
Local Soft Attention Joint Training and Dual Cross-neighbor Label Smoothing
for Unsupervised Person Re-identification

Qing Han1, Longfei Li1, Weidong Min1,2,3*, Qi Wang1, Qingpeng Zeng1, Shimiao Cui1, Jiongjin Chen1

1School of Mathematics and Computer Science, Nanchang University, Nanchang, China
2Institute of Metaverse, Nanchang University, Nanchang, China

3Jiangxi Key Laboratory of Smart City, Nanchang, China
hanqing@ncu.edu.cn, lilongfei@email.ncu.edu.cn, minweidong@ncu.edu.cn, wangqi@ncu.edu.cn

zengqingpeng@ncu.edu.cn, 406100210099@email.ncu.edu.cn, 416100210351@email.ncu.edu.cn

Abstract

Existing unsupervised person re-identification ap-
proaches fail to fully capture the fine-grained features
of local regions, resulting in that some persons with
similar appearances and different identities have been
given the same label after clustering. Then, the identity-
independent information contained in different local re-
gions will lead to different levels of local noise. To ad-
dress the above challenges, Local Soft Attention Joint
Training and Dual Cross-neighbor Label Smoothing are
proposed in this paper. Firstly, the whole joint train-
ing is divided into global and local parts, and then the
soft attention mechanism in the local branch is proposed
to accurately capture the subtle differences in local re-
gions, which improves the ability of the Re-ID model to
identify local significant parts of the person. Secondly,
Dual Cross-neighbor Label Smoothing (DCLS) is de-
signed to progressively mitigate label noise in different
local regions. The DCLS realizes the semantic align-
ment between the global and local regions of the per-
son by the global and locals similarity metric, and then
further establishes the proximity association between lo-
cal regions by the cross information of neighbor regions,
which achieves the label smoothing of the global and
locals throughout the training process. Extensive ex-
periments show that the proposed method outperforms
the existing work under unsupervised settings on several
standard person re-identification datasets.
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1. Introduction

Person re-identification (Re-ID) aims to match query
person images with person images of the same identity
across non-overlapping camera views. It and vehicle Re-
ID play a vital role in areas, such as intelligent video
surveillance, intelligent security, and intelligent transport
[15, 46, 47]. In recent years, unsupervised person Re-ID has
attracted much attention because it does not require mas-
sive manually labeled data. Existing unsupervised person
Re-ID approaches can be divided into unsupervised domain
adaptation (UDA) [1, 27, 28, 39] and unsupervised learning
(USL) [9, 26, 31, 49] Re-ID; the former focuses on learning
from existing labeled data and transferring the knowledge
learned to unlabeled data [11]. Compared with UDA, USL
Re-ID is more practical because it abandons the dependence
on existing labeled data and focuses on the mining of unla-
beled data information.

Existing unsupervised person Re-ID methods [52, 55]
mainly adopt clustering to generate labels for unlabeled
data and then train the model in a supervised manner, but
this method depends on good clustering results. Some ex-
isting approaches [12, 32, 54] optimize clustering results
by combining global and local training strategies. Despite
their effectiveness, they more or less ignore two vital fac-
tors during this process. (1) The inadequate capture of the
local fine-grained features interferes with the clustering re-
sult. Clustering results depend on the metric ranking of the
global features extracted by the model. However, some ap-
proaches ignore the capture of the fine-grained feature in
local regions, thus affecting the entire model to learn dis-
criminant feature embedding from data. Some persons with
similar appearances and different identities have been given
the same label after clustering, directly affecting the training
and final results of the model. (2) The identity-independent
information contained in different local regions lead to dif-
ferent levels of local noise. Given the changes in light-
ing, background environment, and human posture, even the
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features of the same person’s data are also changed. The
noise in different local regions interferes with the extraction
of global features, leading to a large gap between features
within the class, which introduces noise into the label of the
global feature after clustering. The errors of the noisy label
accumulate in the training process and hinder the represen-
tation learning of the global person data, thus affecting the
accuracy of the model.

On the basis of the above discussion, this study attempts
to address the above two challenges to achieve robust un-
supervised person Re-ID. Hence, a method combining local
soft attention joint training and dual cross-neighbor label
smoothing (DCLS) is proposed to solve the unsupervised
person Re-ID issues. The contributions of this study are
summarized as follows:

1. We adopt the strategy of global and local joint train-
ing. The soft attention mechanism in the local branch is pro-
posed to capture the subtle differences in local regions ac-
curately, thereby improving the ability of the Re-ID model
to identify local regions.

