so that the background and vessel structure
can be classified more effectively.

In the remainder of this paper, Section II presents the
overall approach of the retinal vessel segmentation. Section
III describes our network in detail. Section IV discusses the
experimental results of our network on the publicly avail-
able datasets. Finally, conclusions are presented in Section
V.

2. Related work

Over the past few decades, many methods have been pro-
posed for retinal vessel segmentation in fundus images. Pre-
viously, fundus images were segmented based on conven-
tional image processing techniques, such as morphologi-
cal operations [19] or threshold segmentation [5]. These
methods need to be adjusted again in different situations
to achieve better segmentation performance. These learn-
ing based methods [15] are not robust enough for this task
because the hand-crafted features are misled by lesion re-
gions and low-contrast microvessels. Compared with the
above methods, the depthwise convolution methods [13]
have better advantages in dealing with the specificity of reti-
nal blood vessels. Sheng et al. [17] improved the detection
of low-contrast and narrow blood vessels by using an ef-
ficient minimum generation superpixel tree to detect and
capture global and local structures of retinal images, but



segmented blood vessels have the limitation of unsmooth
boundaries. Yin et al. [29] developed a new method for
accurately extracting blood vessels in nonfluorescein fun-
dus images using direction aware detectors, which can filter
out background noise near pathological and non-vascular
structures, but the resulting accuracy of segmenting blood
vessels is low. Dai et al. [1] developed a deep learning sys-
tem called DeepDR that can detect the pretopoststages of
diabetic retinopathy. Wang et al. [22] proposed a hard at-
tention network (HAnet) that consists of one encoder and
three decoders, while introducing an attention mecha-nism
to enhance the features of the blood vessels in hard regions.
Sun et al. [20] proposed a network integrating atrous convo-
lution modules, which obtained a larger receptive field, and
improved the thickness of the blood vessels and the percep-
tion of details to a certain extent. Jin et al. [8] proposed
deformable convolution (DUNet) to replace ordinary con-
volution for the vessel segmentation. Mou et al. [14] em-
bedded densely dilated convolution blocks into a U-shaped
network for retinal blood vessel detection and used a prob-
abilistic regularized walker algorithm to patch the breakage
in detection. Wei et al. [23] proposed an automatically de-
signed genetic U-Net, which can achieve better retinal ves-
sel segmentation and solve the problems of overfitting and
high computational complexity caused by many parameters.
In recent years, attention mechanisms have been applied to
the image domain and combined with convolution neural
networks. Fu et al. [3] proposed a dual-attention mecha-
nism convolution network (DANet) to solve the image seg-
mentation task by capturing rich contextual dependencies
based on a self-attention mechanism. Yang et al. [28] pro-
posed an attention aware multiscale fusion network (AMF-
Net), which perceives microvessels through dense convolu-
tion, and utilizes a channel attention module to fuse multi-
scale features with adaptive weights and utilized the loca-
tion attention module to captures the distance spatial rela-
tionship of features to improve performance. Wu et al. [25]
proposed a multiscale channel attention network based on
the encoder-decoder structure, which extracted the multi-
scale structural information of blood vessels in the encoder
part and fused the channel attention module in the decoder
part to improve the vessel segmentation in the fundus im-
ages. However, due to the different morphology of reti-
nal vessels, the low contrast between retinal vessels and
the background, and the influence of lesions and equipment
noise, the state-of-the-art methods for the segmentation of
microvessels still need to be improved.

3. Our method

3.1. PCRTAM-Net

The proposed PCRTAM-Net is an encod-er-decoder net-
work for retinal vessel segmentation, and the overall ar-

chitecture is shown in Fig.1. The encoder of PCRTAM-
Net network consists of Res-PDC module, Res-ACSP mod-
ule and downsampling. The decoder consists of dual pre-
activation dropout convolution (Dual-PDC), TAM module
and upsampling. Finally, apply 1x1 convolution and sig-
moid operation to binarize the vessel probability map.

3.2. Residual method based on pre-activated dropout
convolution

The underlying convolution block based on encoder-
decoder network plays an important role in segmenting
complex structure of the retinal vessels. In traditional U-
Net, the internal struc-ture of each convolution block con-
sists of two base layers (3 × 3 conv + Relu). Furthermore,
several U-Net variants consist of modified con-volution
blocks such as in Genetic U-Net [23], DenseNet [6] and
ResNet [4] convolution block. Inspired by the above work,
we propose a residual method based on Res-PDC to replace
the tradi-tional U-Net convolution method. The traditional
3 × 3 convolution layer is replaced by a 1 × 1 + 3 × 3 +
1 × 1 convolution layer, and pre-activation is added before
the convolution, and dropout layer is added after the 3 × 3
convolution layer. Pre-activation is composed of batch nor-
malization (BN) and rectified liner units (Relu). The pur-
pose of the Pre-activation is to optimize the identity map,
and BN pre-activation improves the regularization of the
model. Dropout and BN in our Res-PDC convolution block
are used together. Because dropout can effectively prevent
overfitting problems in convolution networks. Also, the use
of dropout slows down the network training speed, so BN is
introduced to speed up the network. To avoid degradation
problem that often affect the model prediction as the nujm-
ber of layer increases, residual connections are introduced
to form Res-PDC, as shown in Fig.1.

3.3. Triple attention mechanism

To extract structural information between vessel contexts,
channel and spatial attention mechanisms are fully utilized
to learn long-range feature dependencies. This paper pro-
poses a TAM, including a Channel and Spatial Attention
Module (CSAM) and Dual Convolution Block Attention
Module (DCBAM). The output of the feature by the en-
coder is input to the decoder, and then to the CSAM mod-
ule to generate channel-spatial attention aware representa-
tion features. The DCBAM module is used to multiply the
attention map with the input feature map for adaptive fea-
ture optimization. Through the proposed TAM in this work.
Important blood vessel information in the channel and space
domains and large amount of information generated by con-
tinuous pooling and convolution operations of the feature
map can be fully extracted.
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Figure 1. Overview architecture of proposed PCRTAM-Net.

3.3.1 Channel and spatial attention module

The Channel and Spatial Attention Module (CSAM) is
composed of two parallel attention modules. The Spatial
Attention Block (SAB) se-lectively aggregates the features
of each space by weighting the features of all spatial loca-
tions, which enables the model to capture long-term fea-
tures dependencies that are related to each other regard-
less of the distance. Meanwhile, the Channel Attention
Block (CAB) enhances the contrast of features in different
channels by using the full space domain for representation
and normalization, which can lead to higher discrimina-tive
power.

(1) Spatial attention block The difference between
the SAB module and the position attention module in

DANet [3] is that the latter operates directly on the origi-
nal features, while the former operates on new features, and
sums. There is one 3 × 1 convolution + BN + Relu and one
1 × 3 convolution + BN + Relu, which are used to extract
the edge features of thevessel structure in the horizontal and
vertical directions. The low-level information is fused by
skip con-nections, and the lost spatial information is com-
pensated. Overall, the input features F ∈ RC×H×W go
through 3 × 1 and 1 × 3 convolution layers, to generate two
new feature maps Ey ∈ RC×H×W and Mx ∈ RC×H×W

where C represents the input feature dimension, H and W
are the height and width of the input image, respectively,
where Ey and Mx represent the features of the extracted
vessel structures in the vertical and horizontal directions, re-
spectively. The extracted new feature map is then reshaped,



where N is the number of features. So the features captured
at E and K can be applied to transposed matrix multiplica-
tion to obtain the spatial correlation of features, as shown in
Eq.1. Through SAB, the global context feature map is cap-
tured, and the context features can be aggregated accord-
ing to the spatial attention map out-put by SAB, which im-
proved the accuracy of the blood vessel segmentation pro-
cess.

S(x,y) =
exp(ET

y ·Mx)∑N
x′=1exp(E

T
y ·Mx′ )

(1)

(2) Channel attention block The channel attention map
is obtained by applying a softmax layer on the channel sim-
ilarity map between the input features and their transposed
features, as shown in Eq.2. Performing such operations on
each pixel can enhance the contrast between class related
features and help improve the expressiveness of features.

C(x,y) =
exp(Fx · FT

y )∑C
x′=1exp(Fx′ · FT

y )
(2)

3.3.2 Dual convolution block attention module

Dual Convolution Block Attention Module (DCBAM) is
a simple yet effective attention module for feed forward
convolution neural net-works. Given an intermediate fea-
ture map, the DCBAM module sequentially infers the at-
tention map along two independent channel dimensions and
space dimensions and then multiplies the inferred attention
map with the input feature map for adaptive feature opti-
mization. Because the DCBAM module is a lightweight
general module, the computational cost of this module can
be ignored and can be embedded behind the convolution
layers of the decoder. The calculation process of both the
channel and spatial attentions are shown in Eq.3-4.

M(c)(F ) = σ(MLP (AvgPool(F ))

+MLP (MaxPool(F )))

= σ(W1(W0(F
c
avg)) +W1(W0(F

c
max)))

(3)

M(s)(F ) = σ(f7×7([AvgPool(F );MaxPool(F )]))

= σ(f7×7([F s
avg);F

s
max)]))

(4)

σ is the sigmoid operation, MLP is the shared fully con-
nected layer, AvgPool is the global average pooling, and
MaxPool is the maximum pooling, W0 and W1 are the re-
spective parameters of the two convolutional layers in the
two-layer convolutional network MLP, f7×7 represents a
convolution kernel of size 7× 7.

3.4. Multiscale vessel feature extraction meth-od based
on residual atrous convolution spatial pyramid
method

Atrous convolution helps to extract the multiscale
features of the image. The process of atrous convolution
operations is shown in Eq.5, where the input feature x
and filter w, which generates output y, and r represents
the dilation rate. Some recent studies have shown that
residual atrous spatial pyramid pooling [18] combines
residual connections[21] with atrous convolution, to
improve information flow and extract multiscale features.
However, residual atrous spatial pyramid pooling method
uses the structure of 1 × 1 convolution, 3 × 3 convolution
+ BN + Relu and 1 × 1 convolution. The increase in the
number of network layers slows the training process of
the network. The main processes of multiscale feature
extraction are shown in the Eq.6-10. Where x is the input
feature, (Eq.6), (Eq.7) and (Eq.8) are the corresponding
convolution process, y is the output, Di is the dilation rate,
and i ∈ 2, 4, 8, 12. The main processes are as follows.

(1) Input Res-PDC into RES-ACSP and di-vide into
four branches, each of which includes a residual module
for improving the information flow and a convolution
operation for extracting the corresponding vessel features
based on atrous convolution.

(2) In the convolution operation of each branch on the
left side of the Res-ACSP, first add BN and Relu after 1 ×
1 convolution of each con-volution nucleus n/2 to reduce
the computational complexity in order to divide the blood
vessels of different standards. The four different atrous
convolution containing 2, 4, 8, and 12 are used to achieve
multiscale characteristics of thick and thin blood vessels.

To reduce the loss of detailed information, the output of
each branch of the residual module on the left side of the
Res-ACSP is added to the output of the convolution opera-
tion.

y[i] =
∑
k

x[i+ r · k] · w[k] (5)

C1 = Relu(BN(Conv(1,
n

2
)(x))) (6)

C2 = Relu(BN(Conv(3,
n

2
, Di)[C1])) (7)

C3 = Relu(BN(Conv(1, n)[C2])) (8)
yi = C3 + x (9)
y = Rleu(BN(Conv(1, n)[cat[y2, y4, y8, y12]])) (10)

3.5. Loss Function

In this work, we used the Binary Cross-Entropy (BCE)
loss as the objective function for network training to di-



Figure 2. Grayscale image after data augmentation.

Dataset Total Train Test Resolution
DRIVE 40 20 20 565× 584
CHASEDB1 28 20 8 999× 960
DRIVE 20 19 1 700× 605
DRIVE 45 30 15 3504× 2336

Table 1. Overview of the experimental datasets.

rectly evaluate the distance between expert annotations and
the pre-dictions. The BCE loss function is mathematical-ly
express in Eq.11 as follows.

Loss(BCE) = − 1

N

N∑
i=1

gi · log(pi)

+ (1− gi) · log(1− pi)

(11)

where g is the ground truth, p is the model prediction, n is
the total number of samples, and i is the ith sample.

4. Electronic Supplementary Material

4.1. Datasets

We conducted experiments on DRIVE, CHASEDB1,
STARE and HRF publicly available fundus image datasets.
Table 1 summarizes the total number of images, training
and test splits and image size (width × height) for the four
publicly available datasets.

4.2. Data preprocessing

Due to the data insufficiency, it is necessary to increase
the number of samples to prevent overfitting. Furthermore,
the datasets consist of different image size, we set the patch
size of DRIVE as 512×512, CHASEDB1 as 960×960 and
STARE as 592×592. Each image is rotated at an inter-
val of 10 degrees and then mirrored. Also, each image is
moved randomly between 20 and 50 pixels to-wards each
of the four corners. Finally, four cor-ners of each image are
clipped. We also enhanced the contrast, brightness, chroma,
and saturation of the image to reduce the interference of ex-
ternal noise factors. Through the above data enhancement
method, the data capacity is increased, and the network gen-
eralization ability is enhanced, and the overfitting problem
is prevented. The enhanced image is shown in Fig.2.

4.3. Evaluation metrics

We used the Accuracy (ACC), Sensitivity (SE), Speci-
ficity (SP), F1-score and Area under Curve (AUC) to eval-
uate the proposed PCRTAM-Net.

ACC =
TP + TN

TP + FP + TN + FN
(12)

SE =
TP

TP + FN
(13)

SP =
TN

TN + FP
(14)

F1 =
2 · TP

2 · TP + FP + FN
(15)

Where TP, FN, TN and FP represent true positive, false neg-
ative, true negative, and false positive, respectively. The
AUC measures the segmentation performance based on re-
call and precision.

4.4. Experimental setup

The implementation of our proposed PCRTAM-Net is
based on the PyTorch platform and trained on NVIDIA
RTX 3090 GPU. We use the Adam algorithm with an initial
learning rate of 1e-3 as the optimization method, where the
learning rate is set to decay to zero for 600 epochs. In the
experiments, the batch size is set to 4.

4.5. Ablation studies

To demonstrate the effectiveness of our proposed
PCRTAM-Net, ablation experiments are performed to ver-
ify the effect of each component. The visual results and
statistical comparison of different components are shown in
Fig.3 and Table 2. In Fig.3, (a) original image, (b) ROI
of original image (blue rectangle), (c) Ground truth image,
and (d-o) represents the vessels visualization. The order is
the same as that in Table 2. As described in Section 3, the
TAM module consists of three components: one CSAM and
two CBAMs. We further experiment and verify the effec-
tiveness of attention in feature extraction. In this ablation
experiments, we adopt a U-shaped network consisting of
encoders and feature decoders of five residual blocks as the
backbone of our proposed network.

4.5.1 Ablation study of Res-PDC module

We replace the traditional convolution block with the
Res-PDC module (referred to as ‘backbone + Res-PDC’)
and apply it to the DRIVE dataset. As shown in Fig.3,
three typic examples of blood vessel segmentation results
in fundus images are shown, indicating that our Res-PDC
module can effectively segment various blood vessels and
improve the performance of the backbone network. As
shown in Table 2, compared with ‘backbone’, ‘backbone +



Figure 3. Visualized segmentation results for ablation experiments on DRIVE and CHASEDB1.

Figure 4. Comparison of ROC and PR curves for ablation experi-
ments on DRIVE.

Res-PDC’ improves ACC, SE, F1 and AUC from 96.81%,
78.73%, 81.17% and 98.31% by 97.00%, 77.67%, 81.85%
and 98.65%. This indicates the importance of the Res-PDC
convolution block as a key factor in improving the accuracy

of vessel segmentation network.

4.5.2 Ablation study of TAM module

We investigated the effectiveness of the TAM module.
As shown in Table 2, compared with ‘backbone’, ‘back-
bone + TAM’ improves ACC, SE, F1 and AUC to 96.99%,
78.32%, 81.90% and 98.55%, which indicates the necessity
for multiple attention in feature extraction. Compared with
‘backbone + TAM’, it is observed that ‘backbone + CSAM’
performance reduces in ACC, SE, F1 to 96.93%, 78.60%,
81.66% and 98.47%, indicating that channel and spatial at-
tention in the decoder are paired to extract features. Our ex-
perimental results demonstrated the importance of CBAM
in the proposed TAM module.

4.5.3 Ablation study of Res-ACSP module

To extract multi-scale vessel information and improve
information flow, the Res-ACSP module is also added
to our network. As shown in Fig.3, it can be observed
that our model obtained finer segmentation results due to
the Res-ACSP module. It is higher than the backbone in
terms of F1 by 0.85%, as shown in Table 2. From the
visualization and statistics of the ablation experiments, we
observed that our model Res-PDC, TAM and Res-ACSP,
which proves that our model can handle this problem.

In addition, we combine the ROC curve and PR curve
to further evaluate the ability of each component to im-
prove the network, as shown in Fig.4. According to the
ROC curve and PR curve, AUC and PR calculated from the
DRIVE dataset, we observed that our PCRTAM-Net obtains
the highest AUC and PR value.



Methods ACC SE SP F1 AUC
Backone 0.9681 0.7873 0.9858 0.8117 0.9831
Backbone + Res-PDC 0.9700 0.7767 0.9888 0.8185 0.9865
Backbone + Res-ACSP 0.9692 0.8065 0.9850 0.8202 0.9842
Backbone + CSAM 0.9693 0.7860 0.9870 0.8166 0.9847
Backbone + Single CBAM 0.9682 0.7795 0.9865 0.8103 0.9830
Backbone + Double CBAM 0.9687 0.7706 0.9879 0.8107 0.9817
Backbone + CSAM + Single CBAM 0.9694 0.7799 0.9878 0.8107 0.9830
Backbone + TAM 0.9699 0.7832 0.9880 0.8190 0.9855
Backbone + Res-PDC + Res-ACSP 0.9706 0.8030 0.9869 0.8261 0.9869
Backbone + Res-PDC + TAM 0.9706 0.8118 0.9860 0.8277 0.9881
Backbone + Res-ACSP + TAM 0.9703 0.7845 0.9883 0.8215 0.9872
Backbone + Res-PDC+ Res-ACSP + TAM 0.9710 0.8158 0.9861 0.8305 0.9880

Table 2. Performance comparison of ablation studies on DRIVE.

4.6. Performance comparison with state-of- the-art meth-
ods

We compare our method with several recently published
state-of-the-art methods. Table 3 highlight the state-of-
the-art methods and their performance on the DRIVE,
CHASEDB1, and STARE datasets.

4.7. Performance comparison of four U-Net variants

Under the same experimental parameters and training
methods, we run the publicly provided network codes of
U-Net, CE-Net, DU-Net and PCRTAM-Net on DRIVE and
CHASEDB1 datasets. We compare the four models on the
ACC, SE, F1 and AUC metrics, and the results are shown in
Table 4 and 5. As observed from the table, the performance
of our model is optimal. The global accuracies of U-Net,
CE-Net, DU-Net and PCRTAM-Net are 0.9665, 0.9679,
0.9681, 0.9710 on DRIVE and 0.9715, 0.9738, 0.9745,
0.9770 on CHASEDB1. More importantly, we evaluated
the model using the ROC curve, as shown in Fig.6. The
closer the ROC curve is to the upper left boundary in the
ROC coordinates, the more accurate the model is. Con-
sidering the high imbalance problem, we also used the PR
curve to evaluate the model, as shown in Fig.6. The closer
the PR curve is to the upper right boundary in the PR co-
ordinates, the better the performance of the model. These
results show that among the four models, the PCRTAM-Net
curve is the most complete, while the U-Net curve is the
lowest. In addition, the results in Table 4 and 5 also show
that PCRTAM-Net obtained the largest area under the ROC
curve (AUC). To further observe the segmentation results
of these four models, the probability maps of the blood ves-
sel segmentation in fundus images are shown in Fig.8 and
9. From the figures, PCRTAM-Net produces better vessel
segmentation results. The micro-vessels and occluded ves-
sels that were lost in the U-Net, CE-Net and DU-Net were
detected. The details of the segmentation results for the
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Figure 5. Comparison of visualization results on DRIVE and
CHASEDB1.

four models are shown in Fig.5, which shows a local mag-
nified view of the vessel junction, where multiple vessels
are intricately connected, and the micro-vessels of DRIVE
and CHASEDB1. Due to the complexity of the vessel tree
structure, it is difficult for the segmentation algorithm to
accurately segment the complex structure. At the connec-
tions between blood vessels, U-Net, CE-Net and DU-Net
extract rough blood vessel information due to the limita-
tions of the network. For the tiny blood vessels, U-Net,
CE-Net and DU-Net show limitations in processing details.
However, PCRTAM-Net achieves satisfactory segmentation
results at these tiny vessels. The experimental results show
that among the four models, the PCRTAM-Net model has a
more ideal performance in dealing with complex and micro-
vessel structures.



Dataset Methods Year ACC SE SP F1 AUC
DRIVE Li et al. [11] 2016 0.9527 0.7569 0.9816 - 0.9738

FR-CRF [15] 2017 - 0.7897 0.9684 0.7857 -
Wu et al. [26] 2018 0.9567 0.7844 0.9819 - 0.9807
MPC-EM [21] 2019 0.9574 0.8083 0.9796 - 0.9822

DUNet [8] 2019 0.9566 0.7963 0.9800 - 0.9802
SID2Net [30] 2020 0.9520 - - 0.8163 0.9754
NFN+ [27] 2020 0.9582 0.7996 0.9813 - 0.9830
DDNet [14] 2020 0.9607 0.8132 0.9783 - -
HAnet [22] 2020 0.9581 0.7991 0.9813 0.8293 0.9823

CIEU-Net [20] 2021 0.9671 0.7933 - 0.8227 0.9778
MD-Net [18] 2021 0.9676 0.8065 0.9826 - -
SCS-Net [24] 2021 0.9697 0.8289 0.9838 - 0.9837
Khan et al. [9] 2022 0.9610 0.8125 0.9763 - -
CRAUNet. [2] 2022 0.9587 0.7954 - 0.8302 0.9830
PCRTAM-Net 2022 0.9710 0.8158 0.9860 0.8305 0.9880

CHASEDB1 Li et al. [11] 2016 0.9581 0.7507 0.9793 - 0.9716
FR-CRF [15] 2017 - 0.7277 0.9712 0.7332 -
Wu et al. [26] 2018 0.9637 0.7538 0.9847 - 0.9825
MPC-EM [21] 2019 0.9654 0.8138 0.9807 - 0.9850

HAnet [22] 2020 0.9670 0.8239 0.9813 0.8191 0.9871
CIEU-Net [20] 2021 0.9751 0.7988 - 0.8073 0.9688
MD-Net [18] 2021 0.9731 0.7504 0.9889 - -
SCS-Net [24] 2021 0.9744 0.8365 0.9839 - 0.9867
Khan et al. [9] 2022 0.9578 0.8012 0.9730 - -
CRAUNet. [2] 2022 0.9659 0.8259 - 0.8156 0.9864
PCRTAM-Net 2022 0.9770 0.8473 0.9858 0.8226 0.9914

STARE Li et al. [11] 2016 0.9628 0.7726 0.9844 - 0.9879
FR-CRF [15] 2017 - 0.7680 0.9738 0.7644 -
MPC-EM [21] 2019 0.9695 0.8162 0.9869 - 0.9898

DUNet [8] 2019 0.9641 0.7595 0.9878 - 0.9832
SID2Net [30] 2020 0.9620 - - 0.8233 0.9824
NFN+ [27] 2020 0.9672 0.7963 0.9863 - 0.9875
DDNet [14] 2020 0.9698 0.8398 0.9761 - -
HAnet [22] 2020 0.9673 0.8186 0.9844 0.8379 0.9887

CIEU-Net [20] 2021 0.9714 0.8273 - - 0.8230
MD-Net [18] 2021 0.9732 0.8295 0.9866 - -
SCS-Net [24] 2021 0.9736 0.8207 0.9839 - 0.9877
Khan et al. [9] 2022 0.9586 0.8078 0.9721 - -
PCRTAM-Net 2022 0.9768 0.8571 0.9864 0.8464 0.9905

Table 3. Comparing the performance of the three types of mathematics.

Methods ACC SE F1 AUC
U-Net 0.9665 0.7698 0.7999 0.9806
CE-Net 0.9679 0.7840 0.8098 0.9825
DU-Net 0.9681 0.7841 0.8107 0.9816
PCR-TAM-Net 0.9710 0.8158 0.8305 0.9880

Table 4. Comparison of performance visualization results on
DRIVE.

Methods ACC SE F1 AUC
U-Net 0.9715 0.7357 0.7644 0.9811
CE-Net 0.9738 0.7226 0.7762 0.9872
DU-Net 0.9752 0.8264 0.8073 0.9898
PCR-TAM-Net 0.9770 0.8473 0.8226 0.9914

Table 5. Comparison of performance visualization results on
CHASEDB1.



Figure 6. Comparison of ROC and PR curves of different methods
on DRIVE.

Methods ACC SE F1 AUC
FR-CRF [15] - 0.7874 0.7158 -
MPC-EM [21] 0.9631 0.7782 - 0.9843
DUNet [8] 0.9651 0.7464 - 0.9831
HAnet [22] 0.9654 0.7803 0.8074 0.9837
SCS-Net [24] 0.9687 0.8114 - 0.9842
PCR-TAM-Net 0.9714 0.7981 0.8116 0.9871

Table 6. Performance comparison with other methods on HRF.

4.8. The performance of our method on high-resolution
datasets

To validate the performance of our method on High-
Resolution Fundus (HRF) images. We cropped the HRF
dataset into patches of size 960 × 960. Table 6 summarizes
the comparison of the proposed method with existing meth-
ods. For the division of training and test images, we take
the same view as Soomro et al. [11]. The first ten images
of each of the three images are used for training, and the
rest are used for testing. As shown in Table 6, the overall
performance of our method is higher than that of existing
methods. Through the experimental results, we observed
that our method achieves the best performance on the HRF

Figure 7. Comparison of ROC and PR curves of different methods
on CHASEDB1.
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Figure 8. Comparison of probability maps on DRIVE.
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Figure 9. Comparison of probability maps on CHASEDB1.

dataset, and thus the PCRTAM-Net model is suitable for
the segmentation of blood vessels in high-resolution fun-
dus images. Fig.10 shows the segmentation results on HRF
dataset.

4.9. Generalization ability verification based on cross-
training evaluation

To further investigate the generalization ability of the
proposed model, we performed a cross-training process
on the STARE and DRIVE datasets. The cross-training
refers to the evaluation method of testing pre-trained mod-
els on unseen datasets. Without finetuning, we applied
the PCRTAM-Net model trained on one dataset to other
datasets and evaluated it. For the convenience of training
and testing, we crop to 512×512 patches. Table 7 and Ta-
ble 8 present the performance of several existing methods
and our PCRTAM-Net model. The experimental results
better ACC, SE, F1 and AUC When tested on the DRIVE
dataset. Because the STARE dataset mainly contains thick
blood vessels and small blood vessels, when testing the
DRIVE dataset, some blood vessels ruptured, making the
overall slightly lower than the single training and testing
strategy. Tested on the STARE dataset, our PCRTAM-Net
model achieves a better ACC, F1 and AUC, and Sen is lower
than the best performance. Since the DRIVE dataset mainly
contains micro-vessels and the STARE is relatively com-
plex, the test performance is slightly lower. Our proposed
PCRTAM-Net model has a good generalization ability for
blood vessel segmentation in fundus images. Fig.11 shows
the segmentation results on DRIVE and STARE dataset.

Methods ACC SE F1 AUC
Li et al. [11] 0.9486 0.7273 - 0.9677
MPC-EM [21] 0.9501 0.7652 - 0.9740
DUNet [8] 0.9481 0.6505 - 0.9781
SID2Net [30] 0.9499 - 0.8010 -
NFN+ [27] 0.9530 0.7187 - 0.9761
HAnet [22] 0.9530 0.7140 - 0.9758
PCR-TAM-Net 0.9677 0.7981 0.8161 0.9839

Table 7. Comparison of performance results for the cross- training
on DRIVE.

Methods ACC SE F1 AUC
Li et al. [11] 0.9545 0.7024 - 0.9671
MPC-EM [21] 0.9522 0.7447 - 0.9754
DUNet [8] 0.9445 0.8419 - 0.9690
SID2Net [30] 0.9569 - 0.7866 -
NFN+ [27] 0.9629 0.7704 - 0.9783
HAnet [22] 0.9543 0.8187 - 0.9648
PCR-TAM-Net 0.9687 0.8097 0.7886 0.9804

Table 8. Comparison of performance results for the cross-training
on STARE.

Methods U-Net CE-Net DU-Net PCRTAM-Net
Params 3.35M 29.00M 0.06M 16.42M

Table 9. This article compares the complexity of the model with
some other existing models.

4.10. Computation complexity

In this section, we will discuss and analyze the complex-
ity of the model in detail. To make a fair comparison, and
to rule out the impact of different platforms, we give the
number of model parameters. We also select U-Net, CE-
Net and DU-Net for comparison. As can be seen from Ta-
ble 9, PCRTAM-Net has 16.42M parameters, which is not
the highest parameter amount com-pared to other models.
PCRTAM-Net has the highest performance scores in ACC,
SE, F1 and AUC compared to other existing methods.

4.11. Limitations

On the one hand, when the contrast between blood ves-
sels and background is extremely low, our model is difficult
to fully segment blood vessels. On the other hand, for ar-
eas that are too noisy, our method may produce some false
positives. In future work, we will further study and improve
the model to accurately identify smooth fine blood vessels
in the case of low contrast between blood vessels and back-
ground and too much noise.
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Figure 10. CProbability maps of three types of retinal images on HRF: (a) Image; (b) Ground Truth; (c) Probabil-ity map; (d) 0/1 map; (e)
Difference map..
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Figure 11. Visualization results on DRIVE and STARE: (a) Im-
age; (b) Ground Truth; (c) Probability map; (d) 0/1 map; (e) Dif-
ference map.

5. Conclusions

This paper proposes a novel retinal vessel segmenta-
tion network termed PCRTAM-Net, which has addressed
the low performance of retinal vessel segmentation. The
PCRTAM-Net consists of three main parts, they are Res-
PDC, Res-ACSP and TAM. In the encoder-decoder, we pro-
pose the Res-PDC method to extract more feature informa-
tion by replacing the traditional convolution method. At
both ends of the encoder, the Res-ACSP method is used
to extract multi-scale information and improve informa-
tion flow. In the decoder, the features are adaptively opti-
mized by effectively utilizing channel and spatial attention
through TAM. Comparative evaluations are performed on
four public datasets namely DRIVE, CHASEDB1, STARE
and HRF, which demonstrates that the proposed method
outperforms the state-of-the-art methods. The proposed

model has better generalization ability and is promising
to be extended to other medical image segmentation tasks.
Due to the complexity of the retinal vessel morphology and
the influence of various interference factors, the segmenta-
tion of micro-vessels needs further study.
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