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Abstract

The long-tailed data distribution poses an enormous
challenge for training neural networks in classification.
The classification network can be decoupled into a fea-
ture extractor and a classifier. This paper takes a
semi-discrete optimal transport perspective to analyze
the long-tailed classification problem, where the feature
space is viewed as a continuous source domain, and the
classifier weights are viewed as a discrete target domain.
The classifier is indeed to find a cell decomposition of
the feature space with each cell corresponding to one
class. The imbalanced training set causes the more fre-
quent classes to have larger volume cells, which means
that the classifier’s decision boundary is biased towards
less frequent classes, resulting in reduced classification
performance in the inference phase. Therefore, we pro-
pose a novel OT-dynamic softmax loss, which dynami-
cally adjusts the decision boundary in the training phase
to avoid overfitting in the tail classes. In addition, our
method incorporates the supervised contrastive loss so
that the feature space satisfies the uniform distribution
condition. Extensive and comprehensive experiments
demonstrate that our method achieves state-of-the-art
performance on multiple long-tailed recognition bench-
marks, including CIFAR-LT, ImageNet-LT, iNaturalist
2018, and Places-LT.

Keywords: Semi-discrete Optimal Transport, Long-
tailed Classification, Decision Boundary, Supervised Con-
trastive Loss.

1. Introduction

In recent years, the rapid development of computer vi-
sion technologies [16, 24] is inseparable from large-scale,

high-quality and balanced datasets such as ImageNet [34]
and MS-COCO [27]. Unlike the computer vision datasets
with a roughly uniform distribution of tags, the real-world
datasets always have a skewed distribution with a long tail:
a few classes have a large proportion in the datasets, while
most have a small proportion. Deep learning methods per-
form poorly on such imbalanced datasets [3, 14, 46] because
neural networks often favor the majority classes.

A huge range of approaches has been proposed to solve
the long-tailed classification problem, albeit in different
ways, including re-sampling [3, 14, 18, 37], Balanced
Softmax [17, 29, 33, 51], long-tailed contrastive learn-
ing [8, 20, 36, 42], etc [9, 21, 40]. The Balanced Soft-
max approaches correct the decision boundaries based on
the class frequency. However, such approaches are label-
aware and can be fragile when training online models in
real-time since the number of samples per class is unknown
or changes dynamically for different batches. In addition,
the OTLM [31] uses the sinkhorn algorithm to do post-hoc
correction for long-tailed learning. However, the OTLM
method requires a large number of samples for evaluation.
This is because if the batch size is small, the OTLM can
not guarantee that the desired marginal distribution can be
satisfied within the batch. Sinkhorn algorithm is theoreti-
cally calculating the optimal transport plan. Its solution is
not unique, and the solution may be locally optimal. We in-
troduce semi-discrete optimal transport into the long-tailed
classification to solve the above problems.

Recently, optimal transport has become a popular tool
for machine learning [1, 11, 25, 30, 39]. Essentially semi-
discrete optimal transport provides a cell decomposition of
the source domain such that each cell is mapped to one tar-
get point, and the measure of the cell is equal to the measure
of the target point. Intuitively the classification problem is
also a cell decomposition problem. A classification network
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is generally composed of a feature extractor and a classifier.
The feature extractor maps high-dimensional data to low-
dimensional feature space. Moreover, the classifier decom-
poses the feature space into cells so that the same class data
is within the same cell. Each class can be viewed as one
target point, and the frequency of the class can be viewed
as the discrete measure of the target point. Thus each cell
is mapped to one corresponding class, and the measures of
the cells are equal to the frequencies of the classes. The cell
boundaries are the decision boundaries. Thus, the classi-
fication task can be viewed as semi-discrete optimal trans-
port, with the feature space as the source domain and the
weights of the classifier as the target points.

However, it is improper to use the frequencies as the tar-
get measures for long-tailed data. When we use a conven-
tional training framework, minimizing the empirical cross-
entropy loss will allocate more giant cells of the feature
space to more frequent classes, which implies that the de-
cision boundary is biased towards less frequent classes. In
other words, the size of each cell follows the sampling fre-
quency; more samples form a larger cell. The test set is
usually balanced, which means the lower frequency classes
need bigger cells in the inference process. Thus, the con-
ventional trained network is more generalized for frequent
classes, whereas its performance is lacking for infrequent
classes. The imbalanced classification learning mainly de-
pends on how the appropriate decision boundary is drawn.
Semi-discrete Optimal transport can adjust the decision
boundary by altering the measure of the target point. The
literature [12] provides a geometric variational method to
solve the semi-discrete optimal transport problem, in which
the source measure is a continuous uniform distribution, and
the target measure is discretized into finite points with the
Dirac measure. Inspired by this, we propose a novel Op-
timal Transport Dynamic Softmax Loss (OT-dynamic) for
long-tailed classification, which dynamically adjusts the de-
cision boundary in the training process. Moreover, in order
for the source domain to satisfy the uniform distribution as
much as possible, our method uses supervised contrastive
loss (SCL) [22], which has been proved to optimize for uni-
formity asymptotically [43].

To summarize, the main contributions of our works are
three-folds:
•We propose that the classifier essentially computes the

semi-discrete optimal transport problem, and the weights
of the classifier are the Wasserstein centers of each class.
From the perspective of semi-discrete optimal transport, we
explain that the reduced accuracy of long-tailed classifica-
tion is due to the offset of decision boundary toward the tail
classes.
• We develop a simple and effective OT-dynamic Soft-

max Loss for the network training phase, which can shift
decision boundary dynamically to avoid overfitting in the

tail classes.
• Extensive experiments show that our method achieves

more significant improvement than the current SOTA meth-
ods on several benchmarks, including the artificially im-
balanced datasets CIFAR-LT [23], ImageNet-LT [34] and
the natural world large scale imbalanced datasets iNatural-
ist2018 [41], Places-LT [56].

2. Related Work

2.1. Long-tailed classification

Re-sampling and Balanced Softmax are the most in-
tuitive approaches to deal with long-tailed classification.
Re-sampling strategies can be further divided into two
types: Under-sampling the head classes [3, 14, 37] and
Over-sampling the tail classes [4, 18, 54]. Balanced Soft-
max [17, 29, 33, 51] is another outstanding strategy. It cor-
rects the decision boundaries based on the class frequency.
However, such approaches are label-aware and easily over-
fitted in the tail classes since, during online training models
in real-time, the number of samples per class is unknown or
changes dynamically for different batches. Compared with
Balanced Softmax, our approach can effectively avoid over-
fitting the tail classes. Other approaches have also been pro-
posed to solve the long-tailed classification problem. For in-
stance, the literature [21] introduced to decouple the learn-
ing phase into representation learning and classifier fine-
tuning. The papers [44, 48, 55] proposed the multi-expert
structure for the long-tailed problem.

2.2. Contrastive learning

Recently, contrastive learning has shown great promise
in unsupervised representation learning [6, 15]. Sim-
CLR [6] is the first to match the performance of a
supervised ResNet with only a linear classifier trained
on self-supervised representation on large-scale datasets.
MoCo [15] uses a momentum encoder to maintain a con-
sistent representation of negative pairs extracted from the
memory library. Supervised comparative learning [22] is an
extension of comparative learning, which can obtain better
feature representation by incorporating the label informa-
tion to compose positive and negative pairs. The paper [43]
proved that the contrastive loss optimizes for alignment and
uniformity asymptotically. Many researchers are also ex-
ploring long-tailed contrastive recognition. The paper [20]
proposed k-positive contrast loss to learn a balanced feature
space to reduce class imbalance and improve model gen-
eralization. After that, [36] introduced typical contrastive
learning into hybrid networks to enhance long-tail learning.
DRO-LT [42] extended the prototype contrastive learning
optimization with distributed robustness, which makes the
learning model more robust. Paco [8] further innovated su-
pervised comparative learning by adding a set of parameter



learnable class centers. In this paper, we illustrate that the
classifier weights are the Wasserstein centers of each class
from the perspective of semi-discrete optimal transport.

2.3. Optimal transport

Optimal transport has been widely used in machine
learning, such as the following applications: generative
model [1, 10, 13, 25, 35], domain adaption [7, 50], 3D
shape matching [38], graph matching [49], and model de-
signs [19]. In particular, the literature [31] proposed the
OTLM method to do post-hoc correction for long-tailed
learning. Our work proposes OT-dynamic softmax loss
from the perspective of semi-discrete optimal transport,
which is used in the training phase.

3. Method

This section presents the theoretic analysis for the long-
tailed classification from a semi-discrete optimal transport
perspective and introduces our computational algorithm.

3.1. Semi-discrete optimal transport problem

In this subsection, we will introduce basic concepts in
classic optimal transport theory, focusing on the solution of
semi-discrete optimal transport. We refer readers to [12, 32]
for detailed derivation.

The optimal transport problem is to find a map that min-
imizes the cost of interdomain transport and ensures the
quantity of measurement. Suppose X,Y are two subsets of
an m-dimensional Euclidean space with probability mea-
sures µ and ν, respectively. We require µ and ν share the
same total measure, i.e.,∫

X

dµ =

∫
Y

dν = 1 (1)

A map T : X → Y is measure-preserving if for any mea-
surable set B ⊂ Y , the set T−1(B) is µ-measurable and

µ(T−1(B)) = ν(B) (2)

The measure-preserving map can also be written as T#µ =
ν, where T#µ is the push-forwarded measure induced by
T . Given a cost function c(x, y) : X × Y → R, which
represents the cost of moving a unit mass from x to y. The
total transport cost of the map T is defined as :∫

X

c(x, T (x))d(µ(x)) (3)

Monge’s optimal transport problem is to find the measure-
preserving map that minimizes the total transport cost,

W2
c (µ, ν) = min

T#µ=ν

∫
X

c(x, T (x))dµ(x) (4)

The solution to Monge’s problem is called the optimal trans-
port map T̃ , whose total transport cost is the square of the

Wasserstein distance between µ and ν, which is denoted as
Wc(µ, ν).

