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Abstract

Feature-preserving mesh reconstruction from point
clouds is a challenging task. Implicit methods tend to fit
smooth surfaces and cannot reconstruct sharp features.
Explicit reconstruction methods are sensitive to noise
and interpolate sharp features only when the points are
distributed on the feature lines. We propose a water-
tight surface reconstruction method based on optimal
transport, which can faithfully reconstruct sharp fea-
tures that are often present in CAD models. We for-
malize the surface reconstruction problem as minimiz-
ing the optimal transport cost between the point cloud
and the reconstructed surface. The algorithm consists
of initialization and refinement steps. In the initializa-
tion step, the convex hull of the point cloud is deformed
under the guidance of the transport plan to obtain an
initial approximate surface. Next, the mesh surface is
optimized using operations including vertex relocation
and edge collapses/flips to obtain feature-preserving re-
sults. Experiments show that our method can preserve
sharp features while being robust to noise and missing
data.

Keywords: surface reconstruction, feature-preserving,
discrete optimal transportation

1. Introduction

The problem of reconstructing surfaces from point
clouds transpires in many science and engineering applica-
tions. The formulations for the surface reconstruction prob-
lem may vary according to the different input and output re-
quirements. Here, we focus on the problem of reconstruct-
ing a triangle mesh from point clouds scanned from CAD
models.

3D real-world scanned point clouds typically contain
noise, outliers, missing points, and non-uniform sampling.
Generally, performing surface reconstruction algorithms di-
rectly on raw point clouds reduces algorithm efficiency and
fails to achieve high-quality results. For example, the pres-

ence of noise may result in overfitting and bumpy surfaces.
Point clouds with non-uniform sampling and missing data
generally lead to undesired holes and other artifacts in the
output results. Specific CAD applications, such as creat-
ing a prototype from a model boundary, require a watertight
surface. Besides, many CAD models are generally angular,
that is, they contain sharp edges, corners, and flat faces. It is
desired to reconstruct a watertight surface from point clouds
scanned from CAD models using a small number of faces
while preserving the sharp features.

The problem of surface reconstruction from point sam-
ples has received considerable effort in the past couple of
decades. Berger et al. [2] presented a comprehensive survey
of reconstruction methods. These methods can be divided
into two categories, namely, interpolation and approxima-
tion methods, each with its advantages and disadvantages.
The interpolation methods [8, 3, 16, 6, 36] can restore sub-
tle structures in point clouds but are noise sensitive. The
surface defined by an implicit function [23, 27, 28] achieves
good smoothness, but it is not effective in maintaining sharp
features. Therefore, preserving sharp features and being
robust to noise and missing data during reconstruction re-
mains an essential challenge.

Reconstruction methods based on mesh deformation [35,
29, 22, 37] have also received certain attention. Hanocka et
al. [22] proposed Point2Mesh, which continuously shrank
and deformed the convex hull of the point cloud by optimiz-
ing the network weights of MeshCNN [21] to obtain recon-
struction results. The method is noise insensitive and can
handle point clouds with missing data. However, the qual-
ity of output meshes is not satisfactory, especially in areas
with sharp features. Based on the theory of optimal trans-
port, we propose an effective method of feature-preserving
surface reconstruction. Similar to the Point2Mesh [22], we
use the convex hull of point clouds as the initial mesh to
deform and shrink. Instead of neural networks, we use the
optimal transport cost between the mesh and the point cloud
to measure their difference and directly guide the deforma-
tion. Our method is superior to Point2Mesh [22] in terms of
feature recovery.
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Our method consists of two stages, namely, initializa-
tion, and refinement. In the initialization stage, it takes the
convex hull of the point cloud as the initial mesh and moves
the mesh vertices according to the optimal transport plan. In
the refinement stage, we improve the mesh by performing
edge collapse, vertex relocation, and edge flip to the initial
mesh according to the optimal transport cost between the
point cloud and the mesh. The main contributions of our
work are presented as follows:

1. We introduce a feature-preserving surface reconstruc-
tion algorithm based on optimal transport, which for-
malizes the surface reconstruction problem as a min-
imization of the optimal transport cost between the
point cloud and the reconstructed mesh.

2. To avoid the self-intersection due to transportation er-
rors, we propose the addition of the variance of lo-
cal neighborhood maps to the cost function of optimal
transport in the initialization step to obtain more ap-
propriate transportation.

3. We tailor optimal transport cost-driven vertex reloca-
tion, edge collapse, and edge flip operations to opti-
mize the mesh and reconstruct sharp edges and corners
efficiently.

2. Related work

2.1. Surface reconstruction

Surface reconstruction is a fundamental problem in com-
puter graphics, and many studies on this problem have been
performed in recent years. We mainly focus on feature-
preserving and deformation-based methods most closely
related to our method. We refer the reader to the refer-
ences [2, 13, 26, 38] for comprehensive surveys on this
topic.

Feature-preserving reconstruction. For CAD models,
we aim to reconstruct watertight, topologically correct, and
feature-preserving mesh surfaces. The features here mainly
refer to sharp edges and corners. RIMLS [34] combines
least squares with local kernel regression to achieve feature
preservation. This method produces an implicit surface that
is differentiable everywhere, resulting in different sharpness
of the reconstructed edge features. Avron et al. [1] formu-
lated the problem of sharp feature reconstruction as a global
ℓ1 optimization problem. It first optimizes the normal of
points and then the vertex positions. Huang et al. [24] used
bilateral filtering to smooth normals, performed different re-
sampling strategies in the feature area and the plane area,
and finally used existing reconstruction algorithms to recon-
struct the resampled point cloud. Digne et al. [15] took ad-
vantage of optimal transport to obtain feature-preserving re-
construction results but with a long computation time. An-
other approach is based on geometric primitives [32], which

involves the generation of candidate faces and face selec-
tion, but is generally unsuitable for smooth surfaces. Other
methods [14, 11] use the extracted feature lines in point
clouds as a prior.

Deformation-based reconstruction. Deformation-
based methods iteratively expand or shrink-wrap an initial
mesh. The key to deformation is determining the new po-
sition of the mesh vertices and avoiding topological errors,
such as self-intersections. Sharf et al. [35] used compactly
supported RBFs [33] to guide the initial mesh to expand
continuously toward the point cloud. Lu et al. [29] pro-
posed a method that evolves two spheres from the interior
and exterior of the input point cloud, respectively, where
the central surface is extracted as the reconstruction result.
Point2Mesh [22] shrinks the mesh from the exterior by
learning the vertex displacement. However, the deformed
mesh is not guaranteed to be a manifold during the learning
process, and a manifold reconstruction algorithm [25] needs
to be applied every certain number of iterations. Wang et
al. [37] proposed a method that began from an initial sim-
ple surface mesh and alternately performed filmsticking and
sculpting operations to minimize the distance between the
reconstructed surface and the input point cloud. Our method
also uses a deformable model. Differently, we determine
the new vertex positions according to the optimal transport
plan. Furthermore, our approach is advantageous over the
aforementioned methods in sharp feature preservation.

2.2. Optimal transport

The optimal transport problem was first formulated by
Monge[31] and can be described by a simple example. As-
suming that m piles of sand and n bunker have the same to-
tal volume, then the cost of moving the sand is proportional
to the distance. The objective of optimal transport is to solve
the plan that minimizes the overall effort required to trans-
port all the sand to the bunkers. The total cost is called the
Wasserstein distance. The optimal transport problem can
generally be solved using the network simplex method [5]
or the entropy regularization method [9].

In recent years, many methods based on optimal trans-
port theory have been proposed for various applications in
computer graphics. For example, Bonneel et al. [4] ad-
dressed the point cloud alignment and image color transfer
problem using the sliced partial optimal transport. Man-
dad et al. [30] represented the map between shapes in terms
of an optimal transport plan between sample points on two
surfaces. De Goes et al. [12] applied discrete optimal trans-
port theory to 2D shape reconstruction, where the transport
cost of points to vertices and edges of 2D shapes are used to
drive edge simplification and relocation. Digne et al. [15]
extended this method to 3D shape reconstruction. Still, the
method is inefficient because the optimal transport problem
needs to be repeatedly solved by applying inefficient large-



(a) Input (b) Initial mesh (c) Initial approximate mesh (d) Reconstructed result
Figure 1. Overview: Given the input point cloud (a), construct a convex hull of the point cloud as the initial mesh (b), deform the initial
mesh according to the optimal transport plan to obtain the initial approximate mesh (c), and finally perform vertex relocation, edge collapse,
and edge flip on the initial approximate mesh to obtain the reconstructed result (d).

scale linear programming.

