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Abstract

Smooth surfaces from an arbitrary topological con-
trol grid have been widely studied, which are mostly
generalized from splines with uniform knot intervals.
These methods fail to work well on extraordinary
points (EPs) whose edges have varying knot intervals.
This paper presents a patching solution for arbitrary
topological 2-manifold control grid with non-uniform
knots that defines one bi-cubic Bézier patch per control
grid face except those faces with EPs. Experimental
results demonstrate that the new solution can improve
the surface quality for non-uniform parameterization.
Applications in surface reconstruction, arbitrary sharp
features on the complex surface and tool path planning
for spline representation are also provided in the paper.

Keywords: NURBS, T-Splines, Extraordinary
Points, Capping.

1. Introduction

Catmull-Clark surfaces [3] are ubiquitous in anima-
tion, while the CAD industry is dominated by non-
uniform rational B-spline (NURBS). Each has its own
advantage: Catmull-Clark surfaces are superior in their
ability to create smooth surfaces of arbitrary topology
and in their ease of use for animation, while NURBS
can be refined by insertion of one row or column control
points and are preferred for high-precision engineer-
ing models [8]. Hence, several surface types have been
developed that generalize both Catmull-Clark surfaces
and NURBS surfaces [35, 2, 27, 26, 16, 19, 20]. Each
such surface expresses knot information by assigning
a knot interval to the control mesh edge. Each can
replicate NURBS if there are no extraordinary points

(EPs, an interior vertex in a quadrilateral mesh which
is shared by other than four faces), and Catmull-Clark
surfaces if all knot intervals are one. However, these
approaches have one common disadvantage: NURBS
incompatibility. The CAD-analysis-manufacture work-
flow usually involves passing models between numer-
ous software packages and most such software is cur-
rently NURBS based. Unfortunately, the above meth-
ods are not backward compatible with NURBS because
these methods produce an infinite sequence of bi-cubic
patches near EPs, of which NURBS software can only
import a finite truncation [22].

Backward incompatibility is avoided in patch-based
methods such as [28, 32] that replace the infinite se-
quence of patches near an EP with a small number
of patches. Most previous patch-based papers [28, 13]
only address uniform knot intervals. For more details,
please refer to the survey paper [29] and some new
constructions for uniform knot intervals [?, 14, ?, ?].
The support for non-uniform parameterization is a nec-
essary step for forward compatibility with NURBS,
where a NURBS surface can be exactly represented
with the new representation. Although some modifi-
cations can be used to handle non-uniform knots [32],
unfortunately, as illustrated in Figure 1 for the blend-
ing functions and Figure 2 for the real model, the re-
sulting surfaces often exhibit a vexing problem near
EPs with non-uniform knot intervals.

This paper presents a framework for producing ac-
ceptable surfaces near EPs with non-uniform knot in-
tervals. The framework is patch based and it is back-
ward and forward compatible with NURBS. The sur-
faces of our solution are illustrated in Figures 1 (b)
and (d). We refer to the patches adjacent to an EP as
irregular patches, and the boundary curves of patches
that touch an EP as spoke curves. The method pro-
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(a) (b)

(c) (d)

Figure 1. Blending functions for valences 5 and 6 EP, where
the knot intervals are randomly defined with a ratio no
greater than 5. (a) and (c) are the results produced by [32]
while (b) and (d) are surfaces produced by the present
method.

duces one Bézier patch per control grid face. The ir-
regular patches are G1 with each other, and C1 with
the neighboring regular patches. The method involves
two main steps. First, each face of the control mesh
is replaced with a bi-cubic Bézier patch. The surface
defined by these patches is C0 along spoke edges and
C2 or C1 elsewhere. Second, all irregular patches are
degree elevated to bi-quintic and adjusted to provide
G1 continuity across spoke edges.

(a) Surface by [32] (b) Our result

Figure 2. A real model with different patching methods.

Although the problem can be formalized as a con-
strained optimization problem [28, 32], the construc-
tion cannot work well for non-uniform parameteriza-
tion. The best implementation we know (currently
used in the Autodesk T-Splines products) also pro-
duces ugly results similar to those in Figures 1 and
2. The present paper has two main key ideas to im-
prove the construction in [32] and Autodesk T-Splines

products. Firstly, we formulize the connecting func-
tions as functions of an angle configuration for an EP
and optimize the configuration to define the connect-
ing functions. Secondly, the use of auxiliary control
points �� near an EP is another idea to improve the
surface quality, and avoid ambiguous computations for
the Bézier extraction. Our discussion assumes a con-
trol grid of four-sided faces with equal knot intervals
on the opposing edges of each face. Additionally our
method only discusses the generalization from bi-cubic
NURBS surface, which can be extended to arbitrary
degrees if we can perform a similar Bézier extraction
process as in Section 3.2.

The rest of the paper is organized as follows. Section
2 provides the background. The detailed construction
of the blending functions is discussed in Section 3. The
applications of the current construction are provided
in Section 4. The last section draws conclusions and
suggests future work.

2. Background

Geometric modeling is fundamental to CAD and
isogeometric analysis (IGA) [11]. To provide a more
flexible geometry modeling kernel, the study of EPs
has been one of the most active research directions be-
cause they are inevitable in complex watertight geo-
metric representations.

Complex geometric representations can be divided
into two main categories: subdivision-based and patch-
based representations. Most subdivision schemes are
defined for uniform knots [3, 30]. For the subdivision
scheme supporting non-uniform knot intervals, [35]
first introduced non-uniform Catmull-Clark surfaces
(NURCCs). And then, there are many extensions. For
example, extended subdivision surfaces [27, 26] defined
the scheme by forcing all knot intervals for spoke edges
to be equal. [2] constructed a new rule by perform-
ing one directional refinement near EPs until the ra-
tio of the largest and smallest knot intervals was less
than two. [16] defined a subdivision rule for analysis-
suitable T-splines [21] with a new non-uniform rule for
EPs. [19] provided a subdivision rule with the help
of eigen-polyhedron and [20] constructed a hybrid rule
with proven G1 continuity around EPs.

