
Multi-scale enhancement and aggregation network for single image deraining

Rui Zhang
Shandong University of Finance & Economics

Jinan, China
zhchchao@sina.com

Yuetong Liu
Shandong University of Finance & Economics

Jinan, China
henlyta@163.com

Huijian Han
Shandong University of Finance & Economics

Jinan, China
hanhuijian@sdufe.edu.cn

Yong Zheng
Shandong University of Finance & Economics

Jinan, China
1443066340@qq.com

Tao Zhang
Shandong University

Jinan, China
tao.zhang.sdu@foxmail.com

Yunfeng Zhang
Shandong University of Finance & Economics

Jinan, China
yfzhang@sdufe.edu.cn

Abstract

Rain streaks in an image will appear with differ-
ent sizes and orientations, resulting in severe blurring
and visual quality degradation. Previous CNN-based al-
gorithms achieved encouraging derained results, while
there are certain limitations in the description of rain
streaks and the restoration of scene structure in differ-
ent environments. In this paper, we propose an effi-
cient multi-scale enhancement and aggregation network
(MEAN) to solve the single image deraining problem.
Specifically, considering the importance of large recep-
tive fields and multi-scale features for depicting rain, we
introduce a multi-scale enhanced unit (MEU) to capture
long-range dependencies and exploit features at differ-
ent scales. Simultaneously, an attentive aggregation unit
(AAU) is designed to utilize the informative features on
spacial and channel dimensions, and aggregate effective
information to eliminate redundant features for rich sce-
nario details. To improve the deraining performance
of the encoder-decoder network, we utilize AAU to fil-
ter the information in the encoder network and con-
catenate useful features to the decoder network, which
is conducive to predicting high-quality clean and rain-
free images. Experiments results on synthetic datasets
and real-world samples show that our method achieves
significant deraining performance compared to state-of-
the-art approaches.

Keywords: Single image deraining, multi-scale en-
hancement and aggregation, encoder-decoder network

1. Introduction

Rain is a common weather phenomenon that hinders out-
door monitoring and human visual perception. Due to the
presence of rain streaks severely degrades the visibility of
objects in the images, many computer vision tasks can be
interfered with, such as road surveillance, object detection
and tracking, and consumer camera. Therefore, rain re-
moval has always been a fundamental problem in computer
vision research.

Removing rain from the images is a very challenging
ill-posed problem, as we not only have to eliminate rain
streaks completely, but also predict areas that are masked
and blurred behind the rain streaks. To address the deraining
problem, many methods have been designed to recover the
degraded scenes from the rainy images. Traditional meth-
ods [17, 2, 13] decompose rainy images into rain streak lay-
ers and clear background layers by learning the composi-
tion pattern of rain streaks and introducing appropriate prior
knowledge, and achieve satisfactory visual effects in light
rain scenarios. However, rain streaks in real conditions are
much more complex than existing prior assumptions, mak-
ing these traditional optimization-based approaches limited
in the capability to model and remove rain streaks.

Recently, deep learning-based deraining methods [26,
19, 11, 1] have achieved tremendous progress. Most of
these approaches attempted to obtain negative residual maps
or directly predict the clean images from original rainy in-
puts by stacking convolutional layers. However, networks
based on convolutional layers are only able to model lo-
cal information, but larger-scale contextual features are in-
evitably ignored. The dilated convolution is applied by
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some methods [6, 8] to expand the receptive field to a cer-
tain extent. Despite the multi-scale information captured,
this operation is essentially a local feature calculation pro-
cess, the feature extraction is still limited by the size of the
receptive field. In addition, several researchers consider in-
troducing different modules to effectively extract deep fea-
tures for obtaining high-quality deraining results. [16] and
[4] enhance the channel dimensional features by employ-
ing squeeze-and-excitation block [9] to improve the feature
representation ability of the network. Although these meth-
ods demonstrate impressive rain removal performance, the
derained results tend to be over-smoothed and blurry details
due to the lack of spatial dimension information. Moreover,
as the depth of the network deepens, the effective features
obtained by shallow layers may be lost. [7] utilizes skip-
layer connections to transmit shallow features into subse-
quent modules, but meaningful shallow features can not be
effectively screened and useless features are also inevitably
passed.

To address the above limitations, we propose a multi-
scale enhancement and aggregation network (MEAN) for
single image deraining, which is an ensemble composed of
an encoder network and a corresponding decoder network.
The multi-scale enhanced unit (MEU) is exploited in the
proposed network to obtain efficient features at different
scales while capturing long-range dependencies. In addi-
tion, the MEU can also fuse the features in the current unit
and utilize contextual information to better restore rain-free
images with ample details. To effectively extract useful in-
formation for deep feature representation, we use an atten-
tive aggregation unit (AAU) to enhance and deliver shallow
features of the encoder part into the decoder part. The AAU
can adaptively recalibrate features by integrating channel at-
tention and spatial attention, and generate effective feature
maps.

In summary, the main contributions of our method are
listed below:

(1) We propose a multi-scale enhancement and aggrega-
tion network (MEAN) for image rain removal, which uti-
lizes different scale information and effective features to
completely remove rain streaks and effectively restore clear
rain-free images.

(2) A multi-scale enhanced unit (MEU) is designed to
capture multi-scale and global features, which can exploit
information at different scales while expanding the recep-
tive field to improve the network deraining performance.

(3) We employ an attentive aggregation unit (AAU) to
obtain channel and spatial dimensions features. By apply-
ing the AAU, only the valid features of the encoder part can
be transmitted to the decoder part for efficient feature rep-
resentation.

(4) Extensive experimental results demonstrate that the
proposed method achieves excellent deraining performance

against advanced approaches on both synthetic datasets and
real-world images.

2. Related work

In general, single image deraining approaches are classi-
fied into two classes: traditional methods and deep learning-
based methods. Traditional approaches [17, 2, 13, 3, 14]
model rain streaks by designing hand-crafted physical fea-
tures, or utilize prior knowledge to constrain ill-posed prob-
lems. However, previous traditional deraining methods fail
in complex rain scenarios, which can easily lead to the
degradation of background content.

Recently, deep learning has been introduced for single
image deraining and demonstrated impressive performance.
For example, [6] designed a deep detail network for fo-
cusing on high-frequency rain streaks and removing back-
ground interference. [23] modeled the rain binary mask and
atmospheric veils to jointly detect and remove rain streaks.
[16] proposed a unified deraining network to gradually re-
cover clean images, which incorporated a recurrent neural
network to guide the deraining in later stages. [26] used
a multi-stream dense network to determine the rain-density
information and effectively remove the corresponding rain
streaks guided by the density label. [20] introduced an en-
tangled representation learning model that included a two-
branched encoder to obtain better derained images. [21]
presented a deraining approach that combined the temporal
properties of rain with human supervision to obtain rain-
free results from a series of nature rainy images. [24] con-
structed a novel deraining approach named recurrent hier-
archy enhancement network for rain removal. [10] formu-
lated a depth-guided attention mechanism and constructed
a novel deep neural network to learn effective features for
complete rain removal. [5] built a residual-guide feature
fusion network that can deal with different rain scenarios
and progressively predicts high-quality results. [8] pre-
sented the EfficientDeRain method to eliminate rain from
images, which can utilize pixel-wise dilation filtering and
the kernel prediction network to automatically predict the
multi-scale kernels for each pixel. [4] introduced an end-
to-end network that consisted of two sub-network with a
comprehensive loss function to derain and obtain lost scene
details. [12] explored the multi-scale collaborative repre-
sentation for rain streaks and presented a multi-scale pro-
gressive fusion deraining network to completely eliminate
rain. [19] deployed a bilateral recurrent network to model
the interplay between the rain streak layer and the clean
background layer for image deraining. [7] integrated both
local and global features into a dual graph convolutional
network and exploited multi-dimension contextual informa-
tion to generate clean derained results. [1] captured features
with multi-scale extraction, hierarchical distillation and in-
formation aggregation, and proposed an end-to-end frame-



Figure 1. Overview of the proposed MEAN.

Figure 2. Overview of the spatial pyramid structure. POOL
represents the pooling operation. n × n denotes the output
width× height of the pooling layer.

work to generate rain-free outputs. [11] analyzed the rain
and formulated a rainy image model, and designed a novel
end-to-end depth-guided network to produce clean images.
[25] employed a multi-stage progressive network to restore
degraded images, which decomposed the challenging task
into multiple sub-tasks to obtain satisfactory outputs.

3. Proposed method

We show the proposed MEAN for single image derain-
ing in Fig. 1. Our network consists of a deep convolu-
tion encoder-decoder network that delivers effective fea-
tures from the encoder network to the decoder network for
recovering degraded images. Specifically, the MEAN in-
cludes several multi-scale enhanced units (MEU) to capture
features at different scales and expand the receptive field
of the network. As the core component of the MEAN, the
MEU can also integrate deep features and utilize contex-
tual information to improve the rain removal performance
of the network. In the MEAN, MEUs are reduced to half
the size of the previous unit or expanded to twice the size of

the previous part by exploiting MaxPool. To fully exploit
the valuable information of the encoder network, we use the
attentive aggregation unit (AAU) to recalibrate shallow fea-
tures and remove redundant features, which is beneficial to
the decoder network for obtaining high-quality clean out-
puts. We will introduce the details of the key unit and loss
function in the following.

3.1. Multi-scale enhanced unit

To capture multi-scale features to improve the rain re-
moval performance, some methods [8, 4, 7] employ dilated
convolution to effectively obtain contextual information.
However, rain streaks and objects in the rainy scene tend
to be spatially long, and the derained results using only di-
lated convolutional layers computed in local regions still be
limited by the receptive field. The non-local network [22]
is proposed to capture long-range dependencies, and non-
locally enhanced encoder-decoder network[15] and dual
graph convolutional network [7] adopt non-local operation
and achieve satisfactory visual effects to a certain extent.
Applying a non-local algorithm in the network structure can
calculate the response of a location as a weighted sum of the
features of all locations to expand the receptive field from a
local area to the entire rainy image.

To fully obtain multi-scale information while expanding
the receptive field to predict high-quality outputs, we use
a multi-scale enhanced unit (MEU) to effectively acquire
and enhance features, which fuses features from the current
block and integrates them into non-local operation instead
of transferring inter-stage by referring to [7]. The MEU
consists of two types of blocks, Fig. 1 illustrates the detail.
The first block is the densely residual block that can process
shallow features to guide subsequent deep feature extrac-
tion. This block employs the residual network structure for
deep feature transmission and uses a dense network to share
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Figure 3. Comparison results of different rain removal approaches on Rain200H. (a)Input (b)DDN [6] (c)RESCAN [16] (d)ReHEN [24]
(e)EfNet [8] (f)DRD-Net [4] (g)MPRNet [25] (h)DGCN [7] (i)Our (j)Ground Truth

efficient features with subsequent operations. The second
block is an improved non-local block, which integrates a
spatial pyramid structure based on the non-local neural net-
work. By applying improved non-local block, the network
can fully explore multi-scale information while expanding
the receptive field. The regular non-local block can expand
the receptive field of the network to some extent, and this
block generally involves several important steps. Firstly,
the non-local block feeds the features into three 1 × 1 con-
volutions separately, which are employed to convert the in-
put features into different embeddings θ, φ and g. Secondly,
The result of matrix multiplication of θ and φ is regularized,
and matrix multiplication with g. Finally, the output of the

previous step is fed into a 1 × 1 convolution and add with
the input features of the non-local block to obtain the output
features of the non-local operation. The conventional non-
local block in deep learning-based deraining approaches is
generally explained as:

yi =
1

C(x)

∑
∀j

f(xi, xj)g(xj) (1)

f(xi, xj) = eθ(xi)
Tφ(xj) (2)

where i is the index to calculate the output location, and j
is the index to enumerate all possible locations. x and y
denote the input feature and the output, respectively. The
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Figure 4. Comparison results of different rain removal approaches on Rain200L. (a)Input (b)DDN [6] (c)RESCAN [16] (d)ReHEN [24]
(e)EfNet [8] (f)DRD-Net [4] (g)MPRNet [25] (h)DGCN [7] (i)Our (j)Ground Truth

response is normalized by the factor C(x). For simplicity,
non-local operation adopts g in the form of a linear embed-
ding: g(xj) = Wgxj . θ(xi) = Wθxi and φ(xj) = Wφxj .
Wg , Wθ and Wφ are weights to be learned.

We embed a spatial pyramid structure in a non-local net-
work to utilize multi-scale features effectively. The spa-
tial pyramid pooling can exploit context aggregation based
on different regions to capture contextual information. The
specific implementation of the spatial pyramid operation is
shown in Fig. 2. By applying spatial pyramid pooling, the
input features of this part are transformed into the vectors,
and the feature map is formed by multiplying vectors cor-
responding to θ and φ of the regular non-local block, multi-
plying them by improved g, and a 1× 1 convolution. Com-
pared with the traditional non-local network, MEU pro-
cessed features through a pooling layer after φ and g, and
concatenated the four results as the input for subsequent op-
erations. By using spatial pyramid pooling in the non-local
network, sufficient global information and features at dif-
ferent scales were integrated, which is beneficial to improve
the deraining performance for satisfactory rain-free outputs.

3.2. Attentive aggregation unit

Using the information recorded of the encoder part in the
decoder part proves to be beneficial for the removal of rain
streaks in the degraded image [15]. Nonetheless, useless

features inevitably appear in the shallow features of the en-
coder, and the direct employ of shallow features may lead
to residual rain streaks or artifacts in the restored image.
Based on the above motivations, we utilize an attentive ag-
gregation unit (AAU) to capture meaningful features in the
encoder stage and concatenate them into the decoder stage
for efficient feature enhancement and redundant feature re-
moval. We feed the input features of this unit into channel
attention and spatial attention respectively, and finally ag-
gregate the outputs. The AAU encourages the network to
extract useful information for recovering abundant details
in the background scene. Channel attention and spatial at-
tention are paralleled in AAU, they can achieve feature redi-
rection and generate effective attention maps. By integrat-
ing channel and spatial useful information, the meaningful
features in the encoder network can be fully employed in the
decoder network to improve the network learning ability.

3.3. Loss function

Generally, the output of the proposed network ought to
be similar to the ground truth at a certain level. To ob-
tain high-quality derained results, a hybrid loss function is
used to train our method, including the structural similar-
ity (SSIM) [15] loss and the L1-norm loss. The SSIM is a
metric that can effectively evaluate image quality. It mea-
sures the similarity between two images by including three
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Figure 5. Comparison results of different rain removal approaches on Rain1200. (a)Input (b)DDN [6] (c)RESCAN [16] (d)ReHEN [24]
(e)EfNet [8] (f)DRD-Net [4] (g)MPRNet [25] (h)DGCN [7] (i)Our (j)Ground Truth

aspects including structure, contrast and brightness. To bet-
ter preserve background details of the derained outputs, we
adopt the SSIM loss to supervise the proposed MEAN.

LSSIM = −log(fssim(O,GT ) + ξ1) (3)

where LSSIM represents SSIM loss. O indicates the results
of deraining network O, and GT indicates the ground truth
image. fssim denotes the SSIM value between O and GT .
ξ1 indicates an extremely small number to avoid having the
denominator equal to zero.

Furthermore, we also use the L1-norm loss, which can
adequately constrain the differences between brightness and
color properties.

L1 =
1

N

N∑
i=1

(‖ O −GT ‖) (4)

where L1 represents L1-norm loss. N denotes the total
number of pixels in the derained output. O and GT indi-
cate the results of deraining network and corresponding the
ground truth image, respectively.

The final hybrid loss function can be formulated as:

L = LSSIM + λL1 (5)

where λ represents the weight parameter of L1 loss, empir-
ically set equal to 0.1.
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Figure 6. Comparison results of different rain removal approaches on Rain1400. (a)Input (b)DDN [6] (c)RESCAN [16] (d)ReHEN [24]
(e)EfNet [8] (f)DRD-Net [4] (g)MPRNet [25] (h)DGCN [7] (i)Our (j)Ground Truth

4. Experimental results

We compare our network with seven state-of-the-art ap-
proaches: deep detail network [6] (denotes as DDN), re-
current squeeze-and-excitation context aggregation net [16]
(denoted as RESCAN), recurrent hierarchy enhancement

network [24] (denoted as ReHEN), EfficientDerain network
[8] (denotes as EfNet), detail-recovery image deraining net-
work [4] (denoted as DRD-Net), dual graph convolutional
network [7] (denoted as DGCN), and multi-stage progres-
sive image restoration network [25] (denoted as MPRNet).
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Figure 7. Comparison results of different rain removal approaches on SPA-Data. (a)Input (b)DDN [6] (c)RESCAN [16] (d)ReHEN [24]
(e)EfNet [8] (f)DRD-Net [4] (g)MPRNet [25] (h)DGCN [7] (i)Our (j)Ground Truth

Datasets Rain200H Rain200L Rain1200 Rain1400 SPA-Data
Method PSNR/SSIM
DDN[6] 24.64/0.850 33.01/0.972 30.97/0.912 30.00/0.904 36.16/0.946
RESCAN[16] 26.60/0.897 37.07/0.987 33.38/0.942 31.94/0.935 38.11/0.971
ReHEN[24] 27.88/0.850 37.26/0.972 32.64/0.914 31.33/0.918 37.99/0.966
EfNet[8] 32.34/0.908 37.10/0.986 34.79/0.970 32.55/0.910 41.27/0.983
DRD-Net[4] 28.16/0.920 37.15/0.987 29.93/0.882 32.57/0.939 38.39/0.972
DGCN[7] 31.09/0.910 37.36/0.988 34.41/0.963 33.07/0.945 41.98/0.989
MPRNet[25] 30.37/0.885 36.59/0.954 32.76/0.918 33.27/0.929 41.30/0.985
MEAN 32.40/0.926 37.39/0.990 34.81/0.974 33.39/0.951 42.17/0.991

Table 1. Quantitative results of different methods on synthetic datasets.

4.1. Implementation details

The proposed method is trained on the NVIDIA GTX
2080 Ti GPUs based on PyTorch. We employ the Adam
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Figure 8. Comparison results of different rain removal approaches on real-world images. (a)Input (b)DDN [6] (c)RESCAN [16] (d)ReHEN
[24] (e)EfNet [8] (f)DRD-Net [4] (g)MPRNet [25] (h)DGCN [7] (i)Our

algorithm to update the parameters of our network during
training. The initial learning rate is 0.001, and the rate will
decay by 0.2 when the epoch number reaches 20 and 40.
The training of the network will terminate after 80 epochs.

4.2. Synthetic data

We conduct extensive experiments on five synthetic
datasets to demonstrate the deraining performance of our
method. Rain200H (with heavy rain streaks) and Rain200L
(with light rain streaks) [23] contain 1800 synthetic training
images and 200 testing images, respectively. Rain200H/L
are synthesized from BSD200 [18] with five kinds of rain
streaks. Rain1200 [26] comprises 12000 rainy/clean im-
age pairs, which are composed of three rain density levels

(light, medium and heavy rain streaks). Rain1400 [6] con-
tains 14000 synthetic image pairs that have 14 types of dif-
ferent sizes and directions of rain streaks. SPA-Data [21]
provides a large-scale dataset using 170 real-world rainy
videos, which contains 84 different scenarios. Labels of
each dataset are not employed for the network training.

Figs. 3−7 illustrates the rain removal performance of
competitive methods on five synthetic rainy datasets. As
shown, the derained outputs of the proposed approach are
better than other methods in completely eliminating rain
and efficiently restoring the rich scenario textures. By
checking the part in the box, it can be seen that other meth-
ods have also removed or blurred details like rain streaks,
such as grass in Fig. 5. ReHEN only uses useful infor-



mation on the channel dimension, while RESCAN, EFF,
and DRD-Net only exploit the dilated convolutional layer
to obtain limited receptive fields, and they all have varying
degrees of rain streaks residual. MPRNet and DGNL can-
not effectively combine information of different scales and
global features, and they also leave rain streaks and lose
some scene details in the derained image. By contrast, our
method can enlarge the receptive field and capture effec-
tive features at multiple scales to completely eliminate rain
from rainy inputs by applying MEUs. The AAU is utilized
to achieve feature recalculation and obtain a valid attention
map for generating richer background details. Compara-
tively, the images recovered by the proposed method are
closer to the ground truth and obtain high-quality rain-free
images.

We compute the peak-signal-to-noise ratio (PSNR) and
structure similarity (SSIM) for the quantitative evaluation.
Especially, the higher PSNR and SSIM values indicate that
the network has the strong deraining ability and the outputs
have clean details. Table 1 reports the quantitative results of
the state-of-the-art methods and the proposed MEAN. The
proposed method utilizes appropriate hybrid loss to ensure
high-quality rain removal results. The SSIM loss guaran-
tee that the rain removal outputs remain rich details, and the
L1-norm loss can confine the difference between brightness
and color attributes. By using the hybrid loss function, the
proposed network can obtain better derained results. Our
method achieves the best quantitative results on five syn-
thetic rain datasets, which shows that the proposed method
can completely remove rain streaks while preserving more
scene details. Rain streaks of different sizes and orienta-
tions are contained in these rainy datasets, and the higher
PSNR and SSIM values confirm the generality and robust-
ness of the MEAN.

4.3. Real-world data

To verify the generalization of the MEAN, we qualita-
tively compare our method with other advanced approaches
on real-world images and show several examples in Fig.
8. For the first image, especially in the cropped box, our
method can sufficiently remove rain streaks while other
methods have varying degrees of rain residue. Our method
is capable of aggregating information at different scales
and obtaining long distance dependence to eliminate rain
streaks of various sizes in the rainy image, and utilizes chan-
nel and spatial attention mechanisms to maintain tiny back-
ground structure in the image. The other advanced derain-
ing methods can not efficiently employ spatial contextual
information and capture informative features, thus they pre-
dict the output with rain steaks and artifacts. For the sec-
ond image, other methods hand down a number of artifacts,
while our method can generate better outputs. Based on
MEUs, our method exploits AAU to integrate effective fea-

Table 2. NIQE comparison on real-world samples.
Method NIQE
DDN[6] 4.09
RESCAN[16] 3.92
ReHEN[24] 3.67
EfNet[8] 3.39
DRD-Net[4] 3.65
DGCN[7] 3.61
MPRNet[25] 3.50
MEAN 3.31

tures and apply meaningful information at the encoder stage
to obtain satisfactory outputs. The above examples illustrate
our proposed method is an effective rain removal algorithm
that can restore high-quality derained images and also can
preserve plentiful details and background texture informa-
tion.

Furthermore, we calculate the naturalness image qual-
ity evaluator (NIQE) on real-world datasets and the results
are shown in Table 2. We observe that our method has a
lower NIQE value, which reveals that the MEAN can ob-
tain more satisfactory and natural results. This also demon-
strates that our method is an excellent derainer than others
on real-world images.

4.4. Ablation study

For the proposed units, we perform ablation studies to
demonstrate the effectiveness and necessity of our method.
In particular, we use the densely residual block in a multi-
scale enhanced unit (MEU) as the baseline. For different
units, their abbreviations are as follows:
•R1 : Only the densely residual block in the MEU is

used as the baseline, and the multi-scale information and
global features are not utilized, and the decoder part is not
connected to the encoder part.
•R2 : Only the full MEU is used, and the effective infor-

mation from the encoder network is not concatenated and
exploited by the decoder network.
•R3 : Use the unbroken MEU, concatenate encoder

stage information in the decoder stage, but do not use the
attentive aggregation unit (AAU).
•R4 : Both MEU and AAU are applied, i.e., our pro-

posed final network.
The quantitative results of different unit combinations

are shown in Table 3. We can see that applying multi-
scale information and long-range dependencies is beneficial
to improve the network rain removal performance compared
to the baseline. Connecting the features of the encoder net-
work to the decoder network can upgrade the capability to
learn the features to a certain extent. However, the interfer-
ence of redundant features may lead to further transmission
of useless information, leaving rain streaks or artifacts in



Units MEU Concat AAU PSNR/SSIM
DRB INB

R1 X 31.80/0.907
R2 X X 31.95/0.914
R3 X X X 32.33/0.920
R4 X X X X 32.40/0.926

Table 3. The results of different units on Rain200H. MEU denotes
the multi-scale enhanced unit. DRB and INB represent the densely
residual block and improved non-local block, respectively. AAU
indicates the attentive aggregation unit.

(a)Input (b)R1 (c)R2

(d)R3 (e)R4 (f)Ground Truth
Figure 9. Visual comparisons of key component effects in ablation
studies.

the image. Fig. 9 shows the derained results of the different
combinations of units and operations. It can be seen that the
derained results using multi-scale features and global infor-
mation can remove all rain streaks. By applying the AAU,
abundant scene detail can be preserved in the outputs. Com-
pared with several other unit combinations, the deraining
performance of the network incorporating MEU and AAU
is promoted to the greatest extent and can effectively predict
clear images.

Moreover, we conducted the ablation study with dif-
ferent hybrid loss functions. Interestingly, we found that
the proposed approach displays better rain removal perfor-
mance in certain fixed scenarios by adding perceptual loss.
The quantitative results of the hybrid loss function are ex-
hibited in Table 4. With the addition of perceptual loss,
the quantitative results of rain removal output were slightly
improved. Fig. 10 displays the visual difference between
the two hybrid loss functions. By observing the derained
results, it can be found that after the addition of perceptual
loss, some details similar to the rain streaks are retained, but
some rain streaks are inevitably left in the output. In sum-
mary, the addition of perceptual loss was more helpful in
improving quantitative results and promoting the retention
of minute details. However, for the complete removal of
rain streaks, L = LSSIM+λL1 is more advantageous. Dif-
ferent hybrid loss functions can be applied to various rainy
scenarios under different recovery criteria.

Table 4. Quantitative results of different hybrid loss functions on
Rain200H. λ and µ are set to 0.1 and 0.05, respectively.

Loss PSNR/SSIM
La = LSSIM + λL1 32.40/0.926
Lb = LSSIM + λL1 + µLperceptual 32.43/0.930

(a)Input (b)La (c)Lb
Figure 10. Visual comparisons of different hybrid loss function.

5. Conclusion

In this paper, we have introduced a multi-scale enhance-
ment and aggregation network (MEAN) that is based on
the encoder-decoder structure for single image deraining.
To effectively capture long-range dependencies and multi-
scale information, we apply a multi-scale enhanced unit to
improve the network rain removal performance. Moreover,
we concatenate meaningful information from the two parts
of the encoder network and the decoder network for effi-
cient feature transfer. By utilizing the attentive aggregation
unit (AAU), we further remove redundant features of the
encoder part to better help predict clear derained outputs.
Quantitative and qualitative results reveal that our network
outperforms other comparative rain removal approaches on
both synthetic and natural rainy datasets.
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