3. Overview

The goal of our method is to construct a watertight tri-
angle mesh M̂ that approximates the given point cloud
P = {p1, p2, ..., pn} while preserving sharp features in the
3D model. We formulate the surface reconstruction as the
optimization of discrete optimal transport cost between the
input point cloud and the reconstructed mesh surface. The
transport plan between P and M̂ is represented by the map
between P and the points S = {s1, s2, ..., sn} that are sam-
pled from the mesh surface M̂ .

We define the triangle mesh by a set of vertices, faces,
and edges (V, F,E) and consider each face as a weighted
sum of Dirac measures centered at the sampling points with
unit capacity. Each point of P is also considered a Dirac
measure centered at pi with a unit mass. The size of P and
S is both n. Therefore, reducing the reconstruction error is
equivalent to minimizing the discrete optimal transport cost
between P and S by optimizing the following equation:

min
n∑
ij

πijCij

s.t. ∀i, j : πij = 0, 1,

∀i :
n∑
j

πij = 1,

∀j :
n∑
i

πij = 1,

(1)

where the transport plan πij denotes the mass transported
from point pi to sampling point sj . The value of πij is re-
stricted to 1 or 0. The map between P and S is one-to-one.
Cij denotes the transport cost between pi and sj . The cost
functions may vary for applications, and a common choice
is the squared Euclidean distance.

Given a point cloud, the convex hull of the point cloud is
selected as the initial mesh for shrink-wrap to achieve a wa-
tertight surface (Figure 1 (b)). The mesh is first deformed
to fit the point cloud roughly and then optimized to recover

sharp features (see Figure 1 (c-d) for examples of the in-
termediate and final results of our method). The two main
steps of our method are explained as follows:

1. Initialization. The initial mesh is constructed by
remeshing the convex hull of the input point cloud, as
shown in Figure 1. We sample on the initial mesh and
calculate πij between the input point cloud and the cur-
rent sampling points. The initial approximate mesh is
constructed by deforming the initial mesh according to
πij . The calculation of the optimal transport and the
deformation of the mesh will be described in detail in
Section 4.

2. Refinement. We perform optimization operations, in-
cluding vertex relocation, edge collapse, and edge
flips, to reduce transport costs further by adjusting the
mesh’s topological connectivity and vertex positions.
Details of the refinement will be described in Sec-
tion 5.

4. Initialization

4.1. Vertex displacement

We calculate a transformation matrix for each face of the
mesh based on the optimal transport plan to deform the ini-
tial mesh. The new vertex positions are jointly determined
by their one-ring neighborhood faces, and the transforma-
tion matrix of each face is driven by the transport plan of its
sampling points. Suppose the sampling point of face f is
B = {b1, b2, ..., bk} and the corresponding points of B in
the point cloud is Q = {q1, q2, ..., qk}. Then, the rotation
matrix R, translation vector t, and scaling scale s between
B and Q can be obtained by optimizing the following equa-
tion.

(R, t, s) = argmin
R,t,s

k∑
i=1

∥(sRbi + t)− qi∥2. (2)

Thus, the new position of the vertex v in the face f is cal-
culated as v̂ = sRv + t. The final position of the vertex v



Figure 2. Computation of the new mesh vertex position. Each face
adjacent to vertex a generates a new location (left), and they are
averaged to determine the new positions of vertex a (right).

Figure 3. Result of optimal transport with different cost functions
on a 2D shape. The black points are source, the red points are tar-
get, and the blue lines represent a transport relationship. Left: op-
timal transport plan using the squared Euclidean distance. Right:
result after minimization using the local variance of the neighbor-
hood.

is the average of its new positions deduced by its adjacent
faces, as shown in Figure 2.

4.2. Calculation of optimal transport

As we use the convex hull to construct the initial mesh,
its shape differs significantly from that of the input point
cloud. If the cost function is simply set to the squared Eu-
clidean distance, then incorrect transport may occur in the
thin region where the upper surface is closer to the lower
surface. Figure 3 (left) shows the optimal transport plan us-
ing the squared Euclidean distance as the cost function. The
upper and lower surfaces of the target point on the right side
are close, and some source points in the region that should
be transported to the lower surface are transported instead
to the upper surface, which will lead to concave and self-
intersections in the initial approximate mesh.

