
CTSN: Predicting Cloth Deformation for Skeleton-based Characters with a
Two-stream Skinning Network

Yudi Li
Zhejiang University
Hangzhou, China

drafocus@outlook.com

Min Tang
Zhejiang University
Hangzhou, China

https://min-tang.github.io/home/

Yun Yang
Zhejiang University
Hangzhou, China
syby119@126.com

Ruofeng Tong
Zhejiang University
Hangzhou, China
trf@zju.edu.cn

Shuangcai Yang
Tencent

Shenzhen, China
yscyang@tencent.com

Yao Li
Zhejiang University

Shenzhen, China
leoyaoli@tencent.com

Bailin An
Zhejiang University

Shenzhen, China
frankan@tencent.com

Qilong Kou
Zhejiang University

Shenzhen, China
kouqilong1988@gmail.com

Abstract

We present a novel learning method to predict the
cloth deformation for skeleton-based characters with
a two-stream network. The characters processed in
our approach are not limited to humans, and can be
other skeletal-based representations of non-human tar-
gets such as fish or pets. We use a novel network ar-
chitecture which consists of skeleton-based and mesh-
based residual networks to learn the coarse and wrinkle
features as the overall residual from the template cloth
mesh. Our network is used to predict the deformation
for loose or tight-fitting clothing or dresses. We ensure
that the memory footprint of our network is low, and
thereby result in reduced storage and computational re-
quirements. In practice, our prediction for a single cloth
mesh for the skeleton-based character takes about 7 mil-
liseconds on an NVIDIA GeForce RTX 3090 GPU. Com-
pared with prior methods, our network can generate
fine deformation results with details and wrinkles.

Keywords: Cloth deformation, learning based network,
skinning

1. Introduction

Cloth animation is an important problem in computer
graphics due to its wide range of applications, including
video games, special effects, and virtual try-on. It is re-
garded as a challenging task due to the model complexity of
the cloth and the ability to perform irregular cloth deforma-

Figure 1. Given a skeleton-based representation of a character cor-
responding to target poses and different types of cloth (loose or
tight-fitting), we use a two-stream skinning network to predict the
cloth deformation for the target character. (a) and (b) correspond to
the same human character with tight and loose-fitting clothing, re-
spectively; (c) is a different human character wearing a long robe.
Our network can also handle non-human characters such as a mon-
ster (d), a dolphin (e), or even a cat (f).

tions. Furthermore, many applications require interactive
performance on commodity hardware, including mobile de-
vices. This problem has been extensively studied in the lit-
erature. In order to achieve high-quality and reliable results,

1

https://min-tang.github.io/home/


many efficient techniques based on physics-based simula-
tion (PBS) have been proposed [1, 22, 4, 5, 9, 29, 31]. In
these methods, the underlying cloth is modeled as a 3D sur-
face mesh subdivided into finite contiguous triangles, and
they use collision handling methods to generate accurate
simulations. However, these methods cannot provide real-
time frame rates for interactive applications.

There has been considerable work on using machine
learning methods to significantly reduce the computational
cost of predicting cloth deformation. Many learning-based
networks [20, 3, 23] have been proposed for SMPL-based
parametric 3D human models [16]. These SMPL-based
methods are used to generate smooth deformations for hu-
mans moving with tight-fitting clothes. The prediction is
generated in real-time because of the small number of pa-
rameters used in SMPL-based networks. However, the
SMPL-based model is limited and cannot be used on ar-
bitrary objects or characters used in games. In order to han-
dle more general characters and enhance the quality of pre-
diction, other algorithms use multi-layer perceptron (MLP)
models on the vertices of the cloth mesh to learn the defor-
mation [33]. Without using the topologies of a cloth mesh,
such MLP-based method tends to train a network with a
large number of parameters, which increases the memory
overhead and the runtime cost. Recently, Graph Convolu-
tional Networks (GCN) have been used to predict the cloth
draping results on the human characters [8, 7, 32]. In prac-
tice, these methods need the pre-deformed cloth for the tar-
get pose [8, 7] or can only process the draping results on
human characters in a T-pose [32].

In this paper, we deal with skeleton-based characters,
which are widely used in computer games and other inter-
active applications. These include human-like characters
(such as leading roles), monster characters similar to hu-
mans (such as trolls), and animal characters (such as pets).
All these different characters can wear different types of
clothes. We propose a learning-based cloth skinning model
to capture the coarse and wrinkle features to obtain the final
cloth deformation. Our approach is general and designed
for all types of skeleton-based characters, including humans
and animals. Furthermore, these characters can be dressed
with loose or tight-fitting clothes.

Our formulation models the cloth draping deformation as
the skinning of the cloth template at a canonical pose (such
as a T-pose or a A-pose). Given the skeleton information
and mesh information of the posed character, the deforma-
tion of the cloth is computed by skinning weights and the
template cloth mesh. In order to handle different skinning
characters and cloth, we design a novel two-stream network
architecture to learn the residual positions of vertices of the
cloth template mesh. It consists of a mesh-based residual
stream and a skeleton-based residual stream. The skeleton-
based residual stream is trained to obtain the coarse residual

on the cloth template mesh, while the mesh-based residual
stream is trained for the wrinkle features. The prediction
examples of our two-stream skinning network are as show
in 1.

We qualitatively and quantitatively analyze the perfor-
mance of the proposed two-stream skinning network in a
variety of scenarios. These include human-like characters
and other characters. We validate our two-stream network
thorough the ablation experiments. Compared with recent
methods, our two-stream network can capture the fine de-
tails of the cloth deformation.

The novel components of our work include:

• A learning-based cloth skinning model: Our ap-
proach models the cloth deformation as the learning-
based skinning of the template cloth mesh. Our skin-
ning model is not limited to humans and can process
many skinning characters.