For quadratic Euclidean distance cost, Brenier [2] proved
the existence, uniqueness and the intrinsic structure of the
optimal transport mapping.

Theorem 1 [2]. Suppose X and Y are the Euclidean
space Rm and the transport cost is the quadratic Euclidean
distance cost c(x, y) = 1/2∥x − y∥2. Furthermore µ is
absolutely continuous and µ and ν have finite second or-
der moments,

∫
X
|x|2dµ(x) +

∫
Y
|y|2dν(y) < ∞, then

there exists a convex function u : X → R, the so-called
Briener potential, its gradient map∇u gives the solution to
the Monge‘s problem,

(∇u)#µ = ν (5)

The Brenier potential is unique upto a constant, hence the
optimal transport mapping is unique.

Brenier’s theorem can be directly generalized to the dis-
crete situation. Suppose the source measure µ (uniform dis-
tribution) has a continuous density µ ∈ L1(Ω), defined on a
convex domain Ω ⊂ Rm, and the target measure is discrete
ν =

∑K
k=1 νkδwk

, νk > 0, wk ∈ Ω, µ and ν share the same
total measure

∫
Ω
dµ =

∑K
k=1 νk = 1, then the Monge’s

problem becomes the semi-discrete optimal transport prob-
lem, which has a nice geometric characterization.

As shown in Fig. 1, each target point wk corresponds to
a supporting hyperplane of the Brenier potential as follow:

πh,k(x) = ⟨wk,x⟩+ hk (6)

Theorem 1 claims that the semi-discrete optimal transport
map is given by the gradient map of Brenier potential. The
Brenier potential uh : Ω → R is a piecewise linear con-
vex function, which is the upper envelope of all supporting
hyperplanes uh(x) := maxK

k=1{πh,k(x)}.
The graph is Brenier potential is a convex polytope. Each

facet of the polytone corresponds to a suppoting hyperplane
πh,k(x). The projection of the polytope induces a cell de-
composition of Ω, and each cell Wk(h) is the projection
of the supporting plane πh,k(x). The semi-discrete op-
timal transport mapping induces a cell decomposition of
Ω =

⋃K
k=1 Wk such that each cell Wk is mapped to the

corresponding target point wk and the µ-volume of the cell
Wk equals to the discrete measure νk of point wk.

The height vector h is the only parameter to be opti-
mized. Obviously the larger hk induces a larger µ-volume
of the cell Wk. According to [12], h is the minimal point
of the following convex energy under the condition that∑

k hk = 0,

E(h) =

∫ h

0

K∑
k=1

ωk(η)dηk −
K∑

k=1

hkνk (7)

where ωk(η) is the µ-volume of Wk(η). The convex en-



𝑢ℎ 𝑥 = max
𝑘

𝜔𝑘 , 𝑥 + ℎ𝑘

𝜋ℎ,𝑘

𝛺

𝑾𝑘

Figure 1. Brenier potential and the corresponding power diagram.

ergy E(h) can be optimized directly by the gradient de-
scend method with ∇E(hk) = (ωk(h)− νk).

The key problem is to calculate the µ-volume ωk(h) of
the cell Wk(η), which can be estimated using the Monte-
Carlo method. We draw N random samples {xi} from µ
distribution. For each sample xi, we can find the cell Wk

containing it by:
k = argmax

k
{⟨wk,xi⟩+ hk} (8)

The µ-volume of Wk is estimated as ω̂k(h) := #{i | xi ∈
Wk(h)}/N , which converges to ωk(h), when N goes to
infinity. Accordingly, the gradient of the energy is approxi-
mated as∇E(h) ≈ (ω̂k(h)−νk)

T . Thus we can minimize
the energy by the Gradient Descent algorithm.

3.2. Optimal transport view of the classification problem

Consider a K-classification deep modelM with a train-
ing set S = {(si,yi)}ni=1, where si denotes i-th training
sample and yi denotes its corresponding one-hot label over
K classes. Our goal is to learn the model parameters from
training datasets so that M achieves optimal performance
on evaluation datasets. We typically decompose a deep net-
work model M into two components: a feature extractor
fθ and a classifier. The feature extractor fθ first extracts a
feature representation xi,

xi = fθ(si) ∈ Rm (9)

which is then fed into the classifier to compute class predic-
tion scores πik and the classifier predicts the class label j as

follows:
πik = ⟨wk,xi⟩+ hk

k = argmax
k
{πik} (10)

where wk is the k-th vector of the classifier’s weight and hk

is the k-th component of the bias.
Compare Eqn. 8 and Eqn. 10 (the two formulas are the

same), it is clear that the classification problem is essen-
tially a semi-discrete optimal transport problem. As shown
in Fig. 1, the feature extractor fθ map the samples from
ambient space onto the feature space Ω ⊂ Rm, which is
continuous source domain. From the perspective of opti-
mal transport, the classifier is a family of hyperplanes in
the Euclidean space, which is equivalent to Brenier poten-
tial function. The weight wk is the discrete target point and
the bias hk corresponds to the Dirac measures νk. The clas-
sifier task means we need to find a cell decomposition of
the feature space and each cell will be mapped to one class
with the least cost. Samples with the same category should
be projected to the same cell, and the boundary of the cell is
defined as the decision boundary. Here the weight wk rep-
resents the k-th class so it should be the center of the sam-
ples belonging to the k-th class. By the way, The frequency
of the k-th class gives the measure of the target point wk

and determines the volume of the cell. More explanation is
given in the next subsection.

The training process is to learn the classifier weights
wk’s and the bias hk’s. Since wk represents the k-th class,
so the total distance in the feature space between all samples
xi belonging to the k-th class and wk should be minimal,
i.e.,

wk = argmin
w∈Ω

{ ∑
yik=1

c(xi,w)

}
, k = 1, · · · ,K (11)

where c(xi,w) represents the transport cost from xi to
w, which means the weight wk is exactly the Wasserstein
center of all the samples belonging to the k-th class.

In a word, the training process of a classification task
is first embedding the samples into the feature space and
then calculating the Wasserstein centers of each class rep-
resented as the classifier’s weights. At last, it computes a
semi-discrete optimal transport map to get the bias accord-
ing to the measure of each class.

3.3. Semi-discrete optimal transport for long-tailed clas-
sification

Traditionally the measure of each class is given by the
number of samples belonging to this class, which is based
on the hypothesis that all classes are sampled uniformly.
But for the long-tailed training set, the hypothesis does not
hold anymore. According to Sec. 3.2, the measure of target
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Figure 2. The continuous source domain and discrete targets are
with different distributions. The classification task is equivalent to
the optimal transport map T̃ from source domian to targets . Dif-
ferent probability distributions of the targets induce different cell
decompositions of the source domain. The decision boundary can
be adjusted by changing the probability distribution of the targets
to improve the classification performance.

is related to the frequency of classes. The more frequent
classes are, the bigger measures of targets are and the larger
cells are formed. That is to say, the imbalanced training set
causes the decision boundary of the classifier to be biased
towards less frequent classes. The key issue is the decision
boundary, which is difficult to be assigned due to the imbal-
anced distribution of the different classes. Optimal trans-
port can adjust the decision boundary only by modulating
the bias h.

Fig. 2 explains this insight. For example, in a 3-
classification problem, given a set of training samples, the
feature extractor maps them onto the feature space. Each
sample is color-encoded to indicate its class. The light blue
colored class has the highest frequency and the dark blue
colored class has the lowest frequency. The classifier de-
composes the feature space into three cells, the red cell for
the light blue class, the yellow cell for the green class, and
the purple cell for the dark blue class. As shown in the
top row of Fig. 2, the light blue samples have the highest
frequency; hence its corresponding red cell has the largest
volume. So many green and dark blue samples are mis-
classified. In other words, the imbalance of the data makes
the decision boundary biased to the less frequent classes
(yellow and dark blue), causing the classifier to over-fit the
head class (light blue) and under-fit the tail class (dark blue
and yellow). From the bottom row of Fig. 2, we can see
that when increasing the measure of the target, the decision
boundary will move towards the class with more frequency;
that is, the cell volume of the class with less frequency will

also become larger.
OT-dynamic softmax loss. The above discussion shows
that the performance of the classifier will be poor in the
balanced test set if we directly train the model with the im-
balanced training set using the following common cross-
entropy loss:

LCE = − 1

N

N∑
i=1

K∑
k=1

yiklog
eπik∑K
j=1 e

πij

(12)

In previous works [10-11], common logit adjustment meth-
ods subtract a positive adjusting term from πij to form an
adjusted logit. Thus we get the formulation of the balanced
softmax loss:

LBS = − 1

N

N∑
i=1

K∑
k=1

yiklog
nke

πik∑K
j=1 njeπij

(13)

where nk is the number of samples in the k-th class of the
training set and yij is the j-th component of the one-hot
label of the sample si. However, the Balanced Softmax is
label-aware and can be fragile when training online mod-
els in real-time, since the number of samples per class is
unknown or varies dynamically across batches. Therefore,
we propose OT-dynamic softmax loss, which dynamically
adjusts the decision boundary during training.