2. DCLS is designed to mitigate label noise in differ-
ent local regions progressively. DCLS realizes the seman-
tic alignment between the global and local regions of the
person by the global and local similarity metrics and then
further establishes the proximity association between lo-
cal regions by the cross information of neighbor regions,
thus achieving the label smoothing of the global and locals
throughout the training process.

3. The proposed method is evaluated on several standard
person Re-ID datasets. Extensive experiments show that
the proposed method outperforms the existing work under
unsupervised settings and demonstrates the effectiveness of
the proposed method.

The rest of this paper is organized as follows: In Section
2, related work is discussed. Section 3 is divided into four
subsections. Section 3.1 presents an overview of the pro-
posed framework. Section 3.2 describes the local soft atten-
tion mechanism. Sections 3.3 and 3.4 describe the DCLS
and loss function, respectively. The experiments are shown
in Section 4. The conclusion is indicated in Section 5.

2. Related work

Unsupervised Re-ID can be divided into two categories:
UDA and USL Re-ID. UDA tasks focus on learning from
existing labeled data, and some UDA methods narrow the
data distribution difference between source and target do-
mains by feature alignment [20, 29] and image style transfer
[5, 7, 45, 50, 66].

Although UDA and USL Re-ID are trained on differ-
ent data conditions, their mainstream methods both use
clustering-based learning strategies. Currently, clustering-
based methods [13, 14] achieve state-of-the-art results due
to improvements in label quality. To make the clustering

results align with the real-world distribution, Lin et al. [30]
proposed a bottom-up clustering (BUC) approach to opti-
mize jointly a CNN model and the relationship among the
individual samples. To deal with data imbalance, DBC
[8] learns the data distribution and then uses pairwise sam-
ple relationships to achieve improved cluster balance in the
clustering process. Zeng et al. [56] proposed a method that
combines hierarchical clustering with hard-batch triplet loss
(HCT); the method maximizes the similarity among sam-
ples in the target dataset by hierarchical clustering and re-
duces the influence of hard examples by HCT to generate
high-quality labels. Lin et al. [32] proposed softened simi-
larity learning (SSL) to soften labels by computing similar-
ities that introduce camera labels and fine-grained details.
Ge et al. [13] proposed the mutual mean-teaching method,
which provides more reliable soft labels by learning from
each other through two networks. SpCL [14] proposed a
reliability criterion for measuring cluster independence and
compactness to guarantee clustering quality.

In recent studies, supervised methods [44, 60] of joint
local feature training have achieved state-of-the-art perfor-
mance. Sun et al. [40] proposed a part-based convolutional
baseline network to extract local features. Zheng et al. [60]
proposed a pyramid model, which incorporates local and
global features that can match at different scales and then
search for the correct image of the same identity even when
the image pairs are not aligned. Wang et al. [44] designed
the multiple granularity network and uniformly partitioned
the images into several stripes by varying the number of
parts in different local branches to obtain local feature rep-
resentations with multiple granularities. Given the remark-
able achievements of these methods in supervised settings,
some works [12, 17] have attempted to apply joint local fea-
ture learning to unsupervised person Re-ID. Fu et al. [12]
proposed a self-similar grouping method to cluster global
and local features separately and supervise model training
jointly. Subsequently, some works exploited local features
to achieve impressive performance on unsupervised person
Re-ID tasks.

3. Method

3.1. Overview of the proposed method

Figure 1 shows an overview of the proposed local soft
attention joint training and DCLS method. Specifically, (1)
the network structure is adopted to extract global features
and the corresponding local features; (2) the global features
are clustered by the DBSCAN [10] algorithm, and the label
generated by clustering are shared by local features; (3) the
initial smoothing of the local label is dynamically guided
by global and local similarity measures, and then the fur-
ther smoothing of the local label is guided by the cross in-
formation between neighbor locals; the smoothing of the



Figure 1. Overview of our proposed method. The overall process is divided into two parts. The first part is DCLS, which assigns the
clustered hard label to the local, and then the global and local label smoothing by similarity metric. The second part is the global and
local joint training, and the soft attention mechanism is proposed in local branches. The soft labels processed by DCLS are used as the
supervision signals of each branch to train the model jointly.

Figure 2. Soft attention mechanism.

global label is guided by the learning of local regions; (4)
the global and local labels are simultaneously used as su-
pervision signals to train the model jointly.

3.2. Local soft attention joint training

The framework of the proposed method is trained in a
global and local joint training way and follows the set-
tings in existing methods [14, 30, 56]. The ResNet-50
[16] model is used as the backbone to extract global fea-
tures, which participate in clustering and subsequent label
smoothing [41]. For local feature extraction, on the basis of
the global feature map, the soft attention mechanism in the

local branch is proposed to capture the subtle differences
in local regions accurately, thereby improving the ability of
the Re-ID model to identify the key local parts of the per-
son. Figure 2 shows the soft attention mechanism, which
combines spatial attention and channel attention. Spatial at-
tention uses the spatial relationship of features to generate
the spatial attention map, which is complementary to the
channel attention [51]. The feature map displays the regions
with prominent feature information by the global average
pooling operation on the channel dimension [23]. Then, the
high-level feature information of the feature graph is cap-
tured by downsampling and restored to its size by upsam-



Figure 3. Cases with noise in different local regions. The inner part of the red line represents the valid region, and the outer part of the red
line represents the noise region.

pling. Finally, the feature map by the convolution layer to
obtain the spatial attention map Fs ∈ R1×H×W to integrate
with the channel attention map. For channel attention, the
feature graph first aggregates the spatial feature informa-
tion by global average pooling on the height and width di-
mensions to generate the spatial context descriptor Gc(F ),
which denotes average-pooled features, where F indicates
input features. Then, the relationship between channels
is fully captured by the excitation operation of squeezing
and expanding channels to obtain the channel attention map
Fc ∈ RC×1×1. In summary, channel attention is calculated
as Eq. (1):

Fc = W c
1 (W c

0 (Gc(F ))) (1)

where W c
1 ∈ RC/r×C and W c

0 ∈ RC×C/r are the parame-
ters for squeezing and expanding channels, channel weights
are generated by W c

1 and W c
0 , and r = 16 is the reduction

ratio. The ReLU activation function is followed by W c
1 and

W c
0 . Then, spatial attention and channel attention are com-

bined and calculated as Eq. (2):

F = Fs ⊗ Fc (2)

where F ∈ RC×H×W represents the weight map, and ⊗
represent the element-wise product. Then, based on the
complementary relationship between spatial and channel at-
tention, the weight map combines spatial and channel atten-
tion by the convolution layer, and the combined weight map
is normalized by the sigmoid activation function to obtain
the final weight map of soft attention, which is fused with
the input feature map.

Under the effect of the soft attention mechanism, the
global feature map is divided into multiple local feature
maps, and neighbor feature maps are ensured to have over-
lapping regions. This split method enables the local cross
information to play a guiding role in the subsequent work of

DCLS and can improve the performance of the model. The
local feature map obtains local feature by global average
pooling, which participates in the subsequent label smooth-
ing work. The global and locals simultaneously participate
in the training of the model.

3.3. DCLS

Although the soft attention mechanism can capture the
discriminative features of local regions, the local regions
of some personal data contain too little discriminative in-
formation, and substantial information noise becomes un-
related to identity, which is inevitable. Figure 3 shows
cases with noise in different local regions. The identity-
independent information contained in different local regions
leads to different levels of local noise. This noise interferes
with the extraction of global features, leading to a large gap
between features within the class, which introduces noise
into the label of the global feature after clustering. To solve
this issue, DCLS is designed to mitigate label noise in dif-
ferent local regions progressively, thereby achieving the la-
bel smoothing of the global and locals throughout the train-
ing process and strengthening the representation learning of
global person data. The label smoothing [33] is calculated
as Eq. (3):

y
′
= y (1− β) +

β

K
(3)

where β ∈ (0, 1) represents the smoothing factor of the
label, and K represents the number of image categories.
Then, the label smoothing factor of each local is dynami-
cally determined by the similarity metric. Specifically, the
square Euclidean distance algorithm is introduced to mea-
sure the feature similarity, the measurement is calculated as



Eq. (4):

d(x, y) =

∥∥∥∥∥
D∑
i=1

(xi − yi)
2

∥∥∥∥∥
2

(4)

where || · || represents the Euclidean distance, D represents
the feature dimension, and (xi, yi) represents the coordi-
nates of feature x and feature y in the feature space. To
obtain the label smoothing factor of each local, the distance
is normalized as Eq. (5):