Patch-based methods are well studied in many pa-
pers, such as the patch-based methods from Peters
et al. [28, 13, 29, 14], degenerated Bézier construc-
tion [38, 36] and manifold-based construction [23]. The
manifold-based construction is not NURBS compatible
and most of the other patch-based methods only ad-
dress uniform knot intervals except that in [32], which
made some modifications from [28] to support non-
uniform knot intervals.



3. Define the Blending functions

This section provides detailed blending function
construction for given control grid and knot intervals.
The blending function construction for control grid
with sharp edges will be discussed in Section 4.

Given an arbitrary topological control grid with pre-
defined knot intervals, we need to define a blending
function for each anchor such that it specializes to
NURBS for the regular faces (grey faces in Figure 3).
As shown in Figure 3, di, and ai are knot intervals and
can be any non-negative real numbers. Our discussion
assumes that the control grid is a regular manifold grid
and all the faces are quadrilaterals and knot intervals
on the opposite edges are the same.

d i
a i

d i+1
d i+1

Bi

Ci

Di

Figure 3. Notations and descriptions of the present problem.

As the representations for regular faces are bi-cubic
B-splines, we can represent them in Bézier form, as
shown with red points in Figure 3. Suppose Bi, Ci and
Di are the Bézier control points, then vectors −−−→

BiCi

and −−−→
CiDi are parallel. Let pi =

−−−→
BiCi−−−→
CiDi

. Then in this
paper, we assume that pi can be different for different
i. However, the patching approaches for uniform knots
must have pi = 1 for all i. The different pi values raise
the main challenge for this problem. We will discuss
the main ideas to solve the problem in the following.

3.1. Framework for blending construction

The blending function construction and representa-
tion can be standardized using Bézier extraction op-
erators, i.e., each blending function is defined as the
contribution from the corresponding control point or
anchor to the Bézier elements. While it is possible to
obtain G1 continuity with bi-cubic patches, the result-
ing surface is quite rigid and does not allow inflection
points in spoke edges [28]. The problem is even worse
for the non-uniform case. To obtain a less rigid solu-
tion, we refine the irregular patches to be bi-quintic,
thereby providing additional degrees of freedom. We
use most of these new degrees of freedom to enable

a solution to the constraint equations that assure G1

continuity.
Reducing the continuity for bi-cubic NURBS can be

achieved by inserting double knots. Referring to Fig-
ure 4, if one inserts a zero knot interval in both direc-
tions for the NURBS control grid, then one row and
column of control points will be replaced by two rows
and columns of control points. Thus, the red control
point is replaced by four red points if we insert double
knots.

e0

e3

d0 d1 d2

e1

e2

d3

(a) NURBS control grid

e0

e3

d0 d1 d2

e1

e2

d30

0

(b) Grid with double knots

Figure 4. Insertion of double knots in a NURBS control
grid.

We can naturally generalize the idea of double knots
in NURBS to control grids of arbitrary topology be-
cause the surface has reduced continuity for the spoke
edges. Thus in our construction, we replace a valence
n EP with n anchors. The new idea can avoid am-
biguous computations for face points and improve the
surface quality. For the control grid in Figure 5 (a),
the result of applying this procedure to obtain a differ-
ent control grid topology is shown in Figure 5 (b). The
idea of adding additional anchors is related to so-called
splines allowing T-junction [34, 33, 4, 9, 6]. However,
our approach is different in that we do not consider
the T-junctions topological structures but rather we
consider topological structures with only quadrilateral
meshes and the new anchors are associated with control
grid. The blending function constructions are totally
different from those for splines with T-junctions.

(a) Given control
grid

(b) New anchors (c) Blending func-
tions

Figure 5. The control grid, auxiliary points and blending
function construction.

In summary, for irregular patches, the blending
functions are defined using a Bézier extraction and a
G1 perturbation procedure,



• Generate bi-cubic Bézier extraction as described
in Section 3.2;

• Perturb the extraction operators to be a G1-
continuous blending as discussed in Section 3.4.

3.2. Bézier extraction

We use Bézier extraction to obtain the original C0

blending functions, which compute the face, edge and
vertex points as a linear combination of control points
or anchors. If we refine a bi-cubic NURBS control grid
by inserting one zero knot interval between each pair
of non-zero knot intervals, control points on the refined
grid are face points of the original grid.

P0,0 P1,0

P0,1 P1,1

F0 F1

F2 F3

e1

e0

e2

d0 d1 d2

(a) Face point

F1 F0

F2 F3e1

e0

d0 d1

E1

E0

V

(b) Edge and vertex points

Figure 6. Inserting zero knot intervals to compute the face
points.

In Figure 6 (a), Pi,j are the original control points
and ei, di are knot intervals. Then face points

F2i+j = (1−αi)[(1−γj)P0,0+γjP0,1]+αi[(1−γj)P1,0+γjP1,1]

where α0 = d0

d0+d1+d2
, α1 = d0+d1

d0+d1+d2
, γ0 = e0

e0+e1+e2
,

and γ1 = e0+e1
e0+e1+e2

. If we now refine the grid by in-
serting a zero knot interval next to each existing zero
knot interval, then we will obtain the edge and ver-
tex points, as shown in Figure 6 (b). We refer to this
process as Bézier extraction. Here

E1 =
d1F1 + d0F0

d0 + d1
, V =

e1E1 + e0E0

e0 + e1
. (1)

However, the Bézier extraction process encounters
difficulties for control grid with EPs and non-uniform
knot intervals because the face point computation re-
quires the neighbor knot intervals in both directions.
If the vertex is an EP, the definition of the neighbor
knot intervals is ambiguous. With the new anchors,
Bézier extraction for irregular faces is slightly differ-
ent from that for the regular faces. All the equations
can be derived from double knots insertion of bi-cubic
NURBS [8].