According to Sec. 3.1, the volume of Wk can be esti-
mated as ω̂k(h) := #{i | xi ∈ Wk(h)}/N in each batch,
where N is the batch size, the # symbol represents the num-
ber of all samples belonging to the Wk. As shown in Fig.1,
the volume of the cell Wk is uniquely determined by the
bias hk. The higher the bias hk is , the larger the cell Wk

is. The gradient∇E(hk) = (ω̂k(h)−νk) of the bias h pro-
vides a direction to adjust the decision boundary, where νk
is set to nk/n. Specifically, when ∇E(hk) > 0, it means
that too many samples fall in Wk and the volume of Wk

needs to be reduced, that is, the bias hk needs to be reduced
and the decision boundary moves to the larger cell. So in
the training process, we plus ∇E(hk) in Alg. 1 to the bias
h to dynamically adjust the decision boundary,

πik −∇E(hk) = ⟨wk,xi⟩+ hk −∇E(hk) (14)

Furthermore,∇E(hk) is dynamic, an OT-dynamic softmax
function can be obtained:

LOTD = − 1

N

N∑
i=1

K∑
k=1

yiklog
nke

πik−∇E(hk)∑K
j=1 njeπij−∇E(hj)

(15)

where ∇E(hj) is the j-th component of ∇E(h). The key
idea is to adjust the bias by adding a perturbation term
∇E(hj) to change the volume of the corresponding cell,
and further deform the decision boundary. Experiments
show that compared with balanced softmax, our method can
avoid overfitting in the tail class.



Supervised contrastive loss. Khosla et al. [22] extended
the unsupervised contrastive loss [6] with lable informa-
tion into supervised contrastive loss. The key difference
between supervised contrastive loss and unsupervised con-
trastive loss lies in the composition of the positive and neg-
ative samples of an anchor sample. For unsupervised con-
trastive loss, the positive sample is only an alternatively
augmented view of the anchor sample. For supervised con-
trastive loss, apart from the alternatively augmented coun-
terpart, the positives also include some other samples from
the same class.

In Alg. 1, the volume ω̂k(h) is estimated using the Monte
Carlo method, which requires that the feature representation
xi satisfy uniform distribution. Therefore, our method adds
supervised contrastive loss as follow:

LSCL =
N∑
i=1

− 1

|{x+
i }|

∑
xj∈{x+

i
}

log
e(xi·xj/τ)∑

xk,k ̸=i e
(xi·xk/τ)

(16)

Here, {x+
i } = {xj |yj = yi, i ̸= j} is the set of all

positives in the different views batch distinct from anchor
xi, and |{x+

i }| is its cardinality. The · symbol denotes the
inner product, τ > 0 is a scalar temperature parameter.

Algorithm 1 OT-dynamic Softmax Loss
Input: the logit of neural network ŷ, the label y
Output: OT-dynamic Softmax Loss

1: Calculate ω̂k(h) = #{i| argmax
k

(ŷi) ∈Wk(h)}/N

2: Calculate∇E(h) = (ω̂k(h)− νk)
T

3: ∇E(h) = ∇E(h)−mean(∇E(h))

4: ŷ← ŷ −∇E(h)

5: return Balanced Softmax(ŷ,y)

Overview of our method. In practice, we train the classi-
fication network with a combination of two losses. An op-
timal transport dynamic softmax loss is applied to the out-
put of the classification layer to adjust the decision bound-
ary dynamically, and the supervised contrastive loss is ap-
plied to the feature representation of the penultimate layer
to satisfy the uniform distribution. Thus our method linearly
combines these two losses:

L = λLOTD + (1− λ)LSCL (17)

where λ is a loss weight hyper-parameter and is set to 0.5
in all experiments.

4. Experiments

In this section, we conduct a series of experiments
to evaluate the effectiveness of our algorithm using
ResNet/ResNeXt as the baseline architecture. However, our

method and analysis are not limited to those architectures.
All experimental setup is the same as that [17]. Below we
first introduce the long-tailed benchmarks and experimental
setting details in Sec. 4.1 and Sec. 4.2, respectively. Then,
we report the experimental results compared with revelant
methods on long-tailed classification task in Sec. 4.3. Fi-
nally, we conduct ablation study to show that OT-dynamic
softmax loss can avoid overfitting in the tail classes and im-
prove the robustness of the training process in Sec. 4.4.

4.1. Datasets Details

CIFAR-10/100-LT. CIFAR-10 and CIFAR-100 [23] have
50, 000 images for training and 10, 000 images for valida-
tion with ten categories and 100 categories, respectively.
Following the prior work [5, 55], we use the imbalance
factors ρ to control the degree of data imbalance degrees.
ρ = Nmax

Nmin
, where Nmin and Nmax are the number of train-

ing samples for the least frequent and the most frequent
classes respectively. We conduct experiments with ρ equals
to 10, 100 and 200 respectively.
ImageNet-LT. ImageNet-LT is a subset by sampling from
ImageNet-2012 [34] following the Pareto distribution with
the power value α = 6. It contains 115.8K images for
training, 20K for validation and 50K for testing. The over-
all number of categories is 1000, with the number of images
per class ranging from 5 to 1280.
iNaturalist 2018. The iNaturalist 2018 [41] has 437, 513
training images from 8124 classes, with an imbalance fac-
tor of 500. It is a real-world dataset for species, large scale
and extremely imbalanced. In addition, the iNaturalist 2018
also face the fine-grained problem [47].
Places-LT. Places-LT [56] is a long-tailed version of the
large-scale scene classification dataset Places. It consists
of 184.5K images from 365 categories with class cardinal-
ity ranging from 5 to 4, 980. We use the same training and
validation splits strategy for fair comparisons as [28] in our
experiments.

4.2. Experimental Setting

Implementation Details. For the long-tailed CIFAR
datasets, we adopt ResNet-32 as our backbone network and
SGD optimizer with the momentum 0.9 for all experiments.
The learning rate increased from 0.05 to 0.1 in the first 800
iterations. Through all the experiments, the batch size is
256, and the model is end-to-end trained for 13K iterations.
The experimental setup is the same as that in [33].

For a fair comparison, we use the same experimental
setting as [21] on ImageNet-LT, Places-LT, and iNatural-
ist 2018. For Places-LT, following the works in [33, 21], we
choose ResNet-152 as the backbone network and pretrain it
on the full ImageNet-2012 dataset.

On ImageNet-LT, we use ResNet-10, ResNet-50 and
ResNeXt-50, respectively. On iNaturalist 2018, we use



ResNet-50. For ResNet-10 and ResNeXt-50, we adopt co-
sine learning rate schedule gradually decaying from 0.05 to
0, with image resolution 224× 224 and batch size 128. For
the ResNet-152, we use a batch size of 128 for the limited
GPU memory. For all experiments, we adopt SGD opti-
mizer with momentum 0.9 on 4 NVIDIA 1080Ti GPUs.
Evaluation Protocol. After training on the long-tailed
datasets, the models are evaluated on the corresponding
balanced testing or validation datasets. Top-1 accuracy is
adopted for all the comparisons, denoted as All. In order
to better analyze the performance on classes with differ-
ent sampling frequencies, we further report the accuracy on
three-class subsets: Many-shot (more than 100 samples),
Medium-shot (20 ∼ 100 samples) and Few-shot (less than
20 samples), following the work in [21].

4.3. Experimental Results

To verify the effectiveness of our approach, we mainly
compared to the following methods. CE: training with a
cross-entropy loss [16]; Balanced Softmax: BS [33], Logit
adjust [29], DisAlign [17], LADE [51], ALA Loss [53];
Contrastive Learning: PaCo [8], KCL [20], Hybrid-
SC [36]; Optimal Transport: OTLM [31]; Other Meth-
ods: Focal Loss [26], cRT [21], BBN [55], Bag of
Tricks [52], MARC [45].
Experimental results on long-tailed CIFAR. We conduct
extensive experiments on CIFAR-10/100 with imbalance
factors of 200, 100, and 10 with the same set of the work
of [33]. We mainly compare to the current SOTA method
BALMS [33]. The experimental results are summarized in
Table 1. As a baseline algorithm, a network is trained by
minimizing the empirical cross-entropy loss without regu-
larization. Compared with the previous methods, the perfor-
mance of our method is greatly improved. Specifically, our
method outperforms the SOTA methods by 2.6%, 1.8% and
1.8% on CIFAR100-LT with imbalance factors 200, 100,
and 10, respectively. Our method also surpasses the SOTA
methods by 1.9%, 1.0%, and 1.4% on CIFAR10-LT under
imbalance factors 200,100 and 10, respectively, which tes-
tify the effectiveness of our method.
Experimental results on large-scale datasets. Here, we
mainly compare our algorithm with the SOTA method ALA
Loss and the correlational method Balance softmax.
ImageNet-LT The experimental results with ResNet-50 and
ResNeXt-50 on ImageNet-LT are reported in Table 2.