• Two-stream skinning network architecture for
cloth deformation prediction: Based on the learning-
based cloth skinning model, we design a novel two-
stream network architecture for cloth deformation pre-
diction. The architecture consists of a mesh-based
residual stream which is trained for wrinkle features,
and a skeleton-based residual stream which is trained
for coarse features.

• Ability to process different types of clothes and
characters: Our network can process various types of
characters and clothes. These characters and clothes
can vary considerably.

We show the prediction results of our proposed skinning-
based network on different human characters, non-human
characters with different cloth types in Section 5. We com-
pare our method qualitatively and quantitatively with other
methods in Section 6. We can predict deformed clothes
at averagely 7 milliseconds on an NVIDIA GeForce RTX
3090 GPU. As compared with prior approaches, our method
can predict the deformation results with fine wrinkles and
details.

2. Related Work

In this section, we give an overview of cloth deforma-
tion prediction using traditional PBS methods and recent
learning-based methods. Many learning-based methods are
limited to the SMPL model; we describe these methods in
Section 2.2 and highlight other learning methods in Sec-
tion 2.3.

2.1. Physics-based Simulation

PBS methods for generating deformed cloth are com-
monly based on the pipeline of time integration [1], col-
lision detection [5, 29], and collision response [5, 9, 31].



While they can accurately model the deformation and result
in non-penetrating simulations, the running time is not fast
enough for interactive applications. To accelerate the sim-
ulation, recent research tends to use GPU-based algorithms
to parallel the pipeline [30, 13]. However, current meth-
ods can simulate each frame in hundreds of milliseconds
on high-end desktop GPUs. Moreover, the performance
of these simulators depends on various parameters, such as
material attributes, which are hard to fine tune.

2.2. SMPL-based Learning Algorithm

Many learning methods have been proposed based on
SMPL-based parametric 3D human models. [16] proposed
parametric skinning human models using SMPL, where the
deformation of the human body mesh is driven by the skin-
ning skeleton of the template body mesh. [20] regard the
cloth mesh as the sub-mesh of the SMPL body mesh, and
use an indicator matrix to select the associated vertices on
the body mesh as the initial state. The proposed network,
TailorNet [20], is trained as an increment from the initial
state to represent the template cloth mesh. This is used to
perform skinning operations to obtain the final deformation
on the target pose. [14] use the skinning body mesh di-
rectly on the target pose as the initial state and learn a graph-
attention-based network to predict the residual between the
initial state and the final deformed cloth mesh with wrin-
kles. These methods use the vertices on the unposed tem-
plate body mesh or posed target body mesh as the initial
state of the deformed cloth mesh and train different net-
works to fit the residuals of the ground truth. Therefore, the
predictions of these methods may not generate plausible re-
sults on some loose-fitting clothes such as dresses, because
the vertices may be far away from the body mesh.

Other algorithms have been proposed that treat the cloth
mesh deformation as a skinning deformation similar to the
body mesh skinning [11, 16]. These methods tend to build
a skinning model for cloth deformation from the canoni-
cal template cloth mesh. [23] use a garment fit regres-
sor and a garment wrinkle regressor to learn the nonlin-
ear residuals of the ground truth from the canonical cloth
mesh. To enhance the performance on loose-fitting clothes,
[25] smoothly diffuse the skinning parameters of neighbors
for each vertex on the unposed cloth mesh. They propose
an optimization-based strategy to project ground-truth gar-
ments to the canonical space without introducing collisions.
However, the diffusion of the skinning parameters is only
operated on the unposed canonical cloth, which makes the
improvement of the predictions on the loose-fitting clothes
limited. [3] use GCN to extract features on the unposed
canonical cloth mesh to learn the blend weights. These
methods ignore the impact of the poses on the skinning
weight parameters. In practice, all these networks are con-
strained by the pose and shape parameters of SMPL.

2.3. Learning-based Cloth Deformation

Many learning-based methods have been proposed for
general cloth meshes and characters that are not limited
to SMPL-based representations. [8, 7] use dual quater-
nion skinning (DQS) [11] to generate the pre-deformation
of the cloth template from the canonical pose and use GCN
blocks to learn the residuals from the pre-deformation to
the ground truth cloth mesh. [10] use the PCA to obtain
the subspace of the cloth and the obstacle and use MLP to
regress the non-linearity in subspace deformation. Unfor-
tunately, using the previous predictions as the input of the
subsequent predictions will accumulate the error and hinder
the quality of the result. [33] only use the vertex coordi-
nate of the cloth mesh to learn a cloth descriptor that can
be fused with motion in latent space. Considering the dif-
ficulty of predicting the cloth deformation caused by body
pose, [32] use an encoder and decoder architecture with
GCN to learn the draping effect of different cloth types on
the canonical pose. Other methods are designed for general
triangle mesh-based obstacles [10, 15].

Many techniques have been proposed to estimate a
collision-free subspace of general 3D deformable mod-
els and used to compute collision-free cloth configura-
tions [27, 28]. For human-like characters, many learn-
ing methods [8, 2] use collision loss to penalize penetrated
garment-body pairs during training. Our approach for han-
dling arbitrary characters and clothing types is complimen-
tary and can be combined with these methods.

3. CTSN: Our Approach

Our approach takes a skeleton-based character of the tar-
get pose and cloth template of the canonical pose as in-
put and predicts cloth mesh deformation for the target pose
character through a skinning-based network. The skeleton-
based character of the target pose has the skinned mesh and
the transformation information of the joints. The key con-
cept of our approach is a novel skinning-based cloth model.
We propose a network architecture composed of two resid-
ual networks based the cloth model. We present the details
of our skinning-based cloth model and the network archi-
tecture in following sections.

3.1. Skinning-based Cloth Model

3.1.1 Skinning-based Character Model

Our skinning-based cloth model is inspired by the skinning-
based character model, SMPL [16]. We give a brief
overview of the SMPL model and the symbols used in the
rest of the paper.

In the standard skeletal rigging, the posed character is
calculated by the following formula:

MB(γ) = W (TB , J, γ,WB) (1)



Figure 2. Our network architecture is composed of the mesh-based residual stream and the skeleton-based residual stream (shown as the
green blocks) to obtain the wrinkle residual ∆M (γ) and the coarse residual ∆S(γ). γ is the transformation matrix of the target pose. The
updated cloth template mesh TC(γ) is used by the skinning operation to obtain the final deformed cloth mesh MC(γ).

where MB(γ) is the posed character mesh; TB is the tem-
plate character mesh at the canonical pose; J is the skeleton
of character; γ is the transformation matrix of the character
joints; WB is the skinning weight matrix; and W(·) is the
skinning function. The parametric skinning human model
SMPL [16] uses a set of orthonormal principal components
of shape and pose displacements to capture the soft-tissue
dynamics. This model is represented as:

MB(β, θ) = W (TB(β, θ), J(β), θ,WB)

TB(β, θ) = TB +BS(β) +BP (θ)
(2)

where β and θ are the shape coefficients and the pose vector,
which contains the transformation information of the joints,
respectively. J(β) is the skeleton position with shape coef-
ficients β. TB(β, θ) is the template human mesh, which is
the function of β and θ. To capture the soft-tissue dynam-
ics, body shape blend offsets BS(β) and pose blend shapes
BP (θ) are fused to the initial template human body mesh
TB to generate the final template human mesh TB(β, θ).

3.1.2 Our Two-stream Skinning-based Cloth Model

Cloth deformation is driven by the character motion since
cloth is dressed on the surface of a character mesh. To
simplify the deformation problem, we use a skinning-based

model for the template cloth mesh to guide the deformation.
Inspired by the SMPL model and other approaches [23], we
present a new method to build a skinning based model for
cloth deformation. Thus, given a template cloth mesh TC

at the canonical pose and the skeleton transformation matrix
at the target poseγ, the deformed cloth MC(γ) is defined as
follows:

MC(γ) = W (TC(γ), J, γ,WC) ,

TC(γ) = TC + ∆S(γ) + ∆M (γ),
(3)

where γ is the transformation matrix of the joints of the
target character body. WC is the skinning weight matrix
for cloth template mesh TC. For the skinning function
W(·), LBS(·) represents the linear blend skinning (LBS)
method [17], which is widely supported by game engines.
TC(γ) is the optimized template cloth mesh at the canon-
ical pose. ∆S(γ) is the skeleton-based residual positions
trained to obtain the coarse features. ∆M (γ) is the mesh-
based residual positions trained for adding wrinkle details
to the coarse prediction. We highlight our two-stream net-
work architecture in Fig. 2.

Our network architecture consists of a mesh-based resid-
ual stream and a skeleton-based residual stream. The mesh-
based residual stream is designed to compute the impact
of the nearest vertices of the cloth on the posed character



mesh on the cloth template mesh, i.e. ∆M (γ), while the
skeleton-based residual stream is used to model the influ-
ence of skeleton information of the character to the cloth
template mesh, i.e. ∆S(γ). Since the cloth type can be
tight or loose, we train the skinning weight matrix WC for
different types of cloth. We present more details in Sec-
tion 3.2, 3.3, and 3.4. In general, our network architecture
can be expressed as:

MC(γ) = Nσ (TC ,TB , J, γ,WB ,WC) , (4)

where Nσ is the skinning-based network and σ represents
the trainable parameters.

Similar to TailorNet [20], we decompose the deformed
cloth mesh to the low-frequency and the high-frequency de-
formations. To obtain the low-frequency of the cloth mesh,
we perform the Laplacian smoothing to the simulated cloth
mesh. The high-frequency deformation is residual wrinkle
details.

3.2. Skeleton-based Residual Stream

In our skeleton-based residual stream, the input is the
transformation matrix γ of character joints at the target
pose. We pass the transform matrix γ into the pose em-
bedding network, which is composed of an MLP, to learn
the pose embedding P = {P1, P2, P2, · · · , Pm}, where m
is the size of the embedding vector P:

P = Φ(γ), (5)

where Φ(·) is the MLP-based pose embedding network.
After the pose embedding, our goal is to learn a set of

character residual matrices D = {B1, B2, B3, · · ·Bm} for
the character and cloth pair. As for matrix Bj , where j ∈
{1, 2, · · · ,m}, Bj can be expressed as:

Bj =

 b00 · · · b02
...

. . .
...

bn0 · · · bn2

 , (6)

where b00, · · · , b02, · · · , bn0, · · · , bn2 are trainable for the
target character and cloth. n is the number of vertices of the
template cloth mesh.

Finally, the pose embedding P is fused as the weights to
the residual matrix D to obtain the skeleton-based residual
component ∆S(γ):

∆S(γ) =

j=m∑
j=0

PjBj (7)

To train the skeleton-based residual stream to obtain the
coarse features, we use the obtained low-frequency defor-
mation as the ground truth.

3.3. Mesh-based Residual Stream

The skeleton-based residual stream can only predict the
position offset ∆S(γ), which captures the coarse features
of the target deformation. The prediction results of the
skeleton-based residual stream are smooth. To improve the
prediction, we use a mesh-based residual stream to learn the
wrinkle residual for the final cloth deformation.

We build a KD-tree for the template cloth mesh and the
body mesh at canonical pose. We use this tree data structure
to find the nearest point index IC on the body mesh for each
vertex on the cloth mesh. Given the input transform matrix
of the skeleton of the body, we can obtain the skinned body
mesh at the target pose by using our skinning method. We
obtain the positions V of the nearest points through the se-
lected index IC . In order to improve the effectiveness of
our mesh-based residual stream, we also build the refer-
ence mesh graph MV = (V, E ,A), where V corresponds
to the nearest vertices computed previously as the nodes of
the graphMV ; E ⊆ V × V corresponds to the edges of the
template cloth mesh, and A is the (0, 1) adjacency matrix
that highlights the connectivity of the vertices V .

We use the Graph Transformer network [26] to extract
features on the predefined constructed mesh graph MV .
The architecture of the mesh-based residual stream is illus-
trated in Fig. 3.

Figure 3. The architecture of our mesh-based residual stream. We
use Transformer Graph Convolutional Network to extract features
of the reference mesh graph MV = (V, E ,A). The extracted
features are transmitted to vertex level MLP layers and trainable
mesh matrices to obtain the wrinkle residual.

In the Graph Transformer layers of our mesh-based
residual network, we define H(l) =

{
h
(l)
1 , h

(l)
2 , . . . , h

(l)
n

}
as the node features of previous layer l, where n is the num-
ber of nodes. hli ∈ RF represents the features of node i in
layer l whose dimension is F . hlj represents the features of
node j in layer l, where node j is the neighbor of node i.
The multi-head attention features f (l)c,ij of head c from node
j to node i are computed as follows:

q
(l)
c,i = W (l)

c,qh
(l)
i + b(l)c,q

k
(l)
c,j = W

(l)
c,kh

(l)
j + b

(l)
c,k

ec,ij = Wc,eeij + bc,e

f
(l)
c,ij = (q

(l)
c,i)
>(k

(l)
c,j + ec,ij)

(8)



where W (l)
c,q , W (l)

c,k, Wc,e, b
(l)
c,q , b

(l)
c,k, and bc,e are trainable

parameters. eij represents the edge features.
After normalization, the multi-head attention coeffi-

cients α(l)
c,ij of head c from node j to node i are computed

as:

α
(l)
c,ij = softmax

(
f
(l)
c,ij√
d

)
(9)

where d is the hidden size of each head. The output features
ĥ(l+1) of the node i in layer l + 1 are calculated by the
following formula:

v
(l)
c,j = W (l)

c,vh
(l)
j + b(l)c,v

ĥ(l+1) = ‖Cc=1

 ∑
j∈N (i)

a
(l)
c,ij

(
v(l)c,v + ec,ij

) (10)

where C is the number of the head. W (l)
c,v and b(l)c,v are train-

able parameters. N (i) is the neighbors of the node i. ‖ is
the concatenation operation for C head attention.

In order to improve the ability of the feature extraction,
β
(l)
i is calculated as follows:

r
(l)
i = W (l)

r h
(l)
i + b(l)r

g
(l)
i = W (l)

g

[
ĥ
(l+1)
i ; r

(l)
i ; ĥ(l+1) − r(l)i

]
β
(l)
i = sigmoid

(
g
(l)
i

) (11)

Thus, the final output features of the node i in layer l + 1
are updated as:

r
(l+1)
i =

(
1− β(l)

i

)
ĥ
(l+1)
i + β

(l)
i

(
W (l)
r h

(l)
i + b(l)r

)
h
(l+1)
i = ReLU

(
LayerNorm

(
r
(l+1)
i

))
.

(12)
As shown in Fig. 3, we use the Graph Transformer net-

work to extract features of the mesh graph. After the fea-
ture extraction on the mesh graph, we use a vertex level
MLP and a set of trainable mesh matrices to obtain the
wrinkle residual positions. The trainable mesh matrices are
represented as {M1,M2,M3, · · ·Mk}. ReLU(·) is used to
match the nonlinearity of the high-frequency deformation.
∆M (γ) is computed from the mesh graphMV as:

∆M (γ) = Ψ(MV), (13)

where Ψ(·) represents the mesh-based residual stream.
Similar to the skeleton-based residual stream, we use the
high-frequency deformation as the ground truth to train the
mesh-based residual stream.

3.4. Skinning Operation

After obtaining the skeleton-based residual component
∆S and the mesh-based residual component ∆M , we com-
pose a new optimized template cloth mesh TC(γ).

To solve the impact of cloth types (tight-fitting or loose-
fitting) on the final prediction results, we learn a weight
residual ∆WC for different cloth types. ∆WC is repre-
sented as:

∆WC =

 w00 · · · w0k

...
. . .

...
wn0

· · · wnk

 (14)

where w00, · · · , wnk are trainable parameters and k is the
maximum number of joints.

The fusion skinning weight matrix is generated as:

WC = W I
C + ∆WC , (15)

where W I
C represents the initial cloth weight obtained from

the template body skinning weight WB through KD-tree.
In general, pose embedding function Ψ(·) and D are

trained by skeleton-based residual stream for the coarse de-
formation, while Ψ(MV) is trained by mesh-based residual
stream for the wrinkle deformation. WC is trained for pro-
cessing different types of cloth.

3.5. Loss Function

To optimize the parameters of our network architecture,
we use the following loss function to minimize the differ-
ence between the predicted deformed cloth mesh and the
ground truth:

L =
1∑b
i=1N

b∑
i=1

N∑
j=1

∥∥xjp − xjg∥∥2 , (16)

where xjp is the predicted position of vertex j on the de-
formed cloth mesh MCP . xjg is the position of vertex j on
the ground truth cloth mesh MCG. N is the number of ver-
tices of cloth mesh MCG. ‖· · · ‖2 is the L2 distance. b is
the batch size.

4. Dataset and Implementation

In this section, we describe the generation of our dataset
and some implementation details.

4.1. Dataset

We have generated many different characters and cloth-
ing types to validate our network architecture (as shown in
Fig. 4). We upload the character meshes of Andy and Qman
in canonical poses, such as a T-pose, to the motion cap-
ture website Mixamo1. We download many character poses
computed from that website as FBX files. To eliminate the
absoluteness of the vertex position and make it easy to train
our network, we move the hip joint of the character mesh to

1https://www.mixamo.com/



Figure 4. The attributes of different characters and clothing types
used for our evaluation. We obtain different poses of characters
from the Mixamo website. We extract the transformation matrix
and skinning weight from the motion files. We use the cloth sim-
ulator ARCSim to precompute the deformed cloth mesh for train-
ing.

the origin of the coordinates. Next, we extract the transfor-
mation matrix γ of the character at different poses and the
skinning weights WB from the FBX files.

After extracting of the motion files, we use the skin-
ning operation to obtain the character meshes at different
poses with transformation matrix of joint γ. We use differ-
ent clothing types such as a T-shirt, dress, and robe. The
T-shirt is tight-fitting, and the dress and robe are loose and
can result in complex deformations. In order to compute
the ground truth of the deformed cloth, we use the physics-
based simulator ArcSim [19, 18, 21] to simulate the cloth.
During the simulation, we perform linear interpolation be-
tween the adjacent poses and relax the cloth mesh to com-
pute the quasi-static deformation.

To evaluate that our network can process more complex
and different characters, we applied our network on non-
human characters such as a monster, a dolphin, and a cat.
The monster character has a skeleton similar to the human
character, while the dolphin and the cat have different skele-
tons. The dolphin character has no leg joints, while the cat
model has four legs without hands. We can also simulate the
cloth deformation on these characters. The monster charac-
ter wears a loose robe, and the dolphin and the cat wear
tight-fitting clothes designed for these characters.

The attributes of the skinned character and cloth meshes
are shown in Fig. 4. We have highlighted the number of
triangles of each character mesh and cloth mesh, the number
of joints of the character, and the number of samples used
by our algorithm.

4.2. Network Implementation and Training

We train our network on a standard PC (Ubuntu 20.04
LTS/Intel I7 CPU@4.2G Hz/8G RAM, NVIDIA GeForce
RTX 3090 GPU). Our network is implemented using Py-
Torch 1.7.0 and Python 3.8.8.

Following [20] and [33], we also split our dataset for
training and testing. For the motion clips obtained from

Mixamo, we split 90% motion clips as training data and
the last 10% motion clips as the test data, which are unseen
during training.

We train our network on the dataset containing different
characters and cloth types. As shown in Fig. 4, our dataset
has 5 skeleton-based characters (2 human characters and 3
non-human characters) with 7 different types of cloth. Dur-
ing training, we set the learning rate at 1e − 3 and use an
Adam optimizer [12] to train the parameters of the neural
network.

4.3. Penetration Handling

It is hard to obtain collision-free predictions or configu-
rations with learning-based methods on the test data, which
is unseen during training. We use a method similar to [33]
to reduce the penetrations between the cloth and the charac-
ter. After the prediction, the predicted deformed cloth mesh
is optimized by minimizing the following function to avoid
penetrations between the cloth and the character:

EB =
∑

i∈Vpene

∥∥vi − (vBi + εnBi
)∥∥ , (17)

where Vpene is the set of penetrated vertices of predicted
cloth. For each penetrated vertex vi, the closest point vertex
vBi and normal nBi are computed over the character mesh.
EB is the error between penetration vertices on the cloth
and the character mesh. and ε is a small step to pull out
the penetrated vertices from the character mesh. During the
optimization process, the positions of Vpene are updated,
which reduces the number of localized penetrations or col-
lisions.

5. Results

In this section, we highlight the deformation prediction
results of our network on the unseen test data. We compare
our predictions on the unseen test data with the ground truth
results obtained using a physics-based simulator (ArcSim).

5.1. Predicted Deformation using Our Network

Fig. 5 shows the predicted T-shirt deformation at differ-
ent poses for the character Andy. Our predictions show the
fine details with wrinkles, similar to those in the ground
truth deformation. We also show the prediction results of
other types of cloth and another character, Qman, in Fig. 6.
Fig. 6 (a) shows the predicted deformation of the dress on
the character Andy, while Fig. 6 (b) and (c) show the cloth
deformation on the other character, Qman. The dress on the
character Andy in Fig. 6 (a) and the robe on the character
Qman in Fig. 6 (c) are both loose-fitting types of clothing.
These predictions validate the effectiveness of our network.
Since we train the mesh-based residual stream and skinning
weight for each clothing type, the deformation details can
be easily captured, enhancing the predictions.



Figure 5. The predicted deformed T-shirt dressed on the character
Andy in different poses. All the input poses are unseen during
the network training. The top row shows the ground truth of the
deformation, while the bottom row highlights the predictions of
our network. We also highlight the fine details and folds in the
zoomed images.

Figure 6. The predicted deformed cloth on other human characters.
The first column shows the prediction on the character Andy. The
middle and last columns show the deformation predictions on the
character Qman.

Our network can also process other non-human char-
acters with skeletons. The predicted results of our net-
work and the ground truth on the non-human characters are
shown in Fig. 7. Fig. 7 (a) shows the result of our network
on a non-human character, Monster. The skeleton hierar-
chy of Monster is similar to the human characters in Fig. 6.
To show the complex characters that our network can pro-
cess, we highlight the results of our network on the Dol-
phin character in Fig. 7 (b) and the Cat character in Fig. 7
(c). The Dolphin has no arm joints or legs joints, while the
Cat has four legs without arms. The cloth on the Dolphin

Figure 7. The results of our network on non-human characters.The
first column shows the deformed robe on the Monster, whose
skeleton is similar to that of human characters. The middle col-
umn shows the deformed cloth on the Dolphin, which has no legs.
The last column shows the cloth on the Cat, which has no arms.

Figure 8. The results of our network on non-human character fox.
There is a loose-fitting cloth dressed on the character fox. The first
row shows the target pose of the character fox. The second row
shows the ground truth. The third row shows the coarse prediction.
The last row shows the fine detailed prediction.

and the Cat are designed specifically for these characters.
The results of our network show the fine predictions of the
cloth deformations on these non-human characters. As for
the non-human characters, the deformation of loose-fitting



cloth is also well predicted. Fig. 8 shows the loose-fitting
cloth dressed on the character Fox. Our network can pre-
dict the coarse deformed cloth and the fine detailed one.
The results of cloth deformation on the Dolphin, the Cat
and the Fox show the capability of our network processing
non-human characters. The prediction of deformation can
catch the fine wrinkle details.

Fig. 9 shows the result of penetration handling described
in Sec.4.3. After post-processing, the penetration between
the back of the character fox and the dressed cloth is elimi-
nated and the penetration-free result is obtained.

Figure 9. The results of penetration Handling. The left is the situa-
tion of penetration between the character fox and the loose-fitting
cloth. The right is the penetration-free result.

5.2. Prediction Runtime

We can perform cloth deformation prediction with our
network both on GPUs and CPUs. We have highlighted
the runtime of predicting a single cloth mesh in Table. 1.
The runtime for a GPU is collected on an NVIDIA GeForce
RTX 3090 GPU. The runtime for a CPU is collected on
an Intel I7 CPU. As shown by the table, we can perform
a single prediction within 7ms on a GPU, which is much
faster than prior learning-based [15] or physically-based al-
gorithms [13]. The running time of our deformation predic-
tion algorithm on CPU in less than 0.2s.

Methods CPU run time (s) GPU run time (s)
ARCSim 3.45 /
I-Cloth / 5.12E-2
PBNS 9.55E-2 7.12E-2
DeePSD 3.12E-1 1.25E-1
Our Method 1.72E-1 7.032E-3

Table 1. The average CPU and GPU runtime for a single cloth
mesh prediction.

6. Comparisons

In this section, we qualitatively and quantitatively com-
pare the results of our network with prior learning-based

methods. We also perform some ablation experiments to
validate the effectiveness of our network.

6.1. Comparisons with Prior Learning Methods

Many approaches have been proposed to predict cloth
deformations using learning-based networks. We have
highlighted many recent methods and their attributes in
terms of handling different kinds of characters and cloth-
ing types in Table 2. Some methods [20, 3, 2, 6] are based
on the SMPL model, which limits them to only processing
SMPL human bodies. [23, 25] are also based on the SMPL
model. However, it is possible to extend them to remove the
dependence on SMPL-based representation. Therefore, we
modify these two methods and compare their results with
our method in the following sections. [10] uses PCA to
extract the principal components of the character vertices
and cloth vertices to learn the relationship with the next de-
formation in the subspace. However, this method uses the
previous prediction as the input for subsequent predictions
and may result in accumulated errors. [8, 7] use DQS [11]
to pre-deform the cloth mesh from the canonical pose to the
target pose and then use a learning-based network to pre-
dict the residual of the pre-deformed cloth mesh and ground
truth. This method only works well on tight-fitting cloth,
and its predictions tend to be smooth and may lose wrin-
kle details. [33] use MLP to learn the intrinsic features
for cloth vertices and character vertices, which results in a
model with many redundant parameters. Furthermore, these
methods are mostly limited to one or many specific charac-
ters or clothing types. In contrast, our network can over-
come these limitations and is more general.

6.2. Qualitative Comparisons

We have implemented the modified versions of [3] and
[2] to process the non-SMPL characters. We replace the
SMPL skinning method with a character skinning method,
which is based on using skeletons. The modified version
of [2] is an unsupervised method. [3] contains the super-
vised part and the unsupervised part in its network. We have
compared our network with the supervised part of [3].

Fig. 10 shows the comparison between the prediction
of PBNS [2], DeePSD [3], and our method. As shown
in Fig. 10, the PBNS method [2] tends to predict the de-
formed cloth mesh, which is tightly wrapped on the char-
acter and can introduce artifacts in the deformation. The
DeePSD method [3] tends to predict smooth deformations,
resulting in penetrations with the character even after post-
processing. This implies that the prediction of DeePSD [3]
is driven less by the transformation matrix of the character.
In contrast, the results of our method tend to generate de-
formations with fine wrinkles. We have also implemented
the learning algorithm [15] and obtained similar results with
our method. The prediction results of [15] can also gener-



Network for SMPL Non-SMPL Non-human Rigid Static Single
coth deformation human human skinned animal obstacle prediction network

TailorNet[20] " % % % " %

DeePSD [3] " " " % " %

[23] " % % % % %

[25] " % % % % %

[10] " " " " % %

GarNet [8] " " % % " %

[33] " " % % " %

[2] " " " % " %

DRAPE [6] " % % % " %

N-Cloth [15] " " " " " %

Our method " " " % " "

Table 2. We compare the characteristics and features of our approach with prior methods. We highlight the unique capabilities of our
approach.

ate fine wrinkles. However, [15] uses significantly higher
memory footprint (about 928.8MB).

6.3. Quantitative Comparisons

We also perform quantitative comparisons between our
method and previous methods. We use the following error
metrics to evaluate the prediction results of our network and
others.

