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Figure 1. HMDO dataset. (a) 12 zodiacs as manipulated objects; (b) Data including multi-view synchronized images, 3D meshes and
contact deformation maps.

Abstract

We construct the first markerless deformable interac-
tion dataset recording interactive motions of the hands
and deformable objects, called HMDO (Hand Manipu-
lation with Deformable Objects). With our built multi-
view capture system, it captures the deformable interac-
tions with multiple perspectives, various object shapes,
and diverse interactive forms. Our motivation is the
current lack of hand and deformable object interaction
datasets, as 3D hand and deformable object reconstruc-
tion is challenging. Mainly due to mutual occlusion, the
interaction area is difficult to observe, the visual features
between the hand and the object are entangled, and the
reconstruction of the interaction area deformation is dif-
ficult. To tackle this challenge, we propose a method to
annotate our captured data. Our key idea is to collab-
orate with estimated hand features to guide the object

global pose estimation, and then optimize the deforma-
tion process of the object by analyzing the relationship
between the hand and the object. Through comprehen-
sive evaluation, the proposed method can reconstruct in-
teractive motions of hands and deformable objects with
high quality. HMDO currently consists of 21600 frames
over 12 sequences. In the future, this dataset could
boost the research of learning-based reconstruction of
deformable interaction scenes.
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1. Introduction

Understanding the interactive motions of hands and ob-
jects is an important topic in computer vision and graph-
ics due to its wide range of applications in virtual reality,
augmented reality, robotics, etc. In recent years, thanks to
the development of deep learning and the creation of sev-
eral hand and rigid object interaction datasets [16, 8, 46,
6, 17, 24], the research on the reconstruction of hands and
rigid objects from monocular images has developed rapidly.
However, these recent methods fail in the reconstruction of
hands and deformable objects interactions. Mainly due to
the need to solve non-rigid deformations of closely inter-
acting contact regions and the lack of datasets for hand and
deformable object interactions. Therefore, it is necessary to
break the limitation of the lack of datasets that record hands
and deformable objects.

To facilitate the study of data-driven methods to address
scenarios where hands and deformable objects closely in-
teract, we construct the first multi-view deformable interac-
tion dataset. We built a multi-view capture system, using 10
high-speed industrial cameras to synchronously capture the
close interaction process between hands and deformable ob-
jects at high frame rates from different perspectives. How-
ever, creating annotations for interactive motions of hands
and deformable objects is very challenging. Reconstruct-
ing hand and deformable object interactions is more com-
plicated than reconstructing hands and rigid objects interac-
tions, because we not only need to solve the rigid motions of
deformable objects, but also recover the non-rigid motions.
In addition, due to occlusion, the interaction area is difficult
to observe, and the visual features between the hand and the
object are entangled, which makes it very difficult to recon-
struct the deformation of the contact regions.

Most existing solutions [27, 32, 15, 48, 25] adopt
fusion-based methods to reconstruct deformable objects.
Some works propose specific strategies for interaction prob-
lems [42, 44], they rely on extra depth cameras to record
slow motions. Besides the depth dependence, these fusion-
based methods [42, 44] to reconstruct interactions do not
model the deformable objects explicitly, and could hardly
obtain instance mesh sequences with time-invariant topol-
ogy. Commonly, they could only tackle the interaction be-
tween single pair of hand-object. Other existing template-
based methods [34, 28, 11, 30, 39, 38] have difficulty in
handling scenes where hands and objects are closely inter-
acting. In our captured data, the human hands interact more
closely with the deformable objects. This means that the
interaction area is difficult to observe, the hand state needs
to be reconstructed simultaneously, and the visual features
between the hand and the object are entangled.