As shown in Table 2, our method achieves superior per-
formance to existing methods on both networks. Comparing
our method with state-of-the-art ALA loss, the Top-1 accu-
racy has been improved by 0.9% and 1.3% with ResNet-50
and ResNeXt-50, respectively. Compared with other Bal-
ance softmax losses, our method gets better results on all
three subsets, showing the comprehensive advantages of our
method. Unlike other methods that improve tail classes at
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Figure 3. Histogram of accuracy for ablation studies of OT-
dynamic softmax loss on the ImageNet-LT with ResNeXt-50. All
models are trained in 90 epochs.

the sacrifice of head classes, our method not only achieves
better results on tail classes, but also achieves comparable
results on head classes to cross cntropy loss.
iNaturalist 2018 and Places-LT. The experimental results
on iNaturalist 2018 and Places-LT are reported in Table 3.
On the real-world long-tailed iNaturalist 2018, our method
again outperforms other methods, especially on the
medium-shot subset. Compared with the SOTA method
ALA Loss, our method achieves the best overall accuracy,
with more than 0.4% performance gain and 1.2% gain on
the medium-shot subset. For Places-LT, we observe a simi-
lar improvement. Our method achieves the best overall ac-
curacy of 40.5%, which is 0.4% higher than ALA Loss.

4.4. Ablation study

Quantitative analysis. In this section, we conduct a series
of experiments to examine the effect of each component in
our method. Fig. 3 shows the histogram of accuracy on four
class subsets with five compared methods. According to
the comparisons shown in Fig. 3, we have the following
observations:
• OT-dynamic Softmax aims to dynamicly adjust the

decision boundary in the training phase, which can boost
the performance of the long-tailed classification to a cer-
tain extent. Compared with BS (orchid bar), OT-dynamic
(gray bar) achieves considerable better results on all sub-
sets. Moreover, it especially improves the accuracy in the
few-shot subset by 4.3%, indicating the advantage of tack-
ling the long-tailed problem from the semi-optimal trans-
port perspective.
• SCL purposes to distribute the features evenly in the

feature space so that more samples fall in the correct cell de-
composition. The comparison between BS and BS + SCL
(gold bar) reveals that SCL is able to improve overall per-
formances. What’s more, SCL brings significant gains on
the many-shot subset and few-shot subset.
• According to the peru bar, the combination setting OT-

dynamic + SCL (Ours) achieves the best result. Compared



Method Pub.
CIFAR-10-LT CIFAR-100-LT

200 100 10 200 100 10

CE CVPR′16 71.2 77.4 90.0 41.0 45.3 61.9

Focal Loss ICCV′17 71.8 77.1 90.3 40.2 43.8 60.0

BBN CVPR′20 - 79.8 88.3 - 42.5 59.1

cRT ICLR′20 76.6 82.0 91.0 44.5 50.0 63.3

BS NeurlPS′20 81.5 84.9 91.3 45.5 50.8 63.0

LADE CVPR′21 - - - - 45.4 61.7

Hybrid-SC CVPR′21 - 81.4 91.1 - 46.7 63.0

Bag of Tricks AAAI′21 - 80.0 - - 47.8 -

PaCo ICCV′21 - - - - 52.0 64.2

MARC ArXiv′21 81.1 85.3 - 47.4 50.8 -

OTLM ICLR′22 - - - 37.8 42.6 61.2

Our method - 83.4 86.3 92.7 50.0 53.8 66.4

Table 1. Top-1 accuracy (%) comparison on CIFAR-10/100-LT with ResNet-32 for different imbalance factors.

Method Pub.
ResNeXt-50 ResNet-50

Many Medium Few All Many Medium Few All

CE CVPR′16 65.9 37.5 7.7 44.4 64.0 33.8 5.8 41.6

Focal Loss ICCV′17 64.3 37.1 8.2 43.7 - - - -

BBN CVPR′20 - - - 49.3 - - - 48.3

cRT ICLR′20 61.8 46.2 27.4 49.6 58.8 44.0 26.1 47.3

BS NeurlPS′20 62.2 48.8 29.8 51.4 61.0 47.0 27.2 49.7

Logit adjust ICLR′20 - - - - - - - 51.1

DisAlign CVPR′21 61.5 50.7 33.1 52.6 59.9 49.9 31.8 51.3

LADE CVPR′21 62.3 49.3 31.2 51.9 59.9 49.9 31.8 51.3

KCL ICLR′21 - - - - 61.8 49.4 30.9 51.5

PaCo ICCV′21 59.7 51.7 36.5 52.7 - - - -

MARC ArXiv′21 60.4 50.3 36.6 52.3 - - - -

ALA Loss AAAI′22 64.1 49.9 34.7 53.3 62.4 49.1 35.7 52.4

OTLM ICLR′22 - - - - - - - 52.4

Our method - 65.4 51.5 34.7 54.6 63.8 50.6 33.5 53.3

Table 2. Performance comparison with state-of-the-art methods on ImageNet-LT with ResNeXt-50 and ResNet-50.

with CE (blue bar), Ours obtain pretty better results on both
medium-and few-shot subsets, with only a slight decline on
many-shot subset.

In addition, Table 4 also shows that our method gets the
best results on CIFAR-10/100-LT. It is consistent with our
design principle. That is, OT-dynamic Softmax pay more
attention to adjust the decision boundary, SCL focus more

on features uniformity.

Qualitative analysis. In this section, we conduct qualita-
tive analysis to characterize our OT-dynamic softmax intu-
itively and comprehensively. Specifically, we further visu-
alize and analyze the advantages of OT-dynamic softmax
from the perspectives of avoiding overfitting in a few-shot
classes and adjusting decision boundaries.



Method Pub.
Places-LT iNaturalist2018

Many Medium Few All Many Medium Few All

CE CVPR′16 45.7 27.4 8.2 30.2 72.7 63.8 58.7 61.7

Focal Loss ICCV′17 41.1 34.8 22.4 34.6 - - - -

BBN CVPR′20 - - - - 49.4 70.8 65.3 66.3

cRT ICLR′20 42.0 37.6 24.9 36.7 69.0 66.0 63.2 65.2

BS NeurlPS′20 41.2 39.8 31.6 38.7 - - - 69.8

Logit adjust ICLR′20 - - - - - - - 66.4

DisAlign CVPR′21 40.4 42.4 31.8 39.3 - - - 70.6

LADE CVPR′21 42.8 39.0 31.2 38.8 - - - 70.0

KCL ICLR′21 - - - - - - - 68.6

MARC ArXiv′21 39.9 39.8 32.6 38.4 - - - 70.4

ALA Loss AAAI′22 43.9 40.1 32.9 40.1 71.3 70.8 70.4 70.7

Our method - 42.7 40.4 36.7 40.5 70.0 72.0 70.2 71.1

Table 3. Performance comparison with state-of-the-art methods on Places-LT and INaturalist2018 with ResNet-152 and ResNet-50.

Method BS SCL ∇E(h)
CIFAR-10-LT CIFAR-100-LT

200 100 10 200 100 10

CE % % % 71.2 77.4 90.0 41.0 45.3 61.9

BS " % % 81.5 84.9 91.3 45.5 50.8 63.0

SCL % " % 76.0 82.4 91.6 43.5 47.4 63.7

BS+SCL " " % 82.3 85.6 92.0 48.2 52.9 65.5

OT-dynamic " % " 82.6 84.5 91.4 46.1 51.7 64.1

Our method " " " 83.4 86.3 92.7 50.0 53.8 66.4

Table 4. Ablation studies for OT-dynamic Softmax Loss. Results on the test set of CIFAR10/100-LT with ResNet-32. The first line is
the results of Cross Entropy (CE); the last line is our method. OT-dynamic Softmax is denoted in Equation (15).

To intuitively reflect the advantage of our OT-dynamic
softmax over fixd class frequency based Balanced Softmax
methods, we visualize the accuracy curve during training.
According to the performance comparisons shown in Fig. 4,
we obetain the following observations:
• The “All” and “Many” frames show that the curve

train-OT and test-OT are always above curve trian-BS and
test-BS, respectively, which indicates OT-dynamic softmax
can significantly improve the predicted accracies compared
with BS.
• In the “Medium” and “Few” frames, the curve train-

BS is over curve train-OT, while the curve test-BS is below
curve test-OT. This means overfitting in the BS training, es-

pecially in the few-shot subset. In contrast, our OT-dynamic
softmax is able to dynamically adjust the decision bound-
aries to avoid this problem.
• The fluctuation of curve test-OT is significantly smaller

than curve test-BS, which suggests that our OT-dynamic
softmax enables a more stable training process compared
to BS.
To gain additional insight, we look at the t-SNE projection
of learned features and compared CE, BS, and SCL with
our proposed OT-dynamic softmax loss. Fig. 5 shows that
the cell decomposition in our learned feature space is more
uniform and the decision boundaries are clearer, which is
particularly evident in the red class.
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Figure 4. Performance comparison of BS and OT-dynamic softmax in the training process. We use ResNext-50 for end-to-end training on
ImageNet-LT with 90 epochs. The x-axis is the number of training epoch and the y-axis is the classification accuracy.
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Figure 5. t-SNE visualization of feature space of CIFAR-10-LT with imbalance factor 100 obtained using different methods.

5. Conclusions

In this paper, we analyze the long-tailed classifica-
tion problem from the perspective of semi-discrete optimal
transmission, i.e., the feature space is considered a contin-
uous source domain, and the classifier weights are consid-
ered discrete target points. Our analysis shows that the im-
balance in the data leads to the decision boundary being
biased toward classes with low frequency. Therefore, we
propose an optimal transport dynamic softmax loss to ad-
just the decision boundary dynamically. Furthermore, our
method combined the supervised contrastive loss to allow
the feature space to satisfy the uniform distribution. Exten-
sive and comprehensive experimental results show that our
method outperforms the existing SOTA methods on widely
used long-tailed benchmarks, including CIFAR-10/100-LT,
ImageNet-LT, iNaturalist 2018, and Places-LT. Moreover,
we note that OT-dynamic softmax loss can avoid overfitting
in the tail classes and improve the robustness of the training
process.
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