To prevent mapping the adjacent points in the point cloud
to scattered points, we apply the variance-minimizing trans-
port proposed by Mandad et al. [30] to calculate the optimal
transport plan between the input point cloud and the sam-
pling points. For points pi and neighbor pk in P , we hope
their relative position relationship remains the same after
mapping. Therefore, we set different weight values for pk
based on its distance to the point pi and use the normalized

Gaussian weighting function in the following equations to
determine which points are the neighbors of point pi:

wpk
=

Wpi (pk)∑
k

Wpi
(pk)

, (3)

where

Wpi
(pk) = exp

(
−(pi − pk)

2
/
(
2σ2

))
, (4)

σ is set as the average point spacing davg of the input point
clouds. If wpk

is greater than a threshold ε, then pk is con-
sidered a neighboring point of pi, ε = exp

(
−d2avg/2σ2

)
.

We denote the set of neighboring points of pi as Npi , and
the mass assigned to each neighboring point is its Gaussian
weight.

The neighborhood of the mapped points can be portrayed
by the variance. Assuming that the mass of each point in
X = {x1, x2...} is mi, the variance between X and its cen-
ter η can be calculated

var(X, η) =
∑
i

mi · d(xi, η)
2
, (5)

where d (xi, η) is the Euclidean distance between xi and η.
Assuming that the mapped points of Npi

in S is πP (Npi
),

the neighborhood-to-neighborhood map can be achieved by
optimizing the variance of πP (Npi) with its center ηpi . To
do so, we adopt the following cost function in the optimal
transport calculation in Equation (1):

C(π, η) =
n∑
i

var [πP (Npi
) , ηpi

]+

n∑
j

var
[
πS

(
Nsj

)
, ηsj

]
.

(6)

We optimize Equation (1) through alternating minimiza-
tion: we first fix the transport plan and optimize the centers
ηpi

and ηsj of each point; second, we optimize the trans-
port plan according to the centers. After optimization, the
neighborhoods in the input point cloud will be mapped to
the neighborhoods in the sampling points, as shown in Fig-
ure 3 (right). With the update of the transport plan, the cost
matrix that stores the cost of the transportation from pi to sj
needs to be updated. The process of constructing the initial
approximate mesh in the initialization step is described in
Algorithm 1.

5. Refinement

The initial approximate mesh just roughly fits the point
cloud, and we will use vertex relocation, edge collapse, and
edge flip operations in the refinement step to fine-tune the
mesh so that the reconstruction results can recover the sharp
features and reduce the approximation error further.



Algorithm 1 Construction of the initial approximate mesh
Input: Point cloud P ;
Output: Initial approximate mesh M ′ = (V, F,E);
1: Construct a convex hull of P and remesh it as the initial

mesh M ;
2: Generate sampling points S from M ;
3: Calculate the optimal transport plan πij between P and

S according to Equation (1), where the cost function
Cij is calculated using Equation (6);

4: Compute the new position of the vertices of M accord-
ing to πij as stated in Section 4.1.

5: Move the vertices to the new position to get the initial
approximate mesh M ′;

6: return M ′.

The refinement operations used in this phase are also
driven by the transport cost, but the cost function is different
from that in Section 4. The process of calculating variance-
minimizing transport plan requires maintaining a cost ma-
trix with the size of n×n, which consumes considerable of
memory and runtime. To improve the the speed, we use the
squared Euclidean distance as the cost function. It generally
does not lead to an inappropriate transport plan, because the
input point cloud and the mesh are already close at this step,
and mapping neighborhood to points that are scattered will
result in a high transport cost. Thus, the cost function Cij in
Equation (1) is set to ∥pi − sj∥2, and the network simplex
algorithm proposed by Bonneel et al. [5] is used to solve the
equation.

The overall process of the refinement is given in Algo-
rithm 2. We will describe each refinement operation in de-
tail in the following sections.