Aiming at the closely interactive motion reconstruction
of hands and deformable objects, we propose a template-
based method to annotate the data we captured. The method

jointly reconstructs hand pose, object pose, and object de-
formation from captured data. All manipulated dolls are
scanned and repaired in advance for their digital meshes
with impermeable and homeomorphic properties. Our hand
surface model also has higher resolution than MANO [29]
and can more accurately represent the contact regions. The
topological consistency of the object and hand meshes fa-
cilitates surface deformation analysis in our future studies.
In terms of reconstruction algorithm design, the information
of each viewing perspective is fully utilized to reconstruct
the accurate hand, and the collaboration between the hand
and the object is considered to guide the object pose estima-
tion and the object deformation. Furthermore, a top-down
strategy is adopted in our framework, so it theoretically sup-
ports reconstructing the interaction between multiple hands
and deformable objects. Through comprehensive evalua-
tion, the proposed method can reconstruct interactive mo-
tions of hands and deformable objects with high quality.

The main contributions of this work are summarized as
follows.
• A markerless deformable interaction dataset recording in-
teractive motions between hands and deformable dolls of
various appearances and morphology. The dataset is pub-
licly available on our website;
• A pipeline to reconstruct interactive motions of hands and
deformable objects from multi-view data;
• An object deformation optimization algorithm under the
guidance of hand and object collaboration.

2. Related Work

2.1. Hand and Object Interaction Datasets

In recent years, several datasets for hand and object inter-
action have already been proposed. [12] provided a dataset
containing hand and object interactions, called FPHAB.
They used a capture system consisting of magnetic sensors
attached to the subject’s hands and objects to obtain 3D an-
notations of the hands in RGB-D video sequences. How-
ever, since the magnetic sensors and the tape connecting
them are visible, this changes the appearance of the hand
in the color image. Hasson et al. [19] introduced ObMan,
which provided a large dataset of synthetic images of hands
grasped objects. HO-3D [16] used several RGB-D cam-
eras to capture sequences and presented the first marker-
less dataset of color images with 3D annotations for both
the hand and object. Following this, DexYCB [8] created
a large-scale dataset of hands and rigid objects. Zhao et
al. [46] proposed a hand-object interaction dataset con-
taining physical properties and stability metrics. Contact-
Pose [6] proposed to use a thermal camera to capture the
contact map of objects to reflect the common contact re-
gions of the grasped objects. Hampali et al. [24] created
a dataset containing 3D annotations of objects manipulated
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Figure 2. Hardware system. (a) Multi-view synchronized cap-
ture system; (b) Industrial cameras.

by two hands. However, existing hand and object interac-
tion datasets only include interactions between hands and
rigid objects, and lack data recording the interactions of
hands and deformable objects. We present HMDO, the
first markerless dataset recording interactive motions be-
tween hands and deformable dolls of various appearances
and morphologies.

2.2. Hand and Object Joint Reconstruction

Existing work mainly focuses on hand and rigid ob-
ject reconstruction. Because rigid objects only have global
degrees of freedom (DoFs), the interaction between hand
and rigid objects is easier to model, capture, and recon-
struct. With the popularity of learning-based methods in the
fields of graphics and 3D vision, datasets recording hand-
only [47, 13, 45], rigid-object-only [40, 20, 35, 26], and
interaction between the two [12, 19, 6, 16, 8, 46, 24] have
increased rapidly in both quantity and quality. This further
promotes more literature to adopt data-driven methods to
solve related problems. Hasson et al. [19] reconstructed
the shape and pose of the hand-object through a unified net-
work with extra synthetic data. [18] proposed a sparsely
supervised learning method to reconstruct hand-object, ex-
ploiting the photometric consistency between sparsely su-
pervised frames. Cao et al. [7] explored reconstructing
hand-object interactions in the wild. Grady et al. [14]
refine the estimated hand-object sate through contact prior
learned from those datasets. Zhao et al. [46] makes the in-
teraction state more stable by introducing the optimization
process based on a physics engine. The datasets record-
ing hand interactions with rigid objects also speed up the
comparison and evolution of methods for other problems in-
cluding grasping generation [23, 22] and manipulating plan-
ning [9, 43, 31].

2.3. Deformable Object Reconstruction

Precisely, rigid objects are only ideal approximations,
while deformable objects are more common in daily life,
e.g.backpacks, clothes, dolls, and even human bodies. Re-
constructing such objects has always been a difficult prob-

lem in the field. As one of the mainstream solutions,
template-based methods often build deformable objects as
finite element models (FEM), which are determined by
object-specific parameters and have high DoF in the cal-
culation. Some researchers [39, 38] used sparse depth
information to reconstruct deformation of single models.
Some [34, 28] tried to generalize them to the scene con-
taining weak hand-object interactions. Others [11, 30] ob-
tain more deformation details by installing a depth cam-
era and an extra force sensor on the robotic gripper at the
same time. All these methods are difficult to generalize and
apply to scenes where deformable objects interact closely
with human hands. On the other hand, fusion-based meth-
ods [27, 32, 21, 15] abandon explicit modeling of objects
and reconstruct the entire scene as a field with slow changes
in depth and illumination. Some hybrid attempts [48, 41] di-
vided the reconstruction process into two steps: online mesh
template acquisition and real-time non-rigid reconstruction.
Most of them take the human body, face, and hand as re-
construction objects, and do not consider the influence of
occlusion. In recent years, some progresses [5, 4, 25] have
been made when combining with learning-based technolo-
gies to find correspondences between two adjacent camera
frames. And the studies [42, 44] specific to interaction prob-
lems to distinguish hands and objects from the scene. Nev-
ertheless, most of the above methods still aim at real-time
performance rather than high-quality, high-precision, and
topology-consistent dataset preparation. Therefore, to our
best knowledge, there exist no large-scale datasets record-
ing the interaction between human hands and deformable
objects. When the hand interacts with the deformable ob-
ject, the deformation of the hand is much smaller than that
of the object. Therefore, most methods use the rigid approx-
imation of the hand to take the deformation of the object as
the main contradiction. We also adopt this assumption.

3. Data Capture

3.1. System Configuration

We build a multi-view synchronized capture system to
capture interactive motions of hands and deformable ob-
jects. The multi-view synchronized capture system uses
hardware signals to trigger cameras shown in Fig. 2. The
system includes three components: an industrial camera ar-
ray, a synchronous signal generator, and data caching de-
vices. Our camera array contains 10 high-speed industrial
cameras. Each one is equipped with 8mm focal lens and
produces 2048×1536 resolution images. The capturing fre-
quency and framed amount can be adjusted through Blue-
tooth before capturing. When capturing each hand manip-
ulation motion, the signal generator sends hardware trigger
signals to each camera through the Ethernet patch cable. It
controls each camera to shoot with a negligible delay. Once



Figure 3. Hand and deformable object reconstruction pipeline. (a) Image features are first extracted from the current frame T , including
the 2D poses of the hands and the masks of the object; (b) Hands motion tracking is performed based on image features and historical
information; (c) The object global pose is estimated based on the current frame object masks and tracked hands, and the object mesh of the
previous frame T − 1; (d) The deformed object is obtained under the guidance of hand and object collaboration.

the capture is finished, the data from the camera is trans-
ferred to the caching devices. This solution is capable of
capturing stable data with a frame rate up to 110 FPS.

3.2. Object Template Acquisition

As shown in Fig. 1, twelve zodiac dolls with various ge-
ometric and visual attributes are selected as the manipula-
tion objects in our work. Although the doll comes from
different manufacturers, we require that the elastic coeffi-
cient and density of the stuffing inside the doll should be
as close as possible. In addition, during the data capture
of hand-object interactions, we avoid pressure or tension
that may cause plastic deformation for the dolls. We fol-
low the steps to create a template object model for each
doll. First, we adopt the fusion-based method [1] with a sin-
gle RealSense435i device to capture a coarse object mesh,
which shown as Fig. 5. Then a series of repairing pro-
cesses including hole filling, isolated elements removal, and
isotropic remeshing is adopted to guarantee that the whole
object mesh is watertight and has genus 0 (homeomorphic
to a sphere). After manual repair, these meshes with good
geometric properties are used as template object models.

4. Hand-Deformable Object Reconstruction

An overview of our pipeline for reconstructing hand and
deformable object interactions from multi-view motion data

is shown in Fig. 3. Firstly, the method for hand tracking is
described in Sec. 4.1. Then, the method for object global
pose estimation is given in Sec. 4.2. In Sec. 4.3, we describe
the optimization strategy for obtaining the deformable ob-
ject by iteratively analyzing the relationship between hand
and object. To facilitate the identification, for the object
variables, the variables marked with hats superscript rep-
resent the results after global pose transformation, and the
variables with tilde superscript represent the results after
non-rigid deformation optimization. For the hand variables,
the hand after optimization is represented by a tilde super-
script.