βx,y = e−d(x,y) ∈ (0, 1) (5)

the value of βx,y is negatively related to the distance be-
tween features. DCLS realizes the semantic alignment be-
tween the global and local regions of the person by the
global and local similarity metrics to obtain the smoothing
factor βi,g of each local label. The factors are inserted into
Eq. (3), and the local label initial smoothing is calculated
as Eq. (6):

y
′

i = y (1− βi,g) +
βi,g

K
(i = 1, 2, 3) (6)

where the value of i corresponds to local features, and g
represents the global feature. As the training continues
to advance, the representation of global and local features
improves, their distance in the feature space gradually in-
creases, and the label smoothing factor βi,g of each local
gradually decreases. Given the prominent feature represen-
tation, the local label retains great credibility, that is, the
smoothness of the label is low; Eq. (6) can well show this
change. If a local feature is close to the global feature in
the feature space, its similarity with the global feature is
relatively high, and the corresponding label reliability is
relatively high. However, the formula does not consider
this detail, and only the global and local similarity metrics
guide the local label smoothing neglecting the local context,
which may not be conducive to model training. To solve
this issue, the DCLS further establishes the proximity as-
sociation between local regions by the cross information of
neighbor regions, thereby achieving the further smoothing
of local labels. Specifically, the further smoothing of local
labels is guided by the local and neighbor local similarity
metrics and is calculated as Eq. (7):

y
′′

i =


y

′

i (1− βi,j) + y
′

jβi,j(i = 1, 3; j = 2)

y
′

i (1−Wl) +
∑1,3

n=1

y
′

nWlβi,n∑1,3
j=1 βi,j

(i = 2)
(7)

where the values of i, j and n correspond to local features,
and Wl ∈ [0, 1] is a weight super parameter. The formula
can well adjust the label smoothness of each local, that is,
local features with high similarity to the global feature have
high label reliability, and vice versa. Then, the learning of

local regions is combined to guide global label smoothing
and is calculated as Eq. (8):

y
′

g = y (1−Wg) +

3∑
i=1

Wgβi,g Softmax (ŷi)∑3
j=1 βj,g

(8)

where the values of i and j correspond to local features, and
Wg ∈ [0, 1] is a weight super parameter. Softmax (·) is a
softmax function used to normalize the input element value,
and ŷi is the output value of the model, representing the
probability classification of the corresponding local feature.

3.4. Loss function

The cross-entropy and triple loss commonly used in per-
son Re-ID tasks are used as the loss function of the model
in the training stage. The formula of cross entropy is calcu-
lated as Eq. (9):

L = −y log(ŷ) (9)

where ŷ indicates the predicted probability distribution.
Then, the local label after Eq. (7) smoothing is inserted into
Eq. (9) to obtain the cross-entropy loss of the local features
and is calculated as Eq. (10):

Li = −
[
y (1−Ri) +

Ri

K

]
log [Softmax (ŷi)] (10)

Ri =


βi,g − βi,gβi,j + βj,gβi,j(i = 1, 3; j = 2)

βi,g (1−Wl) +
∑1,3

n=1

βn,gWlβi,n∑1,3
j=1 βi,j

(i = 2)

similarly, the global label after Eq. (8) smoothing is inserted
into Eq. (9) to obtain the cross-entropy loss of the global
feature and is calculated as Eq. (11):

Lg =−

[
y (1−Wg) +

3∑
i=1

Wgβi,g Softmax (ŷi)∑3
j=1 βj,g

]
× log [Softmax (ŷg)]

(11)

where ŷg represents the classification probability value of
the global feature. The triple loss only applies to global
feature.

4. Experiments

4.1. Datasets and Evaluation protocols

The proposed method is evaluated on three stan-
dard person re-ID datasets, namely, Market-1501 [63],
DukeMTMC-reID [37] and MSMT17 [50]. Market-1501
contains 32,688 images of 1,501 person identities captured
by six cameras; these images are divided into 12,936 train-
ing images of 751 person identities and 19,732 test im-
ages of 750 person identities, with 3,368 test images used
as queries. DukeMTMC-reID contains 34,183 images of



Methods Market-1501 DukeMTMC-reID
Source mAP Rank1 Rank5 Rank10 Source mAP Rank1 Rank5 Rank10

Unsupervised Learning (USL)
SSL [32] None 37.8 71.7 83.8 87.4 None 28.6 52.5 63.5 68.9
BUC [30] None 38.3 66.2 79.6 84.5 None 27.5 47.4 62.6 68.4
DBC [8] None 41.3 69.2 83.0 87.8 None 30.0 51.5 64.6 70.1
MMCL [43] None 45.5 80.3 89.4 92.3 None 40.2 65.2 75.9 80.0
JVTC [24] None 47.5 79.5 89.2 91.9 None 50.7 74.6 82.9 85.3
MPRD [21] None 51.1 83.0 91.3 93.6 None 43.7 67.4 78.7 81.8
HCT [56] None 56.4 80.0 91.6 95.2 None 50.7 69.6 83.4 87.4
GCL [4] None 66.8 87.3 93.5 95.5 None 62.8 82.9 87.1 88.5
SpCL [14] None 72.5 87.8 94.7 96.3 None 61.4 77.1 86.7 89.6
HHCL [19] None 78.7 90.4 96.4 97.5 None 67.1 80.7 89.7 92.1
ICE [3] None 82.4 92.7 97.6 98.4 None 66.2 80.3 88.9 90.9
Trans-SSP [35] None 87.3 94.2 98.0 98.5 None 71.4 82.7 89.9 92.5
Ours(w/o RK) None 81.4 92.4 97.3 98.2 None 67.6 81.1 90.4 92.7
Ours None 91.2 94.3 96.6 97.1 None 80.7 85.0 90.1 92.8
Unsupervised Domain Adaptation (UDA)
ECN [25] Duke 43.0 75.1 87.6 91.6 Market 40.4 63.3 75.8 80.4
JVTC [24] Duke 67.2 86.8 95.2 97.1 Market 66.5 80.4 89.9 92.2
AD-Cluster [53] Duke 68.3 86.7 94.4 96.5 Market 54.1 72.6 82.5 85.5
HGA [58] Duke 70.3 89.5 93.6 95.5 Market 67.1 80.4 88.7 90.3
MMT [13] Duke 71.2 87.7 94.9 96.9 Market 65.1 78.0 88.8 92.5
Mixup [34] Duke 71.5 88.1 94.4 96.2 Market 65.2 79.5 88.3 91.4
NRMT [59] Duke 71.7 87.8 94.6 96.5 Market 62.2 77.8 86.9 89.5
DCML [2] Duke 72.6 87.9 95.0 96.7 Market 63.3 79.1 87.2 89.4
GCL [4] Duke 75.4 90.5 96.2 97.1 Market 67.6 81.9 88.9 90.6
MEB-Net [57] Duke 76.0 89.9 96.0 97.5 Market 66.1 79.6 88.3 92.2
UNRN [61] Duke 78.1 91.9 96.1 97.8 Market 69.1 82.0 90.7 93.5
GLT [62] Duke 79.5 92.2 96.5 97.8 Market 69.2 82.0 90.2 92.8
Ours(w/o RK) Duke 81.4 92.2 97.4 98.2 Market 68.2 81.0 90.4 93.1
Ours Duke 91.2 93.8 96.5 97.4 Market 80.7 84.9 90.6 93.4

Table 1. Comparison with the state-of-the-art unsupervised Re-ID methods on Market1501 and DukeMTMC-reID datasets.

1,404 person identities captured by eight cameras; these
images are divided into 16,522 training images of 702 per-
son identities and 17,661 test images of 702 person identi-
ties, with 2,228 test images used as queries. MSMT17 is
the largest person Re-ID dataset, which contains 126,411
images of 4,101 person identities captured by 15 cameras;
these images are divided into 32,621 training images of
1,041 person identities and 93,820 test images of 3,060
person identities, with 11,659 test images used as queries.
Mean average precision (mAP) and cumulative match char-
acteristic (CMC) Rank-1/5/10 accuracy are used to evaluate
the performance of the proposed method on three standard
datasets. In the experiments, the re-ranking [64](RK) tech-
nique is adopted.

4.2. Implementation details

Following the settings in existing methods [8, 14, 30, 32,
56], the ResNet-50 [16] model pretrained on ImageNet [6]

as the backbone. During training, random flipping, random
cropping, and random erasing [65] are used for data aug-
mentation, using the Adam [22] optimizer with weight de-
cay of 5 × 10−4. We set the mini-batch size as 32, con-
sisting of randomly selected eight pseudo-classes and four
instance images of each class. The initial learning rate is set
to 3.5× 10−4 and is reduced by a factor of 10 at 40 and 70
epochs, for a total of 80 epochs. In each epoch, the model is
trained for 400 iterations. The DBSCAN [10] method clus-
ters the training dataset before each epoch. During testing,
only global features are used for evaluation.