5.1. Vertex relocation

To reduce the reconstruction error, we further minimize
the distance from the point to the mesh surface by moving
the vertices. Assuming that a sampling point sj of the face
f = (v, v1, v2) has the barycentric coordinates (αj , βj , γj)
with respect to (v, v1, v2). The corresponding point of sj
is pi, and the point p′i is the projection of pi on a line that
passes through sj and with the direction of the face normal.
The new position of the vertex v can be obtained by the
following equation:

min
v

∑
i

∑
j

πij∥p′i − (αjv + βjv1 + γjv2)∥
2
.

Thus each triangle f adjacent to v deduces a new position
for v, denoted by v⋆f . The final position v⋆ of v is calculated

Algorithm 2 Refinement of the initial approximate mesh
Input: Point cloud P , target number of vertices vnum,

initial approximate mesh M ′ = (V, F,E);
Output: Refined result M̂ ;
1: i← 0, is init← True;
2: Generate sampling points S′ from M ′;
3: Calculate the transport plan π0 between P and S′;
4: Get M0 from M ′ by performing vertex relocation and

edge flip on M ′ according to π0;
5: Initialize the priority queue Q;
6: repeat
7: if is init = True then
8: Clear the queue Q;
9: for each edge e ∈Mi do

10: if angle of between faces adjacent to e < θ1
then

11: Simulate edge collapse;
12: if cost change ∆<0 then
13: Push (e) to Q, sorted by ∆;
14: end if
15: end if
16: end for
17: end if
18: i← i+ 1, is init← False;
19: Pop e∗ out of Q and collapse e∗ to make Mi;
20: Update Q and transport plan πi.
21: if number of deleted vertices % 10 =0 then
22: Get Mi+1 by performing vertex relocation and

edge flip on Mi according to πi;
23: i← i+ 1, is init← True;
24: end if
25: until size of Vi = vnum or Q is empty
26: return Mi.

as follows,

v⋆ =

∑
f adjacent to v

πf · v⋆f∑
f adjacent to v

πf

, (7)

where πf is the total mass transported to the surface f .
Vertex relocation is performed in two steps. First, we fix
the transport plan πij and calculate the new position for
each vertex according to πij and Equation (7). We move
the vertex to its new position if it does not cause face flip-
ping. Then, we resample the current mesh and update the
transport plan πij . Figure 4 demonstrates the changes in the
mesh after vertex relocation, and some feature edges have
been recovered.



Figure 4. Effect of vertex relocation. Left: input point cloud. Mid-
dle: mesh before vertex relocation. Right: result after vertex relo-
cation.

Figure 5. Simulation of edge collapse. Collapse the edge (red
edge) to its midpoint (blue point), and then the optimal posi-
tion (yellow point) is obtained by vertex relocation.

5.2. Edge collapse

The vertex relocation operation only updates vertex po-
sitions, but does not change the connectivity of the mesh.
The mesh can be further refined by the edge collapse oper-
ation. The classical mesh simplification method is based on
a quadratic error metric [20], but it only considers the geo-
metric error to the original mesh. In contrast, the error met-
ric for our edge collapse is set as the optimal transport cost,
and the sharp features are better recovered after the edge
collapse operation. In our method, the use of halfedge col-
lapse for mesh simplification may produce slim triangles,
that result in low mesh quality and face flipping in the sub-
sequent process. Therefore, instead of half-edge collapse,
we first collapse the edge to the midpoint of the edge and
then find the optimal position of the point by vertex reloca-
tion.

To determine which edge to collapse, an edge collapse
simulation is performed to calculate the change in transport
cost before and after the operation. The edge with the high-
est transport cost reduction is selected to collapse. Even
though the speed of the method used to solve the optimal
transport in this stage is faster than that in Section 4, it is still
very time-consuming if the global transport cost variation is
calculated in each edge collapse. Considering that edge col-

lapse mainly affects adjacent faces, only the changes in cost
in the neighboring faces are calculated to speed up. To re-
construct sharp features and save computing time, we sim-
ulate edge collapse only for edges where the angle between
two adjacent faces is less than a threshold θ1.

Figure 5 shows the result of edge collapse, and the posi-
tion of the new vertex after collapse can recover the feature
edges better.

5.3. Edge flip

Edge flip is a simple and effective operation to improve
mesh quality and reduce reconstruction errors. The edge flip
operation is performed first in the plane regions where the
angle of two adjacent faces is greater than a threshold θ2.
We flip all edges that satisfy the condition that the sum of
the two interior angles opposite to the edge is greater than
the sum of the two other angles, as shown in Figure 6. It
will remove the narrow triangles and improve the quality of
the mesh.

Figure 6. Edge flip in planar areas. Left: before edge flip. Right:
after edge flip. The condition for edge flip is α1+α2 > β1+β2.

Next, we perform edge flip in the non-planar regions
where the angle of two adjacent faces is less than a threshold
θ3. Edge flip is performed only if it will reduce the trans-
port cost, as shown in Figure 7. We add edges that satisfy
the aforementioned conditions to a priority queue sorted by
the reduction of transport cost. After flipping an edge, we
update the edges in the queue affected by it.

Figure 7. Edge flip in non-planar areas. Blue points are the input
point cloud. Left: mesh before edge flip. Right: mesh after edge
flip.



Figure 8. Reconstruction result from synthetic data. Left: input
point clouds, sampled from a ground truth surface. Middle: recon-
struction result of our method. Right: ground truth surface.

6. Experiments

Most of our algorithms are implemented in C++ based on
the CGAL library [18], except for solving the optimal trans-
port during the initialization step which is implemented in
Python based on the POT library [19]. The network simplex
algorithm [5] is used to solve for the optimal transport dur-
ing the refinement step. All experiments and comparisons
are conducted on a PC with a 2.6GHz Intel(R) Core(TM)
i5-11400F CPU and 16GB of memory.

6.1. Implementation details

We assume that the size of the sampling points is the
same as the input point cloud, and we need to determine
how many sampling points each face has. In the initial-
ization step, we assume that the point cloud and sampling
points are uniformly distributed. The number of sampling
points on each face is proportional to the face area. We also
ensure that each face contains at least one sampling point.
Points obtained in practice are usually unevenly distributed.
We do not maintain the aforementioned assumption in the
refinement step. We temporarily assign each point in the
point cloud to its nearest triangle, and the size of the sam-
pling points on the face is the number of points closest to it.
Next, each face is sampled using the CVT method [17].

The number of iterations in the initialization step to com-
pute the optimal transport with the variance of the neigh-
borhood is generally set as 6. The parameters in the refine-
ment step are set as follows: θ1 = 135◦, θ2 = 170◦, and
θ3 = 150◦. The parameter vnum in Algorithm 2 is set to
85% of the number of vertices of the initial approximate
mesh.

6.2. Feature-preserving

Our method has a greater advantage in recovering sharp
features in CAD models, without resorting to denoising, re-
sampling, or any other pre/post-processing. Notably, the
newly inserted point of the collapsed edge will moves to-
ward the feature region in order to reduce the transport cost,

Figure 9. Reconstruction result (middle) on a real scanned point
cloud (left) which is obtained by scanning the object (right) with
EinScan-SP 3D scanner.

as shown by the yellow point in Figure 5. To further re-
duce the cost, vertex relocation and edge flip operations
also make the vertices and edges fit the point cloud more
closely, which lead to corners and sharp edges. Figure 8
and Figure 9 show the capability of our method on handling
synthetic point clouds sampled from ground truth surfaces,
and real scanned point clouds, sharp edges and corners can
be clearly reconstructed by our method.

We compare our method with the Screened Poisson
method [28], RIMLS [34], RIMLS [34] over EAR [24],
CVT-based method [6], Point2Mesh [22], and Point-
TriNet(PTN) [36]. RIMLS [34] over EAR [24] is a re-
construction method that takes the points resampled by
EAR [24] as the input of RIMLS [34]. Figure 10 shows
the results of these methods on reconstructing CAD mod-
els. Among them, the results of the Screened Poisson
method [28] and RIMLS [34] are obtained by the imple-
mentation in MeshLab [7], and the rest are obtained by
running the code provided by the authors. The size of the
point cloud in our experiments is between 10K and 20K.
Our method takes 15 to 20 minutes to reconstruct the point
clouds in Figure 10, and the number of vertices deleted in
the refinement step is 120 to 150. The initialization step
takes approximately 10 minutes, and most of the remaining
time is spent on simulating edge collapses.

To compare and analyze the results quantitatively, we
color-code the distance between the ground truth sur-
face and the reconstructed surface. Figure 11 shows
the reconstruction errors of different reconstruction algo-
rithms. Compared with these methods, our method is su-
perior in feature preservation and has smaller reconstruc-
tion errors, and the outputs are guaranteed to be water-
tight. The screened Poisson method [28] tends to produce
smooth surfaces and requires normal information as input.
RIMLS [34] only recovers some sharp features and the re-
constructed surfaces are not very smooth. Edge aware Re-
sampling (EAR) [24] is an efficient method for resampling
point clouds with sharp features. RIMLS [34] generates a
mesh with improved quality and sharper features by taking
the points resampled by EAR [24] as the input, as shown in



(a) (b) (c) (d) (e) (f) (g) (h)
Figure 10. Comparing the ability of reconstruction methods to preserve sharp features. (a) Input point clouds; (b) Screened Poisson [28];
(c) RIMLS [34]; (d) RIMLS [34] over EAR [24]; (e) CVT-based [6]; (f) Point2Mesh [22]; (g) PTN [36]; (h) Our method.

Figure 10 (d). However, the reconstruction errors increased
due to resampling.

The CVT-based resampling method in [6] can produce
evenly distributed points, that lead to high-quality recon-
structed meshes by computing the duality of restricted
Voronoi cells. However, this method is more suitable for
reconstructing smooth surfaces rather than models with
sharp features. Point2Mesh [22] has great potential for sur-
face reconstruction and can handle various types of point
clouds. However, it needs to use the manifold reconstruc-
tion method [25] to repair the mesh during the optimiza-
tion, which would produce large reconstruction errors, as
shown in Figure 11 (e). In addition, the quality of the out-
put meshes is poor. PTN [36] interpolates point clouds with
neural networks. Although the average reconstruction er-
ror is small, the reconstructed surfaces are rugged at sharp
edges and are generally not watertight.

The reconstruction method proposed by Digne et al. [15]
is similar to ours. Both methods can recover sharp features
with a small number of faces, as shown in Figure 12. How-
ever, our method is more efficient. In their method, the

mapping between the point cloud and the sampling points
is many-to-many, and the total mass received by each sam-
pling point is a variable in the linear programming problem.
The time complexity of solving this problem is O

(
n3

)
. To

speed up, we restrict this mapping to a one-to-one mapping
and solved for the optimal transport by using the network
simplex method [5], which demonstrates O

(
n2

)
complex-

ity in practice and is suitable for solving the case where
the total received mass of the receiver is determined. The
method proposed by Digne et al. [15] takes about 8 sec-
onds to solve the transport plan for 1,017 points and 210
samples, rising to 154 seconds to solve for 2,000 points and
450 samples. In contrast, our method only takes 0.15 sec-
onds to solve the transport plan for 1,000 points and 1,000
sampling points, and 0.87 seconds for 2,000 points. In ad-
dition, their method produces the final reconstructed mesh
with facets that receive mass greater than a threshold, and
undesired holes will emerge when some faces are small or
the threshold is not properly selected. We construct a water-
tight surface by deforming the convex hull of a point cloud.



(a) (b) (c) (d) (e) (f) (g)
Figure 11. Comparison of reconstruction errors for different surface reconstruction algorithms. The warmer the color, the larger the
deviation from the ground truth. (a) Screened Poisson [28]; (b) RIMLS [34]; (c) RIMLS [34] over EAR [24]; (d) CVT-based [6] ;(e)
Point2Mesh [22]; (f) PTN [36]; (g) Our method.

Figure 12. Preserving features with a small number of faces. Left:
input point cloud (7K points); Middle: result of [15] ; Right: re-
sult of our method. The number of vertices of both meshes is 35.
Their method takes more than two hours to reconstruct the surface,
whereas our method takes only half an hour.

6.3. Robustness analysis

To verify the robustness of our algorithm, we test our
method on points with an increasing levels of synthetic
noise Figure 13 shows the effects of Gaussian noise with
variances of 0.5%d, 1.0%d, and 1.5%d on the results, where
d is the length of the longest edge of the bounding box of the
model. For noisy data, we enlarge the extent of the simplifi-
cation region and increase the simplification level to prevent
the mesh from becoming bumpy. The parameters in Algo-
rithm 2 are set as follows: θ1 = 175◦, and the number of
target vertices vnum is set to 10% of the number of vertices
of the initial approximate mesh. Corners and sharp edges
can still be reconstructed when the variances of the noise
reach 1.5%d. With the decrease in the number of faces, tri-
angles in the mesh need to fit the points on different sides
of the model to reduce cost, thereby leading to a feature-
preserving reconstruction result.

Figure 13. Reconstruction results with different levels of Gaussian
noise. Top: input point clouds (12K points) with Gaussian noise.
The variances of Gaussian noise are 0.5%d (left), 1.0%d (middle),
1.5%d (right), respectively. Bottom: Output of our method. The
number of vertices of output meshes is 60.

We also test our method on point clouds with missing
data. Due to missing data, most of the explicit reconstruc-
tion methods fail to recover sharp features, and reconstruc-
tion of a watertight mesh is no guaranteed. Also, implicit
reconstruction methods tend to yield smooth surfaces. In
Figure 15, sharp edges and corners are reconstructed even
if data are missing.

6.4. Reconstruction of smooth surfaces

Although our method is tailored for CAD models, it can
be adapted to reconstruct smooth surfaces. Deforming a
mesh to enter narrow and deep cavities is not an easy task.



(a) (b) (c) (d) (e)
Figure 14. The process of reconstructing a smooth surface. (a) input point cloud ; (b) initial mesh; (c) intermediate mesh between initial
mesh and initial approximate mesh; (d) initial approximate mesh; (e) reconstructed result.

Figure 15. Reconstruction results for data with missing parts. The
blue points are the input. Left: missing data at the sharp edge.
Right: missing data at the corner.

Figure 16. Tests on smooth surface. Left: input point clouds.
Right: reconstruction results by our method.

For such data, if the deformation is performed in one step,
then the sampling points that should be mapped to the nar-
row regions are likely to be transported to the wrong points.

To solve this problem, the Wasserstein barycenter [10]
can be used as an intermediate result between the point
cloud and the sampling points. Wasserstein barycenter is
a weighted mean of a collection of probability distributions.
The Wasserstein barycenter of points X1 and X2 can be
obtained by optimizing the following equation:

min
X

2∑
i=1

wiW
2
2 (b,X,ai,Xi) ,

where wi is the weight of the points Xi, which is set to 0.5,
W 2

2 is the squared Euclidean distance; b is the mass of each
point in the Wasserstein barycenter; and ai is the mass of
each point in the points Xi, both of which are set to 1.

In our experiments, we calculate the Wasserstein
barycenter W of the point cloud P and the sampling points
S, and compute the transport plan for S and W . Then
we deform the mesh according to the transport plan, and
remesh it to obtain the mesh that is used as the initial mesh
for Algorithm. 1. The process of reconstructing smooth sur-
faces is shown in Figure 14. Figure 16 shows the experi-
mental results on smooth models, our method has the ability
to reconstruct a smooth model.

7. Conclusions

We propose a surface reconstruction method that for-
mulates the reconstruction problem as an optimal trans-
port problem between the point cloud and the reconstructed
mesh. We construct a convex hull of the point cloud as the
initial mesh, and deform the initial mesh according to the
optimal transport plan. Subsequently, we optimized the ini-
tial approximate mesh by vertex relocation, edge collapse,
and edge flip operations. Experiments show that our method
has higher reconstruction quality in the region of corners
and sharp edges compared with other algorithms, is robust
to noisy and missing data, and can be adapted to reconstruct
smooth surfaces.



Figure 17. Peak memory (in MB) and runtime (in seconds) of our method. We use the fandisk model for test, where the number of input
points ranges from 8K to 20K. The initial mesh has 1,255 vertices and 2,506 faces, and the number of target vertices in Algorithm 2 is
1,155.

Although proposed the algorithm can achieve the ex-
pected results, some limitations still exist. We visualize the
statistics of peak memory and runtime in Figure 17. In the
initialization step, solving the the variance-minimizing op-
timal transport requires storing and iteratively computing
five dense matrices of n × n. It has extremely demand on
memory and time, limiting the applicable data size of our
method. The runtime of the refinement step increases lin-
early, and most of the time is spent calculating the optimal
transport during vertex relocation. To reduce memory con-
sumption and runtime, we can downsample the point cloud
first and reduce the frequency of vertex relocation in Algo-
rithm 2. We will further improve the space and time effi-
ciency of our approach in the follow-up research by using a
divide-and-conquer strategy.
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