4.1. Hand Motion Tracking

Hand pose estimation. First, we use the 2D pose estima-
tion network [37] to estimate the 2D keypoints and confi-
dences for each camera of the current frame. We then solve
the following equation to obtain the 3D keypoints by utiliz-
ing camera parameters and the estimated 2D keypoints,

argmax
k

∑
n∈N

∥∥[Xn]× ·Πn (Rnk + Tn)
∥∥ , (1)

where [Xn]× is the skew matrix of the homogenous coor-
dinate of Xn, which describes the 2D coordinate of hand
keypoint in the n-th camera. k is the 3D hand keypoint.
Πn and [Rn, Tn] are the intrinsic parameter and extrinsic



Figure 4. Overview of object segmentation network. We designed an object segmentation network, and the network used different scales
of masks as supervision.

Figure 5. Template acquisition. (a) Reference object; (b) Scan-
ning process; (d) Reconstructed coarse template.

parameter of the n-th camera, respectively. N is the set of
valid camera views for this keypoint. It is worth noting that
not all views have accurate 2D keypoints. For each camera,
only when the confidence of the 2D keypoint is greater than
a threshold, it will be regarded as a valid camera in the cor-
responding 3D keypoint calculation. In our experiment, the
threshold was set to 0.6.
Hand mesh optimization. We utilize the multi-view sys-
tem to pre-optimize our hand surface model to obtain per-
sonalized hand shape parameters of subjects. During hand
and deformable object tracking, only the pose θ of the hand
is optimized. We minimize the errors of deformed skeleton
joints and estimated keypoints in both 3D and 2D space,

argmin
θ

∑
j

(∑
n∈N
‖xj,n − Pn (fj(θ))‖+ ‖kj − fj(θ)‖

)
,

(2)
Where xj,n is the j-th 2D keypoint in the n-th camera, and
kj is the j-th 3D keypoint. fj(θ) ∈ R3×1 represents the 3D
position of the j-th hand skeleton joint with the parameter
θ, and Pn(·) can be expressed as:

Pn (fj(θ)) = Rnfj(θ) + Tn. (3)

After getting the hand pose θ of the current frame, We use

historical information to do a temporal smoothing filter to
obtain the smoothed pose θ̃. We adopt the linear blend skin-
ning to deform our hand surface model Mh. Specifically,
for the i-th vertex vih in the hand mesh, the deformed new
position ṽih is computed as:

ṽih =
∑
j

ω
(
vih, fj(θ̃)

) [
Rj

(
vih − fj(θ̃)

)
+ fj(θ̃) + tj

]
(4)

where [Rj , tj ] is the rigid transformation of the j-th bone,
which is only determined by the hand pose θ̃, the skinning
weight ω

(
vih, fj(θ̃)

)
is computed by heat-based method,

which measures the influence of the j-th bone to the i-th
vertex.

4.2. Object Pose Estimation

Object segmentation. We design an encoder-decoder net-
work for object segmentation as shown in Fig. 4. We use
different scales of masks as supervision. Through this net-
work, the object makes {Sn} of the current frame can be
obtained. Sn represents the mask of the n-th view.
Object pose optimization. We use the genetic mutation
algorithm to iteratively solve the global position of the ob-
ject. In each iteration, we first select samples that are in-
herited to the next generation, and then we use the uniform
distribution to simulate the mutation process based on the
selected samples to obtain new samples for the next genera-
tion. Among them, we use the roulette method to determine
the samples that can be inherited to the next generation. The
smaller loss value of the sample, the greater the probability
of inheritance to the next generation. The loss function for
each sample is calculated as follows:

L =
∑
n

D(M(α), M̃h, Sn) + λo‖α‖2 (5)

Where the first term is the reprojection error of the object,
and the second term is the regularization term. α ∈ R6×1 is



Figure 6. Deformation schematic diagram. (a) Result before de-
formation; (b) Result after deformation.

the features of one sample. The first three dimensions rep-
resent the rotation, where we use axis-angle representation
to describe the global rotation. The last three dimensions
represent the translation. The first term can be expressed
as:

D(M(α), M̃h, Sn) = 1−
Hn

(
M̃h,M(α)

)
∩ Sn

Hn

(
M̃h,M(α)

)
∪ Sn

(6)

where, M̃h is the hand mesh of the current frame we
obtained in 4.1, and M(α) represents the object mesh
with the parameter α, i.e., global rigid transformation.
Hn

(
M̃h,M(α)

)
is the rendered mask of the object mesh

in the n-th camera that is not occluded by the hand mesh.
We use the global pose of the previous frame as the initial
one in our optimization.

Our goal is to minimize the overall loss, which is the
sum of L for all samples. Through iterative optimization,
we obtain the object global pose that converges to the op-
timal solution. We then use the historical information to
perform a temporal smoothing filter on the optimized pose.
Since our method is a global optimization strategy, it does
not accumulate temporal errors.

4.3. Object Deformation Optimization

To model non-rigid deformation of deformable objects,
we follow the representation in embedded deformation
graphs [33]. The non-rigid deformation is represented by
the affine transformation {As, ts} of uniformly selected
vertices {gs} on the mesh, which are treated as nodes of
the graph. For the vertex v̂o in the globally transformed ob-
ject template mesh, the new position of the deformation ṽo
is computed as:

ṽo =
∑

gs∈S(v̂o)

ω (v̂o, gs) [As (v̂o − gs) + gs + ts] (7)

where S(v̂o) is the neighbor nodes of mesh vertex v̂o.
ω(v̂o, gs) is the deformation weights of node gs to v̂o, which
represents the influence of the node on the vertex. The def-
inition of vertex neighbor nodes and the calculation of de-
formation weights refer to [33]. To get the transformation
{As, ts} of all nodes in the deformation graph, we estimate
them by optimizing the following function:

E = λ1Econt + λ2Esilh + λ3Etemp + λ4Erigid + λ5Ereg.
(8)

Contact term. Econt is the contact term. By analyzing the
relationship between the hand and the object, the object is
deformed to match the contact, resulting in a reasonable ma-
nipulation. This term can be expressed as:

Econt =
∑
i

||ṽio − vitarget||. (9)

where ṽio is the deformed position of v̂io, and vitarget is the
target position of v̂io by analyzing the relationship between
the hand and the object. The object vertices target position
are obtained by the following steps. After rigid transforma-
tion of the current frame object in Sec. 4.2, rays are emit-
ted from the object to the hand for intersection detection.
If penetration occurs, we record the vertex on the object,
as well as the first intersection with the hand, which are
marked as (p̂o, p̃h). The standard 3D Axis-Aligned Bound-
ing Box [3] tree is used to speed up the process. We set
the target position of these penetrated vertex {p̂o} to {p̃h}.
The regions squeezed by the hand affect the surrounding re-
gions. We employ a strategy based on geodesic distance and
penetration depth to diffuse deformation around. The target
positions of the remaining vertices can be expressed as:

vtarget = v̂o −
1

N

N∑
i=0

I(v̂o, p̂
i
o) ∗ ~n (10)

where, v̂o is the vertex position of the object before defor-
mation, and N represents the number of penetrated vertex
affecting vertex v̂o. ~n is the unit normal vector of vertex v̂o.
I(·) is the impact factor, which can be expressed as:

I(v̂o, p̂o) = d (p̂o) ∗ exp(−λc ∗ G(v̂o, p̂o)) (11)



where, d (p̂o) represents the penetration depth of vertex p̂o,
and G(·) is the geodesic distance. Regarding the calculation
of geodesic distance, we refer to [10]. In our experiments,
when I(·) is less than 0.02, we consider the vertex v̂o are
not affected by the vertex p̂o.
Silhouette term. The Esilh term constrains the projection
of the object model under each camera perspective to be
consistent with the contour of the observed images.

Esilh =
∑
v̂o∈C

∑
n∈N (v̂o)

‖Pn (ṽo)− cv̂o,n‖ (12)

where C includes all the vertices that have corresponding
contours in the observed images. N (v̂o) records all camera
numbers for which v̂o has corresponding contour points in
the observed camera perspective. cv̂o,n is the corresponding
contour point of vertex v̂o under the observed image of n-th
camera. ṽo is the deformation result of v̂o, and Pn (ṽo) is
the 2d projection of ṽo. For methods of finding the matching
2d pixels on the image plane and retrieving the 3D position
of 2D image coordinates, we refer to [36].
Temporal smoothing term. The temporal smoothing term
Etemp encourages smooth deformation from frame to frame,
which can be expressed as:

Etemp =
∑
i

||ṽio − v̂ilast||. (13)

where ṽio is the deformed position of v̂io, and v̂ilast is the cor-
responding vertex on the object mesh of the previous frame
after the global transformation in Sec. 4.2.
Rigid term. The term Erigid used to restrict the affine trans-
formation to be as rigid as possible, which is the same [33]
and is formulated as:

Erigid =
∑
s

((
aTs,1as,2

)2
+
(
aTs,1as,3

)2
+
(
aTs,2as,3

)2)
+
∑
s

∑
i

((
1− aTs,ias,i

)2)
,

(14)
where as,1, as,2 and as,3 are the column vectors of As.
Regularization term. The term Ereg is served as a regular-
izer for the deformation by indicating that the affine trans-
formations of adjacent graph nodes should agree with one
another. Specifically, it means that the affine transformation
of node gm is applied to node gn, which should be consis-
tent with the affine transformation of node gn being applied
to itself.

Ereg =
∑
m

∑
gn∈S(gm)

ω (gn, gm) ||gm + tm

+Am (gn − gm)− (gn + tn) ||.
(15)

We optimize the function Eq. 8 and update the ob-
ject mesh at the end of each iteration. The deformation
schematic diagram is shown in Fig. 6.

5. Experiments

5.1. Implementation Details

All of our experiments are performed on a computer con-
figured with an Intel i7- 12700 CPU, NVIDIA GeForce
RTX 3090 GPU. Our hand surface model has 6829 vertices
and 13654 faces. The number of vertices of our object tem-
plates is between 6000 and 13000, and the number of faces
is between 12000 and 25000.
Hand pose estimation. The architecture of our 2D hand
pose estimation network is based on SRNet [37]. We use
the existing hand and rigid object interaction datasets HO-
3D [16], DexYCB [8], CBF [46] and ContactPose [6] as our
training dataset. During network training, we use the SGD
optimizer with the learning rate set to 10−5. After train-
ing, we collect data in our synchronized multi-view capture
system, estimate 2D hand pose from these data using the
trained model, and manually adjust for the incorrect poses.
We then fine-tune the hand 2D pose estimation model on
these adjusted data. The 3D pose is estimated from the
multi-view 2D keypoints, and we use the LDLT method to
solve it. The non-linear optimization of hand surface model
is solved by Ceres [2].
Object mask segmentation. During network training, we
use the SGD optimizer, the network learning rate is set to
10−5, and the MSE loss is used for supervision. Regarding
the training data, for each object, we first use a depth camera
to collect coarse data through distance threshold segmen-
tation, and we use color threshold segmentation and man-
ual processing to obtain accurate masks. In addition, We
perform data augmentation on these data, including ran-
dom combinations with data from existing hand datasets,
geometric transformations, and color transformations of the
images.
Object global pose optimization. In the first frame, we
use the uniform distribution to initialize the samples, the
population size of samples is set to 500, and the number of
iterations is set to 20. In subsequent frames, initial popu-
lation distribution and population size remain the same, but
only 1 iteration is performed.
Object deformation. The weight λc = 0.2, λ1 = 5, λ2 =
5,λ3 = 1, λ4 = 1, λ5 = 2. The non-linear optimization of
object deformation is solved by Ceres [2].

5.2. Qualitative Results

We show the reconstruction results from the captured
motion data in Fig. 1, Fig. 8 and Fig. 7. In Fig. 1, we show
the interaction between the hand and the tiger. In Fig. 8,
we show the interaction between the hand and the rabbit.
We capture at a high frame rate and there is less variation
from frame to frame, so to reflect the difference, the dis-
played frames are shown at specific time intervals. Fig. 7
shows randomly selected frames in the interactive motion



Figure 7. Qualitative results of our method on different objects. Randomly selected frames from hands and objects interaction se-
quences. (a) Input frames; (b) Object meshes; (c) Contact deformation maps; (d) Hand and object meshes (3 views).

of the hand and different objects. From these reconstruc-
tion results, we can see that our solution is able to track and
reconstruct the interaction of hands and deformable objects
in various poses with high quality. Manipulated objects
can vary greatly in visual and shape. It is worth mention-
ing that our method can handle multiple hands interacting
with objects, as our framework adopts a top-down strategy.
In Fig. 7 we show the interaction result between hands and
rabbits. In addition, in Fig. 9, we show the reconstruction

of the hand and plastic water bottle interactions using the
proposed method.

5.3. Evaluation of Hand 3D Pose Estimation

Estimating accurate hand pose is important for hand mo-
tion tracking, while also correctly guiding rigid transforma-
tions and non-rigid deformations of objects. To quantita-
tively evaluate the accuracy of the hand pose estimated by
our annotation method, we manually annotated the 3D lo-



Methods 4 views 6 views 8 views 10 views

Mean.(mm) 14.75 10.66 7.31 5.58
Std.(mm) 6.81 4.53 3.64 2.29

Table 1. Evaluations the accuracy of hand pose estimation. We
report the average hand joint errors for different camera number
settings.

Figure 8. Reconstruction results on the sequence ”Rabbit”. (a)
Selected frames; (b) Reconstruction results; (c) Contact deforma-
tion distribution maps.

cations of the 3D joints in randomly selected frames. Tab. 1
shows the estimated hand pose accuracy for different num-
bers of views. From the results in Tab. 1, as the number of
camera views increases, the estimation error gradually de-
creases. We can achieve an average joint error accuracy of
lower than 6mm on average with all camera view settings.

5.4. Evaluation of Object Pose Estimation

The population size, initial population distribution, and
optimization iterations number can affect the performance
of our object global pose estimation algorithm. To evaluate
the impact of these parameters on object pose estimation,
we conduct qualitative and quantitative experiments. For
experiments, we manually annotated object masks in 2 se-

Figure 9. Reconstruction result of plastic water bottle. (a) Test
frame; (b) Reconstruction result.

Parameters mIoU.(%) ↑ Time. (s) ↓
size = 100, iter = 20, U 83.33 17.72
size = 300, iter = 20, U 84.72 49.76
size = 500, iter = 20, U 86.91 82.70
size = 700, iter = 20, U 86.90 123.59

size = 500, iter = 5, U 58.36 20.72
size = 500, iter = 10, U 82.98 43.27
size = 500, iter = 20, U 86.91 82.70
size = 500, iter = 30, U 86.79 120.18

size = 500, iter = 20, O 84.74 84.47
size = 500, iter = 20, U 86.91 82.70

Table 2. Evaluation of object pose estimation accuracy in initial
frames with different parameter settings. U represents uniform
distribution, and O represents normal distribution. “size” repre-
sents population size, and “iter” represents optimization iterations
number.

quences. In these evaluation samples, the objects have no
non-rigid deformations. We use time-consuming and the
mean intersection over union(mIoU) to evaluate the perfor-
mance of object pose estimation under different parameter
settings. The mIoU is the mean of ratio of the intersection
and union of the predicted value and the true value. We
measure the difference between the rendered mask of the
object mesh and ground-truth.

We first treat these data as independent initial frames and
optimize them to obtain object pose. The effect of different
population size is compared in the first 4 rows of Tab. 2.
When the population size is set to 500, similar results can
be obtained with the population size set to 700, and the time
is shorter. The middle four rows of Tab. 2 evaluate the ef-
fect of the number of iterations on the results. Satisfactory
results can be achieved with 20 iterations. The experiments
on the effect of the initial population distribution on the re-
sults are shown in the last two rows of Tab. 2. It can be
seen from the table that the initial population set to uniform
distribution has higher accuracy of pose estimation than a



Terms Initialization Econt Econt + Ereg Econt + Ereg + Erigid Econt + Ereg + Erigid + Etemp Econt + Ereg + Erigid + Etemp + Esilh

mIoU.(%) ↑ 78.54 83.26 84.92 85.44 85.61 87.53
Inter.(cm3) ↓ 15.10 6.13 4.05 3.52 3.64 3.27

Table 3. Evaluation of terms for object deformation optimization. “Initialization” denotes the object mesh before deformation.

Parameters mIoU.(%) ↑ Time. (s) ↓
size = 500, iter = 1, U 84.63 4.17
size = 500, iter = 3, U 84.82 12.53

Table 4. Evaluation of object pose estimation accuracy in non-
initial frames with different parameter settings. U represents
uniform distribution. “size” represents population size, and “iter”
represents optimization iterations number.

Figure 10. Incorrect object pose estimation. (a) Test frame; (b)
Result with incorrect pose; (c) Result with correct pose. Inappro-
priate parameter settings are easy to fall into local optimal solu-
tion, resulting in incorrect object pose estimation.

normal distribution. This is because the initial frame has no
prior information. In other words, there is no guidance for
the initial pose, so using uniform distribution is less likely
to fall into local optimal solutions than a normal distribu-
tion. As shown in Fig. 10, inappropriate parameter settings
are easy to fall into the local optimal solution, resulting in
incorrect object pose estimation.

For non-initial frames, we use the result of the previous
frame as the initial value to optimize the object pose. As we
collect data at a high frame rate, there is less variation from
frame to frame. We evaluate the effects of iteration number
and initial population distribution on non-initial frame pose
estimation with two sequences that are manually annotated.
As shown in Tab. 4, setting the number of iterations to 1 can
quickly converge to a suitable solution.

5.5. Evaluation of Object Deformation Optimization

We perform ablation experiments on the terms in Eq. 8.
Regarding the evaluation metrics, We use mIoU to evalu-
ate the quality of deformed object reconstruction results. In
addition, intersection volume (denoted as Inter. in tables)
proposed in [19] is adopted to evaluate the contact quality
between hand and deformed object. The experimental re-
sults are shown in Tab. 3. Although the term Etemp does
not help improve the contact quality, it results in smoother

Figure 11. Evaluation of the regularization term for object de-
formation. (a) Reference frame; (b) Result without the regular-
ization term; (c) Result with the regularization term.

deformation from frame to frame. Satisfactory reconstruc-
tion quality can be achieved with all terms introduced. In
addition, we show the qualitative evaluation of the regular-
ization term for object deformation in Fig. 11. As shown in
Fig. 11 (b), without the regularization term, the transforma-
tions of adjacent graph nodes are inconsistent, which leads
to unnatural deformation. After introducing the regulariza-
tion term, a reasonable result is obtained.

6. Conclusion

We construct the first dataset to record the interactive
motion of hands and deformable objects to fill the gap in
the hand and deformable object datasets. It captures de-
formable interactions in multiple interaction forms from 10
perspectives with our multi-view capture system. We pro-
pose a method to annotate our captured motion data. The
method makes full use of information from various perspec-
tives to reconstruct the accurate hand, and the collaboration
between the hand and the object is considered to guide the
object pose estimation and the object deformation. Through
comprehensive evaluation, we demonstrate that our method
can reconstruct interactive motions of hands and different
deformable objects with high quality. In the future, this
dataset can be used for research on hand and deformable
object reconstruction.
Limitations and Future Work. We constructed a dataset
containing different forms of deformable interactions,
where the main focus is the non-rigid contact deformation
of interacting objects. The interacting objects in our dataset
do not have large deformations, such as 180-degree twist-
ing or bending. The proposed hand and deformable object
reconstruction method requires the material of deformable
objects to be uniform, otherwise our deformation diffusion
strategy may not work properly. In the future, we will
add large deformations of objects, and consider introducing
depth and color information.
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[48] M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach,
M. Fisher, C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, et al.
Real-time non-rigid reconstruction using an rgb-d camera.
ACM Transactions on Graphics (ToG), 33(4):1–12, 2014. 2,
3