The EP is replaced by n anchors, which serve as face
points for irregular faces. If the vertices of an irregular
face are all EPs, then we replace the face points with
anchors. The other cases are shown in Figure 7. If the
irregular face only has one EP, as shown in Figure 7

P1 P2

P0

P3

F0 F1

A0 F2

e1

e0

e2

d0 d1 d2

(a) One EP

P1 P2

P0

P3

F0 F1

A0 A2

e1

e0

e2

d0 d1 d2

(b) Two EPs

P1

P2

P0

P3

F0 A1

A0 F2

e1

e0

e2

d0 d1

d2

(c) Two EPs

P1

P2

P0

P3

F0 A1

A0 A2

e1

e0

d0 d1

(d) Three EPs

Figure 7. Bezier extraction on irregular faces with different
EPs configurations.

(a), one face point is replaced with anchor A0 and face
point F0 is a linear combination of A0, P1 and P2, F2
is a linear combination of A0, P2 and P3, and F1 is a
linear combination of A0, P1, P2 and P3, given by

F0 =
e0

e0 + e1
A0 +

e1

e0 + e1

(
d0 + d1

d0 + d1 + d2

P1 +
d2

d0 + d1 + d2

P2

)
,

F2 =
d2

d1 + d2

A0 +
d1

d1 + d2

(
e2

e0 + e1 + e2
P2 +

e0 + e1

e0 + e1 + e2
P3

)
,

F1 =
d2

d1 + d2

e0

e0 + e1
A0 +

d0

d0 + d1 + d2

e1

e0 + e1
P1 + γP2+

e2

e0 + e1 + e2

d1

d1 + d2

P3,

where γ = 1 − d2

d1+d2

e0
e0+e1

− d0

d0+d1+d2

e1
e0+e1

−
e2

e0+e1+e2
d1

d1+d2
.

There are two cases when the irregular face has two
EPs. If two EPs are connected, as shown in Figure 7
(b), two face points are replaced with anchors A0, A2.
The face point F0 is a linear combination of A0, P1

and P2 and F1 is a linear combination of A2, P1 and
P2, which is the same as the equation above. Another
case is when the two EPs are not connected, as shown
in Figure 7 (c), then the two face points are replaced
with anchors A0 and A1. The face point F0 is linear
combination of P1, A0, while A1, F2 are linear combi-
nations of P3, A0 and A1.

F0 =
e0

2(e0 + e1)
A0 +

d0
2(d0 + d1)

A1 + (1− γ1)P1,

F2 =
e2

2(e2 + e1)
A1 +

d2
2(d2 + d1)

A0 + (1− γ2)P1,

(2)

where γ1 = e0
2(e0+e1)

− d0

2(d0+d1)
and γ2 = e2

2(e2+e1)
−

d2

2(d2+d1)
.

If the irregular face has three EPs, as shown in Fig-
ure 7 (d), three face points are replaced with anchors



A0, A1 and A2. The face point F0 is a linear com-
bination of P1, A0, A1 and A2, which is the same as
equation (2).

After computing the face points, the edge points can
be defined as in equation (1) by replacing some face
points with anchors. The vertex point V for a valence
n EP is computed as the linear combination of neigh-
boring anchors,

V =

∑n
i=1 ωiAi∑n
i=1 ωi

, ωi = di−1di+2. (3)

3.3. Constraints for G1 continuity

It is well known that G1 continuity between two
patches depends on the first partial derivatives only.
The G1 continuity of two Beźier patches is character-
ized by connecting functions.

Lemma 1. Let two Beźier patches A(s, t) and B(s, t)
share a common boundary R(s) = A(s, 0) = B(s, 0),
see Figure 8 for an illustration, then A(s, t) and B(s, t)
are G1 continuous along the common boundary curve
R(s) if and only if there are α(s), β(s), γ(s) such that

γ(s)At(s, 0) + α(s)Bt(s, 0)− β(s)As(s, 0) = 0. (4)

where α(s), γ(s) ≥ 0. Here α(s), β(s) and γ(s) are
called connecting functions.

If two patches A(s, t) and B(s, t) share a common
boundary R(s) = A(s, 0) = B(s, 0) and are G1 contin-
uous along R(s), then the connecting functions should
satisfy equation (4). For any parameter s, since the
vectors At(s, 0), Bt(s, 0) and As(s, 0) lie in the same
plane, the equation can be solved explicitly as

α(s) = |As(s, 0)×At(s, 0)|c(s),
β(s) = |At(s, 0)×Bt(s, 0)|c(s),
γ(s) = |Bt(s, 0)×As(s, 0)|c(s),

where |v1×v2| denotes the directed area of two vectors
v1 and v2, and c(s) should be appropriately chosen to
ensure that α(s) and γ(s) satisfy the requirement.

Now we are ready to study the G1-continuity for the
spoke edges. For a valence n EP, suppose the connect-
ing functions for the i-th spoke edge are αi(s), βi(s)
and γi(s). Although we can increase the degrees of
the polynomials αi(s), βi(s) and γi(s), the G1 con-
straints will be difficult to solve and it is hard to con-
trol the shape under these constraints. Thus, in the
present paper, we set αi(s) = didi−1, γi(s) = didi+1

and βi(s) = bi(1 − s)2 if the other vertex of the spoke
edge is not an EP and βi(s) = bi(1 − s) − cis if the
spoke edge connects two EPs, where ci is the constant

At(s, 0)

As(s, 0)

Bt(s, 0)

s

t

t

C3
C0

C1

C2

Figure 8. G1 continuity for two Bézier patches, which is
characterized by connecting functions.

di

di+1

di-1

αi(s)

i(s)γ

βi(s) l0

l1

ln-1

θ 0
1

n-1θ

θ

Figure 9. Define the connecting functions for spoke edges.

associated with the adjacent EP. Therefore, we need to
define the constant bi for the i-th spoke edge for each
EP.

We define θi as the angle between As(0, 0) and
At(0, 0) which is shown in Figure 9 and li as the length
of the corresponding edge. Then we have

∑n−1
i=0 θi = 2π

and
li+1 sin θi

li−1 sin θi−1
=

di+1

di−1
, bi = − li+1di−1di sin (θi−1 + θi)

li sin θi−1
.

(5)
The most common choice of θi = 2π

n gives bi =
−2di−1di+1 cos

2π
n , which is used in [32]. However,

the connecting functions will lead to unsatisfactory re-
sults for non-uniform parameterization, as shown in
Figures 12, 1, 13 and 15.

From the above, we observe that the connecting
functions are determined by the angles. However, it
is very challenging to optimize angles to improve the
surface quality around the EPs. The basic idea of the
present paper is that we first define a heuristic rule
to define default angles and length, and then we try
to solve the angles to minimize the difference between
angles and length with the default ones.

Before giving the detailed equations, we first pro-
vide the following lemma with the notation (i, j) =
sin(θi)sin(θi+2). . . sin(θj) for i < j.

Lemma 2. Given any θi > 0 and
∑n−1

i=0 θi = 2π, if n
is odd or if n is even and (0, n − 2) = (1, n − 1), then
equation (5) always has solutions for li and bi.

Proof. According to equation (5), the length li can be
written as a function of the angle θi. If the valence



n = 2k + 1 is odd, li can be written as

l2i =
(0, 2i− 2)

(1, 2i− 1)

d2i
d0

l0;

l2i+1 =
(2i+ 2, 2k)

(2i+ 1, 2k − 1)

d2i+1

d0
l0.

(6)

If the valence n = 2k is even, li can be written as

l2i =
(0, 2i− 2)

(1, 2i− 1)

d2i
d0

l0;

l2i+1 =
(1, 2i− 1)

(2, 2i)

d2i+1

d1
l1.

(7)

With li and θi, we can compute bi.

Referring to Figure 9, if one knot interval, for exam-
ple di, is much smaller than the others, then the two
irregular patches containing the i-th spoke edge should
degenerate to two C1 connected curves. Thus, in this
case, the angle of θi and θi−1 should be π

2 . The default
angles are defined according to this observation.

Denoting ki =
ndidi+1∑n−1
i=0 didi+1

, αi is defined as

αi =


π

2
− (2− 8

n
) arctan(ki),ki < 1

(8− n)π

2n
+ (2− 8

n
) arctan(

1 + ki
2

),ki ≥ 1.

The default angles are defined as θ̂i = 2π·αi∑n−1
i=0 αi

. If
n is even, then two of the angles should be per-
turbed to satisfy the other constraint. Let β1 =

θ̂n−2 + θ̂n−1, and β2 = sin(θ̂0) sin(θ̂2)... sin(θ̂n−4)

sin(θ̂1) sin(θ̂3)... sin(θ̂n−3)
, then,

θ̂n−1 = arctan( β2 sin(β1)
1+β2 sin(β1)

) and θ̂n−2 = β1 − θ̂n−1.
After defining the angles, we can define the default

length l̂i. The formula is similar to the length formula
of eigen-polyhedron in [19].

l̂i = di +

n−1∑
j=1

dj

(
cos

(
j−i−1∑
k=0

θ̂i+k

))
+

,

where f+ =

{
f, f ≥ 0;
0, f < 0. .

The final angles and length are computed by solving
the following optimization problem,

min
θ

E = ||l̂i − li||22 + ω||θ̂i − θi||22,

s.t.
∑

θi = 2π.

θi > 0.

The problem is a nonlinear least squares problem with
linear constraints and we can solve the problem with

a modified Levenberg-Marquardt algorithm[24] accord-
ing to the geometric meaning. Lemma 2 shows that the
length is uniquely determined by angles while many
possible angles may exist for a given length. Thus, we
solve the problem as a bivariate θ, l optimization prob-
lem rather than a univariate θ optimization problem.
Each subproblem can be quickly solved because the
Jacobian matrix can be explicitly computed. Suppose
the angle and length of the i-th iteration are li and θi,
where l0 = l̂ and θ0 = θ̂. In each iteration, we solve
the problem with two steps. Firstly, we solve a nonlin-
ear least squares problem using Levenberg-Marquardt
algorithm to optimize θi by fixing li. In this step, we
need to normalize the sum of angles to be 2π. Then,
we compute li by fixing θi using the explicit expression.
We repeat the alternating iterations until the step of
angle is less than threshold. The parameter ω balances
the differences in angles and length, which affects the
final connecting functions. In our experiments, ω = 2
and it works well for all our experiments.

Remark 1. Although the optimization is nonlinear, the
algorithm works well in both sub-optimization prob-
lems and solutions are fast and accurate because the
number of degrees of freedoms is the valence of EP
which is in general very small in real applications.

Remark 2. Although we cannot guarantee that a non-
linear solver can always have a solution, in all the tests,
our algorithm gives convergent results. In our imple-
mentation, if the solver does not converge in N iter-
ations, then we will define the angles in the current
iteration. And then we also have an angle configura-
tion because we can define the length and connecting
functions according to Lemma 2. In our experiments,
we set N = 200. And in all our experiments, we have
solutions within N iterations.

3.4. Solving the blending functions

Section 3.2 provides the bi-cubic representation on
each face for each blending function, which is only C0

along each spoke edge. In this section, we provide an
algorithm to perturb the C0 blending to construct a
G1-continuous blending using the connecting functions
defined in Section 3.3.

With the connecting functions defined in the last
section, if only one vertex is an EP, then the constraints



for the G1 continuity of the spoke edge are

((di−1 + di+1)di − bi)P
i
0,0 − didi−1P

i
0,1 − didi+1P

i−1
1,0

+ biP
i
1,0 = 0,

biP
i
0,0 + ((5di−1 + 5di+1)di − 5bi)P

i
1,0 − 5didi−1P

i
1,1

− 5didi+1P
i−1
1,1 + 4biP

i
2,0 = 0,

biP
i
0,0 − 5biP

i
1,0 − ((10di−1 + 10di+1)di − 10bi)P

i
2,0

+ 10didi−1P
i
2,1 + 10didi+1P

i−1
1,2 − 6biP

i
3,0 = 0,

biP
i
0,0 + 10biP

i
2,0 + (10di(di−1 + di+1) − 10bi)P

i
3,0

− 5biP
i
1,0 − 10didi−1P

i
3,1 − 10didi+1P

i−1
1,3 + 4biP

i
4,0 = 0,

P
i
0,0 − 5P

i
1,0 + 10P

i
2,0 − 10P

i
3,0 + 5P

i
4,0 − P

i
5,0 = 0.

(8)

And if both vertices are EPs, then

((di−1 + di+1)di − b
0
i )P

i
0,0 − didi−1P

i
0,1 − didi+1P

i−1
1,0

+ b
0
iP

i
1,0 = 0,

b
1
iP

i
0,0 + ((5di−1 + 5di+1)di − 4b

0
i − b

1
i )P

i
1,0−

5didi−1P
i
1,1 − 5didi+1P

i−1
1,1 + 4b

0
iP

i
2,0 = 0,

2b
1
iP

i
1,0 + ((5di−1 + 5di+1)di − 3b

0
i − 2b

1
i )P

i
2,0−

5didi−1P
i
2,1 − 5didi+1P

i−1
1,2 + 3b

0
iP

i
3,0 = 0,

3b
1
iP

i
2,0 + ((5di−1 + 5di+1)di − 2b

0
i − 3b

1
i )P

i
3,0−

5didi−1P
i
3,1 + 5didi+1P

i−1
1,3 + 2b

0
iP

i
4,0 = 0,

(9)

where b0i and b1i are the constants for the two EPs
defined in Section 3.3.

We first degree elevate the irregular patches to bi-
quintic Bézier patches for sufficient degrees of freedom
to ensure the G1 continuity. Meanwhile, the G1 blend-
ing functions are expected to be as close as possible to
the original blending functions. Unlike that in [32], our
optimization is computed locally. Denote the Bézier
representation of the i-th irregular patch as P i

j,k . As
shown in Figure 10 (a), the Bézier coefficients are di-
vided into three parts. The red ones are associated
with vertices, the green ones are associated with edges
and the blue ones are associated with faces.

P i
0,0 P i

5,0

P i
5,5P i

0,5

(a) Bézier coefficients in one
irregular face

P i
2,0

P i
2,0 P i

3,0

(b) Two adjacent Bézier co-
efficients for a spoke edge

Figure 10. The bi-quintic Bézier coefficients for irregular
faces, where the red and green coefficients need to be op-
timized. The grey coefficients are defined from Bézier ex-
traction and the black ones are computed as a linear com-
bination of the other coefficients.

Now, we can solve the coefficients based on the fol-
lowing steps according to the notations in Figure 10.

Optimize red coefficients for each EP We compute
the red coefficients P i

j,k, j + k ≤ 2 for each blend-
ing function locally for each EP. Note that for any
i, P i

j,0 = P i−1
0,j for j = 0, . . . , 5. Let V be a vec-

tor of coefficients to be optimized, where V0 = P i
0,0,

V2i+j+k = P i
j,k. And let D be a vector of coeffi-

cients as D3i = V2i+1 − V0, D3i+1 = V2i+2 − V2i+1,
D3i+2 = V2i+3 − V2i+2. Let V̂ and D̂ be the vectors of
corresponding coefficients or corresponding differences
from Bézier extraction after degree elevation. Then we
first compute P i

j,k, j, k ≤ 1 by solving the following
least square problem with linear constraints,

min ||V − V̂ ||22 + ||D − D̂||22
s.t. MvV = 0

(10)

where MvA are the first constraints in equation (8)
or (9). We can solve all the P i

j,k, j, k ≤ 1 under the
first constraint in equation (8) or (9) using Lagrange
multiplier method. And then P i

2,0 can be computed
according to the second equation in equation (8) or (9).
Thus, unlike the consistent problem of P i

1,1 in [28, 36],
the constraints are always solvable because P i

2,0 are not
fixed in our constraints.

If the other vertex of the i-th spoke edge is not an
EP, then grey points P i

j,0, P i
j,1 and P i−1

1,j , j = 4, 5 are
same as corresponding coefficients after degree eleva-
tion. And then the black point P i

3,0 is computed ac-
cording to the equation (8), i.e.,

P i
3,0 = P i

2,0 +
P i
4,0

2
−

P i
1,0

2
+

P i
0,0

10
−

P i
5,0

10
.

Optimize green coefficients for each spoke edge Once
the vertex constraints are satisfied, the green coeffi-
cients are independent for each spoke edge. Thus we
can compute the coefficients for each spoke edge by
minimizing the difference between the G1 coefficients
with the C0 coefficients of Bézier extraction after de-
gree elevation under the remaining third or fourth con-
straints in equation (8) or equation (9). Similar to the
red coefficients, the system can be solved through La-
grange multiplier method.
Optimize blue coefficients for each irregular face The
blue coefficients can be computed directly. The basic
idea is that we wish the iso-curves for each irregular
patch to be cubic. We can compute the blue coefficients
by the following explicit form.

P i
2,2 =

1

2
f1(P

i
2,0, P

i
2,1, P

i
2,4, P

i
2,5) +

1

2
f1(P

i
0,2, P

i
1,2, P

i
4,2, P

i
5,2),

P i
3,2 =

1

2
f2(P

i
2,0, P

i
2,1, P

i
2,4, P

i
2,5) +

1

2
f1(P

i
0,2, P

i
1,2, P

i
4,2, P

i
5,2),

P i
2,3 =

1

2
f1(P

i
2,0, P

i
2,1, P

i
2,4, P

i
2,5) +

1

2
f2(P

i
0,2, P

i
1,2, P

i
4,2, P

i
5,2),

P i
3,3 =

1

2
f2(P

i
2,0, P

i
2,1, P

i
2,4, P

i
2,5) +

1

2
f2(P

i
0,2, P

i
1,2, P

i
4,2, P

i
5,2),



where f1(a, b, c, d) = − 3
10a + b + 1

2c − 1
5d and

f2(a, b, c, d) = − 1
5a+ 1

2b+ c− 3
10d.

With all the local optimization, we achieve globally
G1 blending functions. In order to define the final sur-
face, we need to define the auxiliary control points.

3.5. Auxiliary control points computation

The last Section 3.4 provides the construction of
blending functions for all the vertices of the given con-
trol grid except the EPs and we have also defined the
functions for those anchors that replace the EPs. To
define the final surface, we need to compute the po-
sition of those anchors, called auxiliary control points,
which are totally free to choose. In this section, we first
provide an explicit rule to compute these auxiliary con-
trol points as linear combinations of one neighboring
control points. The basic idea is to define the auxiliary
points such that the final surface has the same tangent
plane as that for [19].

P

P P

P P

i

i+ni+1

i+n-1
i-1

Ai

Ai-1

P0

Fi

Ei

Fi-1

Figure 11. Notations for defining the auxiliary points.

Suppose P0 is a valence n vertex, the neighbor con-
trol points are Pi and the knot intervals are di and ai
as shown in Figure 11, i = 1, . . . , 2n. Then the aux-
iliary control points Ai are linear combination of Pi,
i = 0, . . . , 2n. Let the subdivision matrix for the rule
in [19] be N . The details for construction of the matrix
are provided in the appendix.

1. The subdivision rule in [19] requires the first neigh-
boring control points. The only restriction for
these points is that the rule should be generalized
from Bézier extraction of bi-cubic NURBS. Thus
we define the rule as the face, edge and vertex
points Fi, Ei and V using the Bézier extraction
in [32] for simplicity.

• Face Points Fi:

Fi =ωiωi+1Pn+i + (1− ωi)ωi+1Pi+1+

(1− ωi+1)ωiPi + (1− ωi)(1− ωi+1)P0,

where ωi =
di−2+di+2

di−2+di+2+2di+2ai
, ai is the knot

interval of the edge which is adjacent to the
i-th spoke edge.

• Edge Points Ei:

Ei =
di−1

di−1 + di+1
Fi +

di+1

di−1 + di+1
Fi−1.

• Vertex Points V are computed as same as
that in equation (3).

2. Compute the limit point C for the subdivi-
sion scheme based on eigen-polyhedron according
to [30].
Denote P = [V,E1, . . . , En, F1, . . . , Fn], and the
normalized left eigenvector corresponding to the
eigenvalue 1 by L0 = [L0

0, . . . , L
0
2n] and then the

limit point is C = L0P .

3. Compute the tangent plane for the subdivi-
sion scheme based on eigen-polyhedron according
to [30].
Define 2n × 2n matrices N̂ , where N̂i,j =

Ni+1,j+1 − N0,j+1. Let P̂ = [E1 − V, . . . , En −
V, F1 − V, . . . , Fn − V ]T . Note that according
to [19], λ is the leading eigenvalue for the matrix
N̂ . N̂ can be written in the form of N̂ = UΛU−1,
where Λ is a diagonal matrix with the elements be-
ing the eigenvalues. Suppose i1 and i2 are two in-
dices such that Λ(i1, i1) = Λ(i2, i2) = λ. Let Λ̂ be
a new diagonal matrix where all the elements are
zero except that Λ̂(i1, i1) = Λ̂(i2, i2) = 1. Then
we can define a new matrix Q = U Λ̂U−1. Now,
we can define a set of vectors V = QP̂ .

4. Define the auxiliary control points Ai

Now V i+n span the plane which is parallel to the
tangle plane defined by the subdivision scheme
in [19]. We then move the anchors such that the fi-
nal surface has the same limit point as that in [19].
Suppose the contribution of the blending functions
for Ai at the EP is ci, and let C ′ =

∑n−1
i=0 ciV i+n,

then Ai = C − C ′ + V i+n.

3.6. Results

In this section, we show some result surfaces pro-
duced by our method and compare them with the ex-
isting nonuniform subdivision schemes [35, 2, 16] and
the non-uniform patch-based method [32].

We first show the graphs of blending functions for
a valence five EP with non-uniform knot intervals in
Figure 12. We observe that the approaches in [35, 2, 16]
produce limit surfaces with very similar quality, which
is also the situation in other examples.

Creating nice-looking non-uniform subdivision
schemes near EPs had been a vexing problem for a few
decades, and no methods could have fixed the problem



(a) Control grid (b) Result produced by
[2]

(c) Result produced by
[35]

(d) Result of [16]

(e) Result of [32] (f) Result of our method

Figure 12. The surfaces generated from a control grid with
non-uniform knot intervals, where the knot intervals for the
red edges, blue edges are 8 and 4, and the others are one.
(b), (c), (d) are produced by different subdivision schemes
and (e) and (f) are produced by different patch-based meth-
ods.

until the method in [19] was discovered. In our exper-
iments, our method produces similar quality surfaces
as those in [19, 20], which are much better than the
results produced by any other non-uniform subdivision
schemes. Note that [32] is the only reference which
considers the same problem as the present paper, so in
the following, we only give detailed comparisons with
method in [32].