4.3. Comparison with state-of-the-art

To verify the performance of the proposed method fur-
ther, several state-of-the-art unsupervised person Re-ID
methods are compared on the Market-1501, DukeMTMC-
reID, and MSMT17 datasets. Table 1 shows the results
of the proposed method and state-of-the-art methods on



Methods MSMT17
Source mAP R1 R5 R10

Unsupervised Learning (USL)
AE [9] None 8.5 26.6 37.0 41.7
MMCL [43] None 11.2 35.4 44.8 49.8
MPRD [21] None 14.6 37.7 51.3 57.1
JVTC [24] None 17.3 43.1 53.8 59.4
SpCL [14] None 19.1 42.3 55.6 61.2
GCL [4] None 21.3 45.7 58.6 64.5
Ours(w/o RK) None 27.6 52.8 66.0 71.5
Ours None 39.0 59.2 67.4 71.5
Unsupervised Domain Adaptation (UDA)
ECN [25] Market 8.5 25.3 36.3 42.1
AE [9] Market 9.2 25.5 37.3 42.6
NRMT [59] Market 19.8 43.7 56.5 62.2
Mixup [34] Market 20.4 43.7 56.1 61.9
DG-Net++ [67] Market 22.1 48.4 60.9 66.1
MMT [13] Market 22.9 49.2 63.1 68.8
JVTC [24] Market 25.1 48.6 65.3 68.2
UNRN [61] Market 25.3 52.4 64.7 69.7
GCL [4] Market 27.0 51.1 63.9 69.9
Ours(w/o RK) Market 28.3 53.7 67.0 72.5
Ours Market 39.9 59.6 68.3 72.3
ECN [25] Duke 10.2 30.2 41.5 46.8
AE [9] Duke 11.7 32.3 44.4 50.1
NRMT [59] Duke 20.6 45.2 57.8 63.3
DG-Net++ [67] Duke 22.1 48.8 60.9 65.9
MMT [13] Duke 23.3 50.1 63.9 69.8
Mixup [34] Duke 24.3 51.7 64.0 68.9
UNRN [61] Duke 26.2 54.9 67.3 70.6
JVTC [24] Duke 27.5 52.9 70.5 75.9
GCL [4] Duke 29.7 54.4 68.2 74.2
Ours(w/o RK) Duke 30.4 57.4 70.0 75.2
Ours Duke 42.7 63.2 71.3 75.3

Table 2. Comparison with the state-of-the-art unsupervised Re-ID
methods on MSMT17 dataset.

Methods Market-1501 DukeMTMC-reID
mAP Rank1 mAP Rank1

w/ DCLS 79.6 91.3 66.3 79.4
+ECA [48] 78.9 90.8 66.0 79.8
+CBAM [51] 79.8 91.5 65.5 79.2
+Soft Attention 81.4 92.4 67.6 81.1

Table 3. Ablation study on different attention mechanisms.

Market-1501 and DukeMTMC-reID. Table 2 shows the re-
sults of the proposed method and state-of-the-art methods
on MSMT17.

Under the USL setting, we evaluate the performance of
the proposed method. On Market-1501, Compared with
HHCL [19], our method(w/o RK) improves Rank-1 accu-

Figure 4. Visualized of the global features under the influence of
different attention mechanism modules based on Grad-CAM [38]:
(a) Original images; (b) without attention; (c) with ECA [48]; (d)
with CBAM [51]; (e) with Soft Attention(Ours).

Figure 5. Sensitivity Analysis of Hyper-parameter Wl and Wg on
Market-1501 dataset.

racy by 2.0% and mAP by 2.7%. On DukeMTMC-reID,
Compared with ICE [3] and HHCL [19], our method(w/o
RK) improves Rank-1 accuracy by 0.8% and 0.4% and
mAP by 1.4% and 0.5%, respectively, which is slightly
lower than GCL [4] in Rank-1 accuracy but 4.8% higher
mAP than it. On MSMT17, our method(w/o RK) achieves
52.8% Rank-1 accuracy and 27.6% mAP, which are re-
spectively 7.1% and 6.3% higher than GCL [4]. Af-
ter implementing reranking [64](RK), our method outper-
forms all baselines by a large margin on Market-1501 and
DukeMTMC-reID. Compared to the currently best pub-
lished method TransReID-SSL [35], our method surpasses
it by 3.9% on Market-1501 and 9.3% on DukeMTMC-reID
in mAP.