Edist =
1

N

N∑
i=1

∥∥xip − xig∥∥ ,
Enorm =

1

N

N∑
i=1

arccos

(
(nip)

Tnig∥∥nip∥∥∥∥nig∥∥
)
,

(18)

where xip is the position of vertex i of the predicted mesh
P . xig is the ground truth of vertex i. N is the number
of vertices of the cloth mesh. nip and nig are the normal
vectors of vertex i on the predicted mesh and the ground
truth, respectively.

Evaluation PBNS DeePSD Our Method
mean Edist(m) 7.350E-2 3.10E-2 1.08E-2
std Edist(m) 1.05E-2 6.05E-3 2.11E-3
mean Enorm(◦) 42.44 31.72 9.12
std Enorm(◦) 3.26 3.28 1.57

Table 3. We compare the mean and standard deviations of mesh
errors on test samples based on the ground truth computed from
physics-based simualtors.

The calculated error metrics are shown in Table 3. The
results generated from our network are more accurate than
PBNS [2] and DeePSD [3].

We also compare the memory footprint (i.e., number of
parameters used) of different networks in Fig. 11 by mea-
suring the model size. Compared with [15], whose memory
footprint is 928.8MB, the memory footprint of our method
is much less (36.5MB). The memory footprint of DeePSD
is 3.22MB, and PBNS is 30.4 MB.

6.4. Ablation Experiments

To validate the effectiveness of our network architec-
ture, we implement a series of ablation experiments. Fig.12
shows the results of the modified network without some
parts of the overall architecture. Fig. 12 (a) is the ground
truth of the deformed cloth. Fig. 12 (b) is the cloth skin-
ning deformation only with the fixed initial skinning weight.
With the fixed skinning weight, there are artifacts on the
skinning deformation, such as legs and belly. Fig. 12 (c) is
the result with the skeleton-based residual stream and train-
able cloth skinning weight. The deformation in Fig. 12 (c)
tends to obtain the coarse residual. Fig. 12 (d) is the re-
sult of our full network architecture with the skeleton-based
residual stream, the mesh-based residual stream and train-
able cloth skinning weight. Compared with the result of
Fig. 12 (c), Fig. 12 (d) shows that our mesh-based residual
stream can capture the fine details of the final deformation.
Fig. 12 (e) is the result of our network without the train-
able cloth skinning weight. Without the trainable skinning
weight, the skinning result tends to predict more artifacts.
There are folds on the legs similar with the result of Fig. 12
(b).

The parameter m for the skeleton-based residual stream
and k for mesh-based residual stream also impacts the per-
formance. We have used different values of m and k to
train our network. With the increase in the value of m, the
prediction of our network becomes more accurate. How-



Figure 10. Comparison of results between our network and previous methods. The first column is the ground truth of the deformed cloth.
The second and third columns are the results of [2] and [3]. The last column is the result of our method. The top and bottom rows are the
front and back views of the deformed predictions.

Figure 11. Our approach can is general in terms of handling all
skeleton-based models and meshes, but has low memory overhead.

ever, the memory footprint also increases, which increases
the model size of our network. We show the relevant mem-
ory footprint of our network on the scene of Qman dressing
robe with m = 5, 32, 100 and k = 64, 128, 256, respec-
tively in Table. 4. We choose m = 32 and k = 128 by
experiments and find that increasing m and k does not ob-
viously improve the results.

Modified network Memory footprint (MB)
m = 5, k = 64 25.8
m = 32, k = 128 36.5
m = 100, k = 256 59.5

Table 4. Memory footprint with different m and k.

7. Conclusions, Limitations and Future Work

We present a two-stream skinning-based network to pre-
dict cloth deformation from a template cloth in a canoni-
cal pose. Our method can process different characters and
cloth types retaining the fine details. Since our network is
based on the skinning operation, the memory footprint of
our method is low. The runtime performance of our net-
work is fast, and we can predict a single cloth deformation
in 7ms on a desktop GPU.

Our approach does have some limitations. Like prior
learning-based methods, collision-free predictions are not
guaranteed by our network. As part of future work, we
would like to overcome the above limitations and extend
our work to unsupervised networks [3] or self-supervised
networks [24]. In addition, our method tend to train a spe-
cific model for each character due to the difference between
human and non-human characters.



Figure 12. The ablation experiments of our network. We have disabled the mesh-based residual stream, the skeleton-based residual stream,
and the trainable cloth weights in our method to show the benefits of each component of our architecture.

Acknowledgement

This work is supported in part by the National Natural
Science Foundation of China under Grant No.: 61972341,
Grant No.: 61972342, Grant No.: 61732015, and the
Tencent-Zhejiang University joint laboratory.

References

[1] D. Baraff and A. Witkin. Large steps in cloth simulation.
In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 43–54, 1998. 2

[2] H. Bertiche, M. Madadi, and S. Escalera. Pbns: physi-
cally based neural simulation for unsupervised garment pose
space deformation. ACM Transactions on Graphics (TOG),
40(6):1–14, 2021. 3, 9, 10, 11

[3] H. Bertiche, M. Madadi, E. Tylson, and S. Escalera. Deepsd:
Automatic deep skinning and pose space deformation for 3d
garment animation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5471–5480,
2021. 2, 3, 9, 10, 11

[4] S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. Pro-
jective dynamics: Fusing constraint projections for fast sim-
ulation. ACM Trans. Graph. (SIGGRAPH), 33(4):154:1–
154:11, July 2014. 2

[5] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment
of collisions, contact and friction for cloth animation. ACM
Trans. Graph., 21(3):594–603, 2002. 2

[6] P. Guan, L. Reiss, D. A. Hirshberg, A. Weiss, and M. J.
Black. Drape: Dressing any person. ACM Transactions on
Graphics (TOG), 31(4):1–10, 2012. 9, 10

[7] E. Gundogdu, V. Constantin, S. Parashar, A. S. Banadkooki,
M. Dang, M. Salzmann, and P. Fua. GarNet++: Improving
fast and accurate static 3d cloth draping by curvature loss.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020. 2, 3, 9

[8] E. Gundogdu, V. Constantin, A. Seifoddini, M. Dang,
M. Salzmann, and P. Fua. GarNet: A two-stream network
for fast and accurate 3d cloth draping. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 8739–8748, 2019. 2, 3, 9, 10

[9] D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. Robust
treatment of simultaneous collisions. ACM Trans. Graph.,
27(3):23:1–23:4, 2008. 2

[10] D. Holden, B. C. Duong, S. Datta, and D. Nowrouzezahrai.
Subspace neural physics: Fast data-driven interactive sim-
ulation. In Proceedings of the 18th annual ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
pages 1–12, 2019. 3, 9, 10

[11] L. Kavan, S. Collins, J. Zara, and C. O’Sullivan. Skinning
with dual quaternions. In Proceedings of the 2007 Sympo-
sium on Interactive 3D Graphics and Games, I3D ’07, page
39–46, New York, NY, USA, 2007. 3, 9

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 7

[13] C. Li, M. Tang, R. Tong, M. Cai, J. Zhao, and D. Manocha.
P-cloth: interactive complex cloth simulation on multi-gpu
systems using dynamic matrix assembly and pipelined im-
plicit integrators. ACM Transactions on Graphics (TOG),
39(6):1–15, 2020. 3, 9

[14] T. Li, R. Shi, and T. Kanai. Detail-aware deep clothing ani-
mations infused with multi-source attributes. arXiv preprint
arXiv:2112.07974, 2021. 3

[15] Y. Li, M. Tang, Y. Yang, Z. Huang, R. Tong, S. Yang,
Y. Li, and D. Manocha. N-cloth: Predicting 3d cloth
deformation with mesh-based networks. arXiv preprint
arXiv:2112.06397, 2021. 3, 9, 10

[16] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J.
Black. Smpl: A skinned multi-person linear model. ACM
transactions on graphics (TOG), 34(6):1–16, 2015. 2, 3, 4

[17] N. Magnenat-thalmann, R. Laperrire, D. Thalmann, and
U. D. Montréal. Joint-dependent local deformations for hand
animation and object grasping. In In Proceedings on Graph-
ics interface ’88, pages 26–33, 1988. 4

[18] R. Narain, T. Pfaff, and J. F. O’Brien. Folding and crumpling
adaptive sheets. ACM Transactions on Graphics (TOG),
32(4):1–8, 2013. 7

[19] R. Narain, A. Samii, and J. F. O’brien. Adaptive anisotropic
remeshing for cloth simulation. ACM transactions on graph-
ics (TOG), 31(6):1–10, 2012. 7

[20] C. Patel, Z. Liao, and G. Pons-Moll. Tailornet: Predicting
clothing in 3d as a function of human pose, shape and gar-



ment style. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7365–
7375, 2020. 2, 3, 5, 7, 9, 10

[21] T. Pfaff, R. Narain, J. M. De Joya, and J. F. O’Brien. Adap-
tive tearing and cracking of thin sheets. ACM Transactions
on Graphics (TOG), 33(4):1–9, 2014. 7

[22] X. Provot. Deformation constraints in a mass-spring model
to describe rigid cloth behavior. In Proc. of Graphics Inter-
face, pages 147–154, 1995. 2

[23] I. Santesteban, M. A. Otaduy, and D. Casas. Learning-based
animation of clothing for virtual try-on. In Computer Graph-
ics Forum, volume 38, pages 355–366. Wiley Online Library,
2019. 2, 3, 4, 9, 10

[24] I. Santesteban, M. A. Otaduy, and D. Casas. Snug: Self-
supervised neural dynamic garments, 2022. 11

[25] I. Santesteban, N. Thuerey, M. A. Otaduy, and D. Casas.
Self-supervised collision handling via generative 3d garment
models for virtual try-on. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11763–11773, 2021. 3, 9, 10

[26] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and
Y. Sun. Masked label prediction: Unified message pass-
ing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020. 5

[27] Q. Tan, Z. Pan, and D. Manocha. Lcollision: Fast generation
of collision-free human poses using learned non-penetration
constraints. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI, 2021. 3

[28] Q. Tan, Z. Pan, B. Smith, T. Shiratori, and D. Manocha. Ac-
tive learning of neural collision handler for complex 3d mesh
deformations, 2021. 3

[29] M. Tang, R. Tong, Z. Wang, and D. Manocha. Fast and exact
continuous collision detection with Bernstein sign classifi-
cation. ACM Trans. Graph. (SIGGRAPH Asia), 33:186:1–
186:8, November 2014. 2

[30] M. Tang, H. Wang, L. Tang, R. Tong, and D. Manocha.
Cama: Contact-aware matrix assembly with unified colli-
sion handling for gpu-based cloth simulation. In Computer
Graphics Forum, volume 35, pages 511–521. Wiley Online
Library, 2016. 3

[31] M. Tang, T. Wang, Z. Liu, R. Tong, and D. Manocha. I-
cloth: Incremental collision handling for gpu-based inter-
active cloth simulation. ACM Transactions on Graphics
(TOG), 37(6):1–10, 2018. 2

[32] R. Vidaurre, I. Santesteban, E. Garces, and D. Casas. Fully
convolutional graph neural networks for parametric virtual
try-on. In Computer Graphics Forum, volume 39, pages
145–156. Wiley Online Library, 2020. 2, 3

[33] T. Y. Wang, T. Shao, K. Fu, and N. J. Mitra. Learning an
intrinsic garment space for interactive authoring of garment
animation. ACM Transactions on Graphics (TOG), 38(6):1–
12, 2019. 2, 3, 7, 9, 10