The second experiment is some blending functions
for a valence 5 EP and a valence 6 EP with 200 ran-
domly chosen knot intervals, where the ratio of largest
and smallest knot intervals for the spoke edges is be-
tween 1 to 5. For all the experiments, the surface qual-
ity of our method is obviously better than that in [32].
Figures 1 and 13 show two examples.

The improved blending functions can lead to better
shape quality for the real models, two of the examples
are shown in Figures 2 and14.

The next experiment is for the angle configuration.
Optimizing the angle in terms of the knot intervals can
improve the surface quality in our experiments. Fig-

(a) (b)

(c) (d)

Figure 13. Blending functions with random non-uniform
knot intervals. The left column of pictures are the results
produced by [32] while the right ones are the surface pro-
duced by our method.

(a) Surface by [32] (b) Our result

Figure 14. Real models with different approaches.

ure 15 shows such an example for a valence 5 EP with
knot intervals 1, 4, 1, 4, 8, which clearly shows that an-
gles between spoke curves can impact the surface qual-
ity.

(a) θi =
2π
n

(b) Angle after optimization

Figure 15. Blending function with uniform angles and op-
timized angles.



The auxiliary points can impact the surface quality,
where the default ones are computed in Section 3.5. We
can improve the surface quality by further optimizing
these points. Figure 16 shows such an example, where
(a) is the result of [32], (b) is the result of our method
with default anchors and (c) is the result of optimiza-
tion of anchors by minimizing the average of thin plate
energy for irregular patches and the difference between
the new auxiliary points with default ones. We can ob-
serve that after optimization, the surface has smoother
reflection lines.

(a) Surface with [32] (b) Surface with de-
fault anchors

(c) Surface with op-
timized anchors

Figure 16. Optimize the auxiliary control points for
smoother surface.

(a) Surface with [19] (b) Surface with de-
fault anchors

(c) Surface with ap-
proximating anchors

Figure 17. Approximate the limit surface in [19] using our
representation.

The auxiliary points can also be computed by ap-
proximating to some target surfaces. For example, fig-
ure 17 shows another way to define the auxiliary points
by approximating the limit subdivision surface using
the rule in [19].

4. Application

The last section provides a set of blending function
constructions for a given quadrilateral mesh with given
non-uniform knot intervals, which provides many pos-
sible applications in different fields. In this section, we
show several applications of the new spline represen-
tation in reverse engineering, geometric modeling and
computer numerical control (CNC).

4.1. Spline surface fitting from triangle meshes

Surface fitting is the direct application for new spline
representation. Because of the limitation of NURBS
representation, in order to approximate a complex
topological triangle mesh, most methods first need to

split the triangle mesh into many pieces and then fit
each piece using uniform B-splines or NURBS [7]. In
the end, each NURBS is merged by adjusting the con-
trol points. The new representation allows one to ap-
proximate an arbitrary topology model directly.

In our fitting pipeline, the quadrilateral mesh is ex-
tracted from input triangle meshes as the quadrilateral
mesh to define the blending functions and the knot
intervals are set to be uniform without loss of gener-
ality. Then we construct the blending functions and
re-parameterize the triangle mesh locally. The control
points are optimized to minimize the error between tri-
angle mesh and spline surface. There are many meth-
ods to generate quadrilateral meshes that conform to
geometric features, such as [12, 10]. We are using the
approach in [10] to generate the initial quadrilateral
mesh. The distance between target surface and spline
surface is measured by SDM [31] and a feature sensitive
parametrization [18] is applied to improve the surface
quality. We do not need a merging process because the
blending functions are global G1 continuous. Several
fitting example spline surfaces are shown in Figure 18.

Figure 18. Our fitting results of three smooth models. The
top row shows our fitting results and the bottom row is the
reflection lines of fitted surfaces.

4.2. sharp features through EPs

Sharp features on spline surface are a set of curves
through which the spline surface is C0 continuous. The
sharp features on NURBS surfaces play an important
role in geometric modeling. As NURBS has the lim-
itation of rectangular topology, the sharp features on
NURBS surfaces can only be global iso-parameter lines.
Locally iso-parameter sharp features can be created us-
ing T-splines [34, 33].

Sharp features on subdivision surfaces have been
well researched. Semi-sharp features were introduced
firstly in [5] and improved in [1], which provided elegant
algorithmic approaches to modify the Catmull-Clark
subdivision scheme. Early attempts for non-uniform
sharp features include [35]. Later, it is improved



in [15, 37]. All the above approaches are subdivision-
based, which do not have an analog in patching and
are not NURBS compatible. It is very challenging to
generate complex sharp features passing through EPs
in NURBS-compatible way.

The framework of our construction can be general-
ized to handle arbitrary sharp features in a straightfor-
ward manner. The sharp features can also pass through
EPs, something that no previous patching solution has
addressed. Similar to those in [37], the edges of in-
put mesh are specified with sharp or regular tags. For
sharp edges, we add more anchors that are associated
with basis functions for sharp edges. For the construc-
tion, as we can see from above, the main steps for our
patching algorithm are Bézier extraction, angle con-
figuration, G1 constraints and optimization. In the
Bézier extraction step, the computation is very simi-
lar because the situation corresponds to triple knots in
the NURBS case. For the angle configuration, the only
difference is that the sum of angles to each side of two
continuous sharp edges must both be π. And for the
G1 constraints step, we delete the G1 constraints for
the sharp edges and solve the basis functions exactly
the same as before.

(a) Control grid of
Ring model

(b) Surface with our
method

(c) Surface after
editing control grid

Figure 19. (a) is an input control grid with knot intervals
and sharp edges, (b) is the final surface created by our
method and (c) is the surface created by editing the control
grid which preserves the continuous and sharp edges.

Thus, for the sharp features, we are given a con-
trol grid with knot intervals and sharp feature tags, as
shown in Figure 19. In the figure, the knot intervals
for the red edges are six, the others are one, the blue
edges are sharp edges. And then the method defines
the surface shown in Figure 19 (b), which is C0 along
the sharp edges and at least G1 along the rest edges.
Note that the continuity will be maintained when we
edit the position of control grid, which is shown in Fig-
ure 19 (c). Several real models with sharp features are
constructed using our representation in Figure 20.

4.3. CNC for new spline representation

Tool path planning for spline representation plays an
essential role in CNC. After construction of the spline

Figure 20. Real models with sharp features are represented
using the present method.

surface models, we can generate the tool path for arbi-
trary topological meshes which satisfies the error con-
straint. As the spline representation is a smoother ver-
sion of the triangular mesh, the manufacture is much
more precise in our experiments.

We propose a two-stage method for tool path gener-
ation. Firstly a surface segmentation is used to split the
control mesh into regular pieces. Secondly, we use the
Fermat Spiral to construct the tool path. In segmen-
tation part, we search for optimal one in all possible
cases. In this process, each edge is assigned the weights
measuring the complexity of the segmentation if it were
cut, and the final segmentation becomes the minimal
spanning tree problem which is solved by Kruskal al-
gorithm [17]. After segmentation, each part becomes
a regular domain, in which the Fermat Spiral can be
computed as the tool path [39]. Figure 21 shows the
segmentation results for input surfaces and the gener-
ated tool path.

(a) Model Surface (b) Segmentation (c) Tool Path

Figure 21. The generated CNC tool path for the models
represented using the present method.

5. Conclusions and future work

The present paper provides an algorithm to define a
set of blending functions for unstructured quadrilateral
control grid with non-uniform knot intervals and labels
for sharp edges. The main challenge comes from the
issue of non-uniform parameterization for the irregular
patches. The non-uniform parameterization is essential
for the NURBS compilable geometric modeling kernel
and local insertion operation. The other challenge is
to generate arbitrary sharp features in the above geo-
metric modeling tools. Both problems are solved in the
same framework with two key ideas: auxiliary points



and angle configuration.
The angle configuration is solved through a non-

linear optimization with a heuristic default values. The
reason to use heuristic default values is because there
is no explicit relation between the angles and the fi-
nal surface quality. However, in our experiments, such
heuristic values give acceptable surface quality if the
ratio of knot intervals is between 1 and 5. How to for-
mulize the angle configuration based on the final sur-
face quality and how to solve the problem will be left
as future work.

Other possible further research is for connecting
functions. The current connecting functions are de-
fined such that α and γ are constants for simplicity.
How to construct the surface for the other choice of
connecting functions is also an interesting future prob-
lem.

The third possible extension is for fairing energy.
The present paper uses the same faring energy as that
in [32]. The degrees of freedom are optimized by de-
signing fairing energy similar to those in [25] for non-
uniform knot intervals needs additional studies.

The idea in the present paper can be generalized to
handle T-junctions in the control grid trivially if the
T-junctions are far away from the EPs, but how to con-
struct the blending functions if there are T-junctions
on the edges of irregular faces needs more study. Of
course, it is also an important and interesting problem
to generalize the continuity from G1 to G2.

Appendix

The appendix gives the subdivision rule in [19].
Suppose given a valence-n EP V with the neighbor-
ing control points Ei and Fi, the knot intervals di,
i = 0, . . . , n− 1 are knot intervals for the spoke edges.
The new control points are denoted as V , Ei and
F i. Denote γ = 4

c+1+
√

(c+9)(c+1)
and λ = 1+γ

4γ ,

where c = cos( 2πn ). Let li =
2di+d−

i

3 , where d−i =
di−2di+1+di+2di−1

di−1+di+1
. And a set of points V̂ , Êi and F̂i in

R2 are defined as V̂ = (0, 0), Êi = li(cos
2iπ
n , sin 2iπ

n )

and F̂i = γ(Êi + Êi+1). The subdivision rules in [19]
can be defined in the following.

• Vertex Point:

V =
n− 3

n
V +

3

n

∑n−1
i=0 (miMi + fiF i)∑n−1

i=0 (mi + fi)
, (11)

where fi = di−1di+2, mi = fi + fi−1. Let V̂ be
the vertex point by replacing V , Ei and Fi in the
above equation with V̂ , Êi and F̂i.

• Face points:

F i =αi,1αi,2Fi + (1− αi,1)αi,2Ei+1+

αi,1(1− αi,2)Ei + (1− αi,1)(1− αi,2)V,
(12)

where αi,1 and αi,2 are the unique solutions of the
function

V + λF̂i = αi,1αi,2F̂i + (1− αi,1)αi,2Êi+1+

αi,1(1− αi,2)Êi + (1− αi,1)(1− αi,2)V̂ .

• Edge points:

Ei = (1− βi,2)(
1− βi,1

2
Pi,1 +

βi,1

2
Pi,2 +

1

2
V )+

βi,2(
1− βi,1

2
Pi,3 +

βi,1

2
Pi,4 +

1

2
Ei),

where

Pi,1 = (1− αi−1,1)V + αi−1,1Ei−1,

Pi,2 = (1− αi,2)V + αi,2Ei+1;

Pi,3 = (1− αi−1,1)Ei + αi−1,1Fi−1,

Pi,4 = (1− αi,2)Ei + αi,2Fi,

and βi,1 and βi,2 are the unique solutions of the
function

V + λÊi = βi,2(
1− βi,1

2
P̂i,3 +

βi,1

2
P̂i,4 +

1

2
Êi)

+(1− βi,2)(
1− βi,1

2
P̂i,1 +

βi,1

2
P̂i,2 +

1

2
V̂ ),

where P̂i,j are defined by replacing V , Ei and Fi

in the above equation with V̂ , Êi and F̂i.
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