Under the UDA setting, we also evaluate the perfor-
mance of the proposed method. Compared to the current
best method GLT [62], our method(w/o RK) improves mAP
by 1.9% on Market-1501, which is slightly below it on
DukeMTMC-reID but also surpasses other methods. On
MSMT17, our method(w/o RK) surpasses other methods
by a large margin, regardless of whether the source do-



Methods Market Duke
mAP R1 mAP R1

w/ Soft Attention 78.4 90.6 63.4 76.7
+LS

′

l 79.3 91.2 65.1 78.6
+LS

′′

l 79.9 91.4 66.1 78.8
+LSg 79.6 90.8 65.5 79.4
+LS

′

l + LSg 80.1 91.5 66.5 79.2
+LS

′′

l + LSg 81.4 92.4 67.6 81.1
+LS

′′

l + LSg(non-cross) 79.6 91.3 64.9 79.5

Table 4. Ablation study on different label smoothing methods.

Nl
Market-1501 DukeMTMC-reID

mAP Rank1 mAP Rank1
0 73.4 88.0 62.6 77.6
2 79.6 91.2 67.1 79.7
3 81.4 92.4 67.6 81.1

Table 5. Evaluation results of different number of local features.

main dataset is Market-1501 or DukeMTMC-reID. After
implementing reranking [64](RK), the performance of our
method by large margins.

4.4. Ablation study

Effectiveness of soft attention mechanism. To verify
the effectiveness of the soft attention mechanism, two at-
tention mechanisms, i.e., CBAM [51] and ECA [48], are
compared. CBAM integrates channel attention and spatial
attention and shows that the best results can be achieved
by using the serialization method of channel attention first
and then spatial attention. ECA is an improved channel
attention mechanism based on the SE [18] mechanism. It
achieves light weight and high efficiency by avoiding di-
mensionality reduction and cross-channel interaction. The
experimental results of different attention mechanisms un-
der the same settings are shown in Table 3. As shown in
the table, soft attention has considerable performance ad-
vantages. Soft attention aims to improve the discriminative
properties of the whole model for fine-grained information
so that the global features that are noticed to be more valid
information play a good role in the clustering and evaluation
stages. In this regard, to better illustrate the explanation, the
visualization of global features based on different attention
mechanisms is shown in Figure 4. The figure shows that
compared with the other two attention mechanisms, soft at-
tention can extract more fine-grained local information, thus
improving the ability of the Re-ID model to identify the im-
portant local parts of the person.

Analysis of hyper-parameters. The effect of the num-
ber of local features Nl and hyper-parameters Wl, Wg on
performance is explored. Under the same settings, the ex-
perimental results of their different values are shown in Ta-

Metrics Market-1501 DukeMTMC-reID
mAP Rank1 mAP Rank1

Euclidean 81.4 92.4 67.6 81.1
Cosine 80.1 91.7 68.6 80.9

Table 6. Evaluation results of different distance metrics.

ble 5 and Figure 5. When Wl is set to 0, the middle local
label only uses the information between it and the global
feature for smoothing and is not guided by the cross infor-
mation between it and the neighbor local regions, resulting
in inaccurate label optimization, thus limiting the perfor-
mance. When Wl is set to 1, the middle local label is com-
pletely guided by the cross information between it and the
neighbor local regions for smoothing, but the neighbor lo-
cal regions contain information that the middle local feature
does not have, leading to false guidance. When Wg is set
to 0, the global label is not smoothed, limiting the perfor-
mance. When Wg is set to 1, the global label smoothing
is completely guided by combining the learning of local re-
gions, showing a considerable performance drop. There-
fore, according to the above experimental results, we set Nl

to 3, Wl to 0.7, and Wg to 0.5.

Effectiveness of DCLS. To verify the effectiveness of
DCLS, Table 4 reports the experimental results of ablation
for various label smoothing methods. In the table, "LSg"
denotes the global label smoothing, "LS

′

l " denotes the lo-
cal label initial smoothing, and "LS

′′

l " denotes the local la-
bel further smoothing. As shown in the table, each label
smoothing method can improve the performance to a cer-
tain extent; especially when local and global label smooth-
ing are conducted simultaneously, improved labels can be
obtained, thus considerably improving the performance. On
this basis, compared with the guidance using non-cross lo-
cal features, the way of using cross-information guidance
improves mAP by 1.8% and 2.7%, verifying the vital of
cross information between local regions. To intuitively an-
alyze the DCLS, Figure 6 visualize the embeddings of the
global feature of our method with and without DCLS on
Market-1501 dataset. The comparison in the figure shows
that in the absence of DCLS, the feature points of different
identities are embedded too close to each other. On the con-
trary, they are well separated in the embedding space under
the action of DCLS. This shows that DCLS can effectively
strengthening the representation learning of global person
data.

In DCLS, the degree of global and local label smoothing
depends on the similarity metric between features. In the
main paper, the squared euclidean distance is used to metric
the similarity of features. The cosine distance is another
common metric used in person Re-ID and is calculated as



Figure 6. T-SNE [42] visualization of the learned global feature embeddings on the Market-1501 training dataset (Random 50 identities).
Points of the same color represent images of the same identity.

Backbones Market-1501 DukeMTMC-reID
mAP Rank1 mAP Rank1

ResNet50 81.4 92.4 67.6 81.1
IBN-ResNet50 84.0 92.8 70.4 82.1

Table 7. Evaluation results of different backbones.

Eq. (12):

C(x, y) = 1−
∑D

i=1 xiyi√∑D
j=1 x

2
j

√∑D
k=1 y

2
k

(12)

where D represents the feature dimension, and (xi, yi) rep-
resents the coordinates of feature x and feature y in the fea-
ture space. To better understand the sensitivity of DCLS to
measurement methods, Table 6 shows the performance of
the proposed method under different measurement methods.
On the whole, the squared euclidean distance is more popu-
lar with DCLS, but no matter which measurement method,
the proposed method shows a competitive performance.

Instance-batch normalization(IBN) [36] has been proven
more effective than batch normalization(BN) in both su-
pervised and UDA Re-ID tasks. Table 7 compares the
performance of our method under the ResNet50 and IBN-
ResNet50 backbones. With IBN-ResNet50, the perfor-
mance of our method can be further improved.

Label smoothing [41] is a common technique within
various domains, and to further verify the effectiveness of
DCLS, Table 8 shows the performance of DCLS and con-
stant label smoothing (CLS). CLS means using a constant
smoothing factor (default is 0.1) in Eq. (3). From the ta-
ble, DCLS shows a better performance than CLS. CLS only
blindly adjusts the label distribution without considering the

Methods Market-1501 DukeMTMC-reID
mAP Rank1 mAP Rank1

w/ Soft Attention 78.4 90.6 63.4 76.7
+CLSl 79.8 90.7 64.9 78.7
+LS

′′

l 79.9 91.4 66.1 78.8
+CLSg 79.4 90.7 64.1 78.5
+LSg 79.6 90.8 65.5 79.4
+CLSl + CLSg 80.3 91.3 66.6 79.3
+LS

′′

l + CLSg 80.8 91.6 66.2 79.4
+LSg + CLSl 80.5 91.5 67.1 80.4
+LS

′′

l + LSg 81.4 92.4 67.6 81.1

Table 8. Comparison of DCLS and constant label smoothing
(CLS) on Market1501 and DukeMTMC-reID datasets.

correlation between features, and the improvement is lim-
ited. DCLS reliably smoothes global and local labels by
the similarity measure between features and achieves better
performance.

To present the experimental results clearly, Figure 7
shows the top 10 visualization results of the different mod-
ules’ rank-list on the Market-1501 dataset. Images in the
green boxes denote correct matches, whereas the red box
represents the wrong match. The above three examples
show that when the soft attention mechanism and DCLS
are used together, the correct matching hit rate is high, es-
pecially the first hit, which is crucial to the person Re-ID
task.

5. Conclusion

In this work, we present a local soft attention joint train-
ing and dual cross-neighbor label smoothing (DCLS) ap-



Figure 7. Top 10 visualization results of the different modules’ rank-list on Market-1501 dataset.

proach for unsupervised person Re-ID. First, the entire joint
training is divided into global and local parts, and then the
soft attention mechanism in the local branch is proposed
to capture the subtle differences in local regions accurately,
thereby improving the ability of the Re-ID model to iden-
tify the important local parts of the person. Second, DCLS
is designed to mitigate label noise in different local regions
progressively. Under the unsupervised setting of the stan-
dard person datasets, extensive ablation experiments prove
that the proposed method can effectively capture the local
discriminative information of the person. Moreover, it can
alleviate the person identity-independent information noise
contained in different local regions.
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