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Abstract

Geometric deep learning has sparked a rising interest
in computer graphics to perform shape understanding
tasks, such as shape classification and semantic segmen-
tation. When the input is a polygonal surface, one has
to suffer from the irregular mesh structure. Motivated
by the geometric spectral theory, we introduce Lapla-
cian2Mesh, a novel and flexible convolutional neural
network (CNN) framework for coping with irregular tri-
angle meshes (vertices may have any valence). By map-
ping the input mesh surface to the multi-dimensional
Laplacian-Beltrami space, Laplacian2Mesh enables one
to perform shape analysis tasks directly using the ma-
ture CNNs, without the need to deal with the irregu-
lar connectivity of the mesh structure. We further de-
fine a mesh pooling operation such that the receptive
field of the network can be expanded while retaining
the original vertex set as well as the connections be-
tween them. Besides, we introduce a channel-wise self-
attention block to learn the individual importance of

feature ingredients. Laplacian2Mesh not only decou-
ples the geometry from the irregular connectivity of the
mesh structure but also better captures the global fea-
tures that are central to shape classification and segmen-
tation. Extensive tests on various datasets demonstrate
the effectiveness and efficiency of Laplacian2Mesh, par-
ticularly in terms of the capability of being vulnerable
to noise to fulfill various learning tasks.

Keywords: Geometric Deep Learning, Mesh Under-
standing, Laplacian-Beltrami space, Laplacian Pooling.

1. Introduction

The rapidly emerging 3D geometric learning techniques
have achieved impressive performance in various applica-
tions, such as classification [61, 70], semantic segmenta-
tion [20, 63], and shape reconstruction [5, 40]. A large
number of deep neural networks have been designed to
deal with 3D shapes of various representations, includ-
ing voxels [30, 67], multi-view images [33, 61], point
clouds [49, 50], meshes [20, 31], etc. Among all the rep-
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resentations, polygonal surfaces, as one of the most popular
shape representations, are flexible in characterizing an arbi-
trarily complex 3D shape in an unambiguous manner. How-
ever, the irregular connections between vertices make de-
signing learning-based methods extremely difficult. To be
more specific, the challenges include the following aspects:
First, polygonal surfaces that represent the same shape may
have varying numbers of vertices and faces. Second, the
valence of a vertex is not fixed, making it hard to define a
regular structure as the receptive field for the conventional
convolution operator. Finally, even if the number of ver-
tices is given, various triangulation forms may exist while
the difference in representation accuracy is neglectable.

In the research community, there have been many at-
tempts for developing mesh-specific convolution and pool-
ing/unpooling operations. For example, GeodesicCNN [43]
and CurvaNet [23] are proposed to define convolution ker-
nels on the parameterization plane for each local surface
patch. MeshCNN [20] and PD-MeshNet [45] take a mesh
as a graph with regard to the vertex set. They intro-
duce edge-contraction-based pooling/unpooling operations
to deal with the mesh-based deep learning tasks. Very re-
cently, SubdivNet [25] suggests a convolutional operation
by referring to the coarse-to-fine Loop subdivision algo-
rithm. All the above-mentioned approaches have to invent
an artificial convolutional scheme and explicitly come into
contact with the irregular triangulation, imposing harsh re-
quirements on the input mesh and suffering from various
mesh imperfections.

In this paper, we propose Laplacian2Mesh, inheriting
the spirit of those spectral approaches, to make it possible
to conduct learning tasks in the spectral domain when the
input is a polygonal mesh. Note that the main technique
of spectral approaches is to encode the overall shape by a
subset of the eigenvectors decomposed from the Laplacian
matrix of the input mesh. Two reasons account for why
we advocate using the new representation in deep learning.
First, as the low-frequency signals, given by those eigenvec-
tors with small eigenvalues, encode the overall shape, they
are more semantically important than high-frequency sig-
nals for most understanding tasks. It is easy for one to sep-
arate low-frequency signals from high-frequency signals in
spectral approaches by setting a simple parameter 𝑘 . Sec-
ond, the Laplacian-based spectral transform can decouple
shape variations from the tedious triangulation, avoiding
tangling with tedious and irregular triangulations. Even if
the input mesh contains a limited number of defects (e.g.,
non-manifold), the representation still works.

Some researchers have turned their attention to this
promising research area. For example, the recent Diffu-
sionNet [57] took the vertex positions and the spatial gradi-
ents as the original signal and then projected them w.r.t. the
Laplacian-based spectral basis. It is pointed out in this work

that directly learning the frequency signals suffers from the
different eigenvectors decomposed from different shapes.
They merely use the spectral transform to facilitate the spec-
tral acceleration and project the spectral features back to
the spatial domain, yielding the vertex-wise features,which
means that it is not a spectral learning method but just a
numerical scheme to compute diffusion.

Therefore, there is still a long way to go to develop
a deep network for the spectral signals of the polygonal
meshes. The first difficulty lies in that different shapes have
different eigenvectors [21, 57], resulting in a learned spec-
tral convolution filter on one shape that cannot generalize to
a different shape. The second difficulty is how to bring this
kind of network to its full potential, i.e., learning the useful
features for understanding a shape. Potentially helpful net-
work architecture is the famous U-Net [53] with the encoder
part and the decoder part, where the encoder consists of the
convolutional layers followed by pooling operation, and the
decoder, also consisting of multiple connected layers, uses
transposed convolution to permit localization.

Our Laplacian2Mesh is designed to deal with the above-
mentioned two difficulties by transforming the features of
the polygonal meshes into eigenspace [36]. On the one
hand, we select three groups of eigenvectors to construct the
multi-resolution bases. We use the Squeeze-and-Excitation
ResNet (SE-ResNet) [24] as the basic unit to define the fea-
ture extractor, as well as the carefully designed Laplacian
pooling/unpooling operations to fuse the resulting features
with different dimensions. Additionally, we consider the
shape descriptors (vertex normals, dihedral angles of ver-
tices, Gaussian curvature, Laplacian eigenvectors, heat ker-
nel signature (HKS) [62]) and the pose descriptor (vertex
coordinates) at the same time to feed the network so that
useful shape information can be fully utilized.

We conduct comprehensive ablation/comparison experi-
ments to validate the effectiveness of our approach. Tests on
various shape understanding tasks, including shape classifi-
cation and semantic segmentation, show that our algorithm
outperforms the state-of-the-art on average. The biggest ad-
vantage of our approach lies in the robustness to noise. Be-
sides, our approach can tolerate a limited number of mesh
defects.

2. Related work

In this section, we first briefly introduce the related
works on the 3D geometric learning [8] with various shape
representations. We refer the readers to [9, 71] for a more
comprehensive survey. After that, we review the learning-
based mesh understanding methods, which are highly rele-
vant to the theme of this paper. Finally, we talk about the
spectral-based technique and its applications.
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Figure 1. The spectral surface reconstruction when selecting different numbers of Laplacian eigenvectors as the spectral basis. From left
to the right, the fewer smallest eigenvectors used, the less high-frequency features preserved in the reconstruction. Therefore, by selecting
the proper basis, the spectral transforms not only encode the irregular mesh structure into fix-sized signals but also are resistant to the
high-frequency noise for the mesh understanding tasks.

2.1. 3D Geometric Deep Learning

The design of geometric deep learning networks relies
heavily on the shape representations. Wu et al. [70] pro-
posed a 3D convolutional network based on the voxel rep-
resentation for the shape classification and retrieval tasks.
Due to their regular data structure, 3D voxels are easily
processed by different 3D convolutional networks, making
the voxel representation frequently utilized in the applica-
tions such as shape reconstruction [5], semantic segmen-
tation [63], and alignment [19]. Its usage is greatly lim-
ited by the cubically increasing complexity in the memory
and computation cost. To deal with this issue, the octree-
based volumetric representation [52, 66] is more compact
and has received more attention recently. Through param-
eterization, a surface can be encoded by an image-like data
structure, e.g. the geometry images [59] and the toric cov-
ers [18, 42]. Another way is to render the 3D shapes as
multi-view images, so that 2D CNN can be directly used
for the understanding tasks [33, 61]. However, it may fail
for a complicated shape with a highly curved surface.

Point cloud is also a popular representation in 3D ge-
ometric learning. For example, PointNet [49] and Point-
Net++ [50] use the KNN search to build the spatial corre-
lations between points for feature extraction. Some follow-
ing works, such as PointCNN [37] and KPConv [64], fur-
ther improve feature learning from point cloud. Recently,
PCT [17] applies the attention-based transformer to deal
with point cloud, achieving state-of-the-art performance.
However, for a point cloud, the direct exploitation of the
geometry is challenging due to inherent obstacles such as
noise, occlusions, sparsity or variance in the density. On the
other hand, polygonal surfaces typically offer more detailed
geometry and topology descriptions, hopefully improving
the understanding of behavior.

2.2. Learning-based Mesh Understanding Methods

The mesh representation is often considered as a graph
structure. MeshWalker [31] explores the mesh geometry
and topology via random walks. The Recurrent Neural
Network (RNN) is used to learn the deep features along

each walk. Some other methods construct the local re-
lationship between the vertices by considering the K-ring
neighborhood. Masci et al. [43] proposed to flatten each
of the patches with small curvature to the 2D plane, and
apply the geodesic convolutional neural network on the
non-Euclidean manifolds. He et al. [23] defined a direc-
tional curvature along with rotation in the tangent plane
to obtain neighbor information with a consistent structure.
These methods focus on defining the localized convolution
kernels. Some similar strategies include local spectral fil-
ters [4] and local geometric descriptors (e.g. B-splines [15],
wavelets [55] and extrinsic Euclidean convolution [56]) to
align a local patch with the convolution kernel.

Some recent works leverage the classical mesh process-
ing techniques to define the key modules of a geometric
deep learning network, such as the convolutional operation
and the pooling operation. For example, MeshCNN [20]
defines the receptive field for the convolutional operation,
based on the observation that each edge is correlated with
two neighbor triangular faces. Furthermore, MeshCNN
defines the unique pooling operation based on the edge-
collapse algorithm. The PD-MeshNet [45] constructs the
primal graph and the dual graph to capture the adjacency
information encoded in the triangle mesh. The pooling
operation of PD-MeshNet is implemented based on mesh
simplification. Benefiting from the up-sampling process of
the Loop subdivision algorithm, SubdivNet [25] proposes a
mesh convolution operator that allows one to aggregate lo-
cal features from nearby faces. But it requires the input to
hold the subdivision connectivity. All the aforementioned
methods focus on the spatial structure and have to handle
the irregular connections.

A very recent work DiffusionNet [57] uses the spectral
acceleration technique to diffuse the vertex features, show-
ing a great potential of the spectral analysis in mesh-based
learning tasks. We propose to extend the backbone from the
spatial to the spectral domain, and further improve the per-
formance of shape understanding, particularly in the pres-
ence of noise.



2.3. Spectral Surface Representation

As pointed out in [9], spectral surface representation is
important in encoding the shape information with varying
frequencies, regardless of the connection structure. In the
discrete setting, one can take the eigenvectors of the Lapla-
cian matrix as the basis for the spectral transform. As shown
in Figure 1, the low-frequency signals, given by the eigen-
vectors with the 𝑘 smallest eigenvalues, can capture the
essential shape information, as long as 𝑘 is large enough.
Therefore, by selecting the proper number of eigenvectors,
the spectral projection can be seen as a low-pass filter to
the mesh feature signals, naturally resisting noise and sam-
pling bias. The spectral analysis plays a central role in
many geometry processing and shape analysis tasks, such
as shape segmentation [28], symmetry detection [47], shape
correspondence [46], shape recognition [7], and shape re-
trieval [6].

Some existing research works [36, 27] show that it is
possible to use the spectral analysis technique to define a
compact representation of a polygonal surface. Heat Ker-
nel Signature (HKS) [62] inspires us in that the local-to-
global shape variations can be encoded through heat diffu-
sion. Please refer to [69, 36] for a more detailed survey.

There are already some works using spectral signals in
deep learning. The spectral-based graph networks, e.g.,
SpectralCNN[12] and ChebNet [11], convert the graph
structure into the spectral domain and perform the multi-
plication on the spectral signals. LaplacianNet [51] uses
the graph Laplacian-based spectral clustering for over-
segmentation, followed by performing a max-pooling oper-
ation on each class to obtain local information. Laplacian-
Net includes the Correlation Net as a component to learn a
correlation matrix to fuse features across clusters. But it’s
worth noting that LaplacianNet still focuses on the spatial
relation among the local patches.

3. Methodology

We compute a collection of intrinsic and extrinsic mesh
features, and transform them into the spectral domain to
feed the network. Then the network utilizes the U-Net ar-
chitecture to handle various mesh understanding tasks. Ad-
ditionally, we develop a channel-wise attention mechanism
employing the small-sized Squeeze-and-Excitation blocks
(SE-block) [24], before fusing features of various resolu-
tions using Laplacian pooling/unpooling. The whole net-
work is connected by different head blocks. Finally, differ-
ent loss functions are proposed to cope with mesh classifi-
cation and segmentation tasks, respectively.
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Figure 2. We compute a set of extrinsic and intrinsic geometric
features on the mesh surface and convert them into spectral signals
as the input of our network.

3.1. Laplacian spectral transform

Given a triangle mesh with 𝑛 vertices, the Laplacian ma-
trix [44, 54] can be written as:

L = M−1C, (1)

where M ∈ R𝑛×𝑛 is the diagonal matrix whose 𝑖-th entry
along the diagonal is twice the influence area of the vertex
𝑣𝑖 , C is the sparse cotangent weighted matrix as in Eq. (2):

C𝑖 𝑗 =


−(cot𝛼𝑖 𝑗 + cot 𝛽𝑖 𝑗 ), 𝑖 ≠ 𝑗 , 𝑣 𝑗 ∈ 𝑟1 (𝑣𝑖)∑

𝑣 𝑗 ∈𝑟1 (𝑣𝑖 ) (cot𝛼𝑖 𝑗 + cot 𝛽𝑖 𝑗 ), 𝑖 = 𝑗

0, 𝑣 𝑗 ∉ 𝑟1 (𝑣𝑖),
(2)

where 𝑟1 (𝑣𝑖) is the set of all the 1-ring adjacent vertices of
𝑣𝑖 , and 𝛼𝑖 𝑗 and 𝛽𝑖 𝑗 are the two angles opposite to edge 𝑣𝑖𝑣 𝑗 .
Please refer to our Appendices for more details.

The Laplacian matrix completely encodes the intrinsic
geometry. The eigendecomposition of the Laplacian matrix
L enables the transformation between the spatial and the
spectral domain. Specifically, after performing the eigen-
decomposition, we can sort and select the k eigenvectors
𝚽𝑘 = [𝝓0, 𝝓1, . . . , 𝝓𝑘−1] corresponding to the 𝑘 smallest
eigenvalues. It’s worth noting that the smallest eigenvalue
is 0. 𝚽𝑘 can be understood as a low-frequency filter. Sup-
pose that we define a scalar field 𝑓 on the surface. It can
be decomposed into a combination of the eigenvalues. If
we keep only the part spanned by 𝚽𝑘 , we obtain the recon-
structed counterpart of 𝑓 .

Figure 1 shows the Laplacian spectral reconstruction
with different numbers of eigenvectors as the basis. The
mesh vertex set V is first projected to Ṽ in the spectral do-
main, and then reconstructed as V̂ following Eq. (3):

Ṽ = 𝚽𝑇
𝑘V,

V̂ = 𝚽𝑘 (𝚽𝑇
𝑘V).

(3)

Figure 1 also illustrates that the spectral transform can serve
as a low-pass filter of the mesh feature signal. Therefore, it
prevents the mesh processing from being affected by the
high-frequency noise.
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Figure 3. Our network pipeline for coping with the mesh classification and segmentation tasks. Given a 3D mesh as the input, we
precompute the extrinsic and intrinsic geometric features and project them into the spectral domain w.r.t. three different resolutions.
Inspired by the U-Net architecture, we propose to use the SE-ResNet blocks with small-sized convolution kernels to fuse the nearby-
frequency features, and the Laplacian pooling/unpooling to fuse the spectral features of different resolutions. For the segmentation task,
we re-scale (with the yellow block) and concatenate the features together to be processed by the segmentation block.
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Vertex-Faces adjacency matrix:

Dihedral angles of faces:
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Figure 4. The vertex-wise feature based on the dihedral angles,
which are originally defined on the shared edges between faces.
We use the vertex-face adjacency matrix to average the three dihe-
dral angles of the one-ring faces to form the vertex-wise dihedral
angle.

We take 𝚽𝑘 as the basis to perform the Laplacian spec-
tral transform. To simplify the computation, the eigenvector
matrix 𝚽 is obtained by performing the eigendecomposi-
tion on the cotangent weight matrix instead of the discrete
Laplace-Beltrami matrix itself. Please refer to Appendices
for more detailed explanation.

3.2. Input Features

In geometric deep learning, a commonly used way is
to extract various geometric features to define a synthe-
sized shape descriptor. The intrinsic and extrinsic features

characterize the shape from different perspectives, and their
combination can describe the shape [20, 25, 51, 57].

Our input feature G ∈ R𝑛×39 in the spatial domain is
composed of the per-vertex features, each of which is a
concatenation of a 30-dimensional intrinsic shape descrip-
tor and a 9-dimensional extrinsic shape descriptor (see Fig-
ure 2). The intrinsic shape descriptor is formed by the 1-
dimensional Gaussian curvature, the 9-dimensional HKS
(Heat Kernel Signature) [62], and low-frequency eigenvec-
tors of the cotangent weight matrix corresponding to the
20 lowest frequencies excluding 0. The extrinsic shape de-
scriptor includes the 3-dimensional vertex coordinates, the
3-dimensional vertex normal, and the 3-dimensional dihe-
dral angles for each vertex (we will explain it later). Fi-
nally, the input feature vector G, upon being mapped to the
Laplacian spectral domain, becomes:

G̃ = 𝚽𝑇
𝑘G. (4)

To this end, an arbitrary polygonal surface is transformed
into a 𝑘×39 matrix G̃, regardless of the geometry, topology,
connection structure, and mesh complexity.

It is worth noting that the dihedral angles are originally
defined as the angle between two adjacent faces sharing a
common edge. We extend the concept to a per-vertex fea-
ture by distributing the dihedral angle of a mesh edge to the
endpoints and the opposite vertices. Recall that the face 𝑓 =
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△𝑣1𝑣2𝑣3 has three bounding edges −−−→𝑣2𝑣3,
−−−→𝑣3𝑣1,

−−−→𝑣1𝑣2, and
they give three dihedral angles 𝜃1, 𝜃2, 𝜃3, respectively. In
our scenario, we need to define vertex-wise geometric fea-
tures. For this purpose, we can relate the dihedral angles
to the three vertices of 𝑓 . Particularly, we assign 𝜃1, 𝜃2, 𝜃3
to 𝑣1, assign 𝜃2, 𝜃3, 𝜃1 to 𝑣2, and assign 𝜃3, 𝜃1, 𝜃2 to 𝑣3.
This can be implemented by a simple matrix multiplica-
tion. As illustrated in Figure 4, the vertex-based dihedral-
angle matrix D𝑣 (M) is defined as the multiplication of the
vertex-face adjacency matrix A𝑣 𝑓 (M) and the face-based
dihedral-angle matrix D 𝑓 (M), i.e.,

D𝑣 (M) = A𝑣 𝑓 (M) · D 𝑓 (M). (5)

3.3. Network

We feed the aforementioned feature matrix G̃ into the
network in a multi-resolution manner. Specifically, we se-
lect three different resolutions of G̃ in a decreasing or-
der, where the dominant dimensions of G̃ are denoted as
k = {𝑘𝑖 | 𝑖 = 0, 1, 2}. We then select the spectral basis
𝚽𝑘𝑖 and compute the corresponding feature matrix G̃, de-
noted as G̃0, G̃1, G̃2, respectively. Our empirical evidence
shows that 𝑘0, i.e., the largest one, should be greater than or
equal to 𝑛𝑣/2 [36], where 𝑛𝑣 is the maximum total number
of vertices for the 3D models in the dataset.

As shown in Figure 3, our network resembles the U-Net
structure. The three spectral feature matrices, G̃0, G̃1, G̃2,
are processed by the corresponding convolutional blocks in-
dependently and then fused from the higher resolution to
the lower resolution. We use the mirror structure during de-
coding, while taking the encoding feature at the same res-
olution via the skip connection at each level. The network
can be easily instantiated for different tasks by adding the
head blocks; See the classification block or the segmenta-
tion block in Figure 3. The main difference between ours
and the existing U-Net networks lies in the SE-blocks and
the proposed Laplacian pooling/unpooling operations, as
described later.

3.3.1 SE-ResNet Block

Instead of learning the multiplication in the spectral domain
as some spectral-based networks [29, 39] do, we apply the
convolution operations to the spectral signals. However,
due to the lack of shift-invariance in the spectral domain,
the commonly-used convolutions with large receptive fields

Pooling PoolingPooling

Unpooling UnpoolingUnpooling

Laplacian transform

inverse-Laplacian 
transform

Figure 6. The Laplacian pooling and unpooling operations trans-
form the spectral-based features between different resolutions,
where the pooling operation proceeds from a finer level to a
coarser level while the unpooling operation does the opposite.

for pattern recognition are not suitable. Here, we use the
convolution with small kernels. The small-sized convolu-
tion kernel acts as an aggregation function to fuse the close
frequency features.

In addition, we take the Squeeze-and-Excitation ResNet
(SE-ResNet) [24] (see Figure 5) as the basic unit to process
the spectral signals. The Squeeze-and-Excitation (SE) mod-
ule first performs the squeeze operation on the feature map
obtained by convolution to obtain the channel-level global
features. In order to obtain the weights of different chan-
nels, the excitation operation on the global features is then
performed to learn the relationship between different chan-
nels. Finally, the channel weights are multiplied by the orig-
inal feature map to get the final features. In its essence, the
SE module performs the attention or gating operations on
the channel dimension. This attention mechanism allows
the model to pay more attention to the significant channel
features while suppressing those less important channel fea-
tures. The module alleviates the tedious work of manual
feature selection and improves the representational capacity
of a network by performing dynamic channel-wise feature
recalibration.

Unlike the other networks that directly apply the same
trainable network weights on the feature map of various
data samples, the SE-block predicts the adaptive weights to
fuse the channel-wise features, and the residual connection
helps avoid the vanishing gradients of the deep network. We
experimentally found that the SE-block achieves the best
performance with the kernel size 𝑘𝑠 = 3 and padding 𝑝 = 1
while the layers without the SE-block achieve the best per-
formance when 𝑘𝑠 = 1 and 𝑝 = 0.

3.3.2 Laplacian Pooling and Unpooling

Note that the input of our network is the multi-resolution
spectral signals with different sizes of eigenvector basis,
which is obtained by Eq. (3). The Laplacian pooling and
unpooling operations are necessary to fuse them together.
Figure 6 illustrates how the Laplacian pooling and unpool-
ing operations transform the signals between the spectral
basis with different resolutions.

For the 𝑖-th layer and the 𝑗-th layer in the network, we
propagate the output of the 𝑖-th layer to the 𝑗-th layer based



on 𝚽𝑘𝑖 and 𝚽𝑘 𝑗
:

𝚪𝑖 𝑗 = (𝚽𝑇
𝑘 𝑗
𝚽𝑘𝑖 )𝚪𝑖 . (6)

The transformed feature 𝚪𝑖 𝑗 is then concatenated with the
𝑗-th layer, yielding a concatenated feature:

�̃� 𝑗 = 𝚪 𝑗 ⊕ 𝚪𝑖 𝑗 , (7)

which shows the mechanism of our Laplacian pooling oper-
ation when the resolution of 𝑖-th layer is larger, and Lapla-
cian unpooling operation otherwise.

3.3.3 Classification and Segmentation Modules

It’s natural that our Laplacian2Mesh network can deal with
different mesh understanding tasks if the head blocks are
carefully set. Figure 3 illustrates the classification and seg-
mentation blocks, as well as their connection with the back-
bone network. For the classification task, we only make use
of the encoding stage of our network and fuse the multi-
resolution features to form the input of the classification
block (cls-block). The classification block follows the pop-
ular implementation in the related works [45], and uses
the simple Global Average Pooling and softmax equipped
MLP to obtain the final prediction. As for the segmenta-
tion task, it has to utilize the entire U-Net architecture and
then add a segmentation block (seg-block) to compute the
segmentation-aware features in the spectral domain. The
spectral feature is then transformed to the spatial domain.
Finally, we use a softmax function to obtain the segmenta-
tion label for each vertex.

We carefully designed cls-Block (see Figure 7) and seg-
Block (see Figure 8) for the tasks of shape classification
and semantic segmentation, respectively. In these blocks,
𝐸𝐿𝑈 (·) [10] is chosen as the activation function in our
Laplacian2Mesh, which eliminates the influence of bias
shift and improves the robustness to noise.

3.4. Loss Function

For the shape classification task, one can simply use
the cross-entropy loss between the predicted label and the
ground-truth. For the shape segmentation task, however, we
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Figure 7. The head block for the classification task.
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Figure 8. The head block for the semantic segmentation task.

need to add one additional loss term to ensure the spatial co-
herence of the vertex-based part labels. Therefore, our loss
function for the mesh segmentation task can be written as

L = 𝜇 · Lce + 𝜈 · Ladj, (8)

where Lce is the segmentation loss to minimize the error be-
tween the predicted vertex label and the ground-truth, Ladj
is the adjacency loss to encourage the label coherence be-
tween neighboring vertices, and 𝜇, 𝜈 are a pair of hyperpa-
rameters to balance the two terms.

Segmentation loss. Note that the output of the segmen-
tation block still encodes the segmentation information in
the spectral domain. We need to transform it to the spatial
domain with Eq. (3). For each vertex, we obtain a one-hot
vector to characterize the probability in which the vertex
belongs to each part, and assign the vertex to the part with
the maximum probability. The segmentation loss is then de-
fined as the cross-entropy loss between the predicted labels
and the ground-truth labels.

Adjacency loss. Intuitively speaking, a pair of neigh-
boring vertices tend to own consistent labels. There-
fore, it is necessary to enforce the label coherence in
the one-ring neighborhood for each vertex. We intro-
duce three matrices, i.e., 𝚿,𝛀 and A, to weigh the in-
fluence between neighboring vertices. Let 𝚿 be the all-
pair straight-line distance matrix between vertices, satisfy-
ing 𝚿 =

{
∥v𝑖 − v 𝑗 ∥ | 𝑖, 𝑗 ∈ {0, 1, · · · , 𝑛 − 1}

}
. Let 𝛀 =

exp(−𝚿/(2𝛿)) be the Gaussian filter with a bandwidth 𝛿.
Let A be the adjacency matrix of the mesh. By defining

𝚯 = 𝛀 ⊙ A, (9)

we obtain a 𝑛 × 𝑛 matrix 𝚯 to characterize the mutual
influence between neighboring vertices, where ⊙ is the
Hadamard product. It’s worth noting that 𝚯 is sparse due
to the fact that A is sparse, and thus can be quickly com-
puted.

Recall that each vertex has a one-hot vector to encode
the probability in which the vertex belongs to each part. Let
𝑣𝑖 , 𝑣 𝑗 be a pair of neighboring vertices. For 𝑣𝑖 , we extract
the maximum component of its one-hot vector, denoted by
ℎ𝑖 . Suppose that the maximum component occurs at the
𝑠𝑖-th slot. We then extract the corresponding component
of the one-hot vector of 𝑣 𝑗 , denoted by ℎ

𝑠𝑖
𝑗

. Similarly, we
can define ℎ 𝑗 and ℎ

𝑠 𝑗

𝑖
. We use |ℎ𝑖 − ℎ

𝑠𝑖
𝑗
| + |ℎ 𝑗 − ℎ

𝑠 𝑗

𝑖
| to

measure the symmetric label difference between 𝑣𝑖 and 𝑣 𝑗 .
In this way, we obtain a sparse matrix H to characterize
the pairwise label difference. Therefore, the matrix 𝚯 ⊙ H
is the improved difference matrix weighted by the above-
mentioned influence. The overall label coherence can be
obtained by summing the elements together:

Ladj =
1
𝑛
· 1T × (𝚯 ⊙ H × 1

A × 1
), (10)

where 1 is a column vector consisting of 𝑛 1’s.



4. Experiments

We present extensive experiments to validate the ef-
fectiveness on the mesh classification/segmentation tasks.
The data preprocessing/augmentation step is conducted af-
ter SubdivNet [25]. All the meshes are scaled into a unit
cube. During the training phase, we apply an isotropic scal-
ing operator on each model, and the scaling factor is ran-
domly sampled from a normal distribution with an expected
value 𝜉 = 1 and a standard deviation 𝜎 = 0.1. We also ran-
domly select three Euler angles, each of which being 0, or
𝜋/2, or 𝜋, or 3𝜋/2, to perform the orientation augmentation.
The meshes in each dataset are simplified to have roughly
equally many faces.

4.1. Mesh Classification

We demonstrate the superior classification ability of
Laplacian2Mesh on the two datasets: SHREC11 [38] and
Manifold40 [25]. The classification accuracy statistics are
reported to compare the performance among different meth-
ods.

SHREC11. The SHREC11 dataset consists of 30
classes, with 20 examples per class. Following the setting
of [13], all the methods are evaluated based on the 16-4 and
10-10 train-test split, respectively. Our method outperforms
the others on both train-test splits, and achieves the perfect
classification accuracy (100%), as shown in Table 1. Tests
on the SHREC11 dataset indicate that our Laplacian2Mesh
is competitive on the mesh classification task.

Table 1. The classification accuracy statistics on the SHREC11
dataset [38].

Method Split 16 Split 10

GWCNN [13] 96.6% 90.3%
MeshCNN [20] 98.6% 91.0%
PD-MeshNet [45] 99.7% 99.1%
MeshWalker [31] 98.6% 97.1%
SubdivNet [25] 99.9% 99.5%
HodgeNet [60] 99.2% 94.7%
DiffusionNet (xyz) [57] - 99.4%
DiffusionNet (hks) [57] - 99.5%
Laplacian2Mesh (ours) 100% 100%

Manifold40. Manifold40 is a larger and more challeng-
ing dataset, containing 12311 CAD models from 40 cate-
gories. It is reconstructed from ModelNet40 [70] to obtain
better triangulation quality meshes. Therefore, the recon-
struction and simplification operations during the dataset
construction stage inevitably introduce a slight difference in
shape and a significant difference in tessellation. As shown
in Table 2, our method has a comparable performance to

Table 2. The classification accuracy statistics on Manifold40 [25].

Method Input Accuracy

PointNet++ [50] point cloud 87.9%
PCT [17] point cloud 92.4%

MeshNet [14] mesh 88.4%
MeshWalker [31] mesh 90.5%
SubdivNet [25] mesh 91.2%
Laplacian2Mesh (ours) mesh 90.9%

SubdivNet [25], and gains better accuracy than other meth-
ods. But we must point out that our approach does not in-
clude a tedious step of mesh subdivision [41] as included in
SubdivNet [25].

4.2. Mesh Semantic Segmentation

We conduct the mesh semantic segmentation exper-
iments on the human body dataset [42] and COSEG
dataset [68]. The mesh segmentation task aims to predict
the segmentation label per face. Since the labels are defined
on the mesh vertices in our approach, we apply the majority
voting to obtain the labels on the faces, rather than the “soft”
label conversion or some smooth processing technique [31].

Human Body Segmentation. The human body dataset,
labeled by [42], consists of 370 training shapes from
SCAPE [2], FAUST [3], MIT [65], and Adobe Fuse [1].
The 18 models in the test set are from SHREC07 [16] (hu-
mans) dataset. All the meshes are manually segmented into
8 parts [26]. We use the same version of human body
dataset as in MeshCNN [20], which is downsampled to
1500 faces per mesh.

As shown in Figure 9, our method is able to learn the
consistent and accurate part segmentation of human bod-
ies. We report the segmentation performance of various
methods in Table 3. Our method mostly outperforms the
related works such as MeshCNN [20], PD-MeshNet [45],
and HodgeNet [60]. Despite being slightly inferior to the
DiffusionNet [57], our method is superior in terms of its
noise-resistance property, as will be demonstrated in Sec-
tion 5.1.

COSEG. We also evaluate the performance of Lapla-
cian2Mesh on the three largest sets from the COSEG shape
dataset: Vases, Chairs, and Tele-aliens containing 300, 400,
and 200 models, respectively. The meshes are labeled into
3 parts (Chairs set) or 4 parts (Vases set & Tele-aliens set).
We generate a random 85%-15% train-test split for each set,
as in MeshCNN [20].

The quantitative results are provided in Table 4, and the
qualitative results for all models in the test set are visual-
ized in Figure 10. Our method outperforms other methods
on the Vase and Chair classes, but performs worse on the



Figure 9. We test the dataset of Human Body, and visualize the segmentation result for every model.

Table 3. The mesh segmentation accuracy statistics on the Human-
Body dataset [42]. Note that DiffusionNet [57] supports various
inputs. The options “xyz” and “hks” denote the raw coordinates
and the heat kernel signatures, respectively.

Method Input Accuracy

PointNet [49] point cloud 74.7%
PointNet++ [50] point cloud 82.3%

MeshCNN [20] mesh 85.4%
PD-MeshNet [45] mesh 85.6%
HodgeNet [60] mesh 85.0%
DiffusionNet (xyz) [57] mesh 88.8%
DiffusionNet (hks) [57] mesh 90.5%
Laplacian2Mesh (ours) mesh 88.6%

Tele-alien class. We explain this as follows. The triangu-
lation quality of the Tele-alien meshes is bad, containing
long and thin triangles. To our knowledge, the Laplacian
matrix is likely to be ill-conditioned when bad triangles ex-
ist. Figure 10 visualizes the semantic segmentation results
computed by our method.

4.3. Ablation Studies

The ingredients of our method lie in many aspects,
including the selection of the input features, the multi-
resolution spectral signals, the network architecture, the ad-
jacency loss, and the selection of the kernel size for the
training. We evaluate our method by conducting the ab-
lation studies on the mesh segmentation task.

The selection of the input features. As described in

Table 4. The mesh segmentation accuracy statistics on the COSEG
dataset [68].

Method Vases Chairs Tele-aliens

DCN [72] 90.9% 95.7% -
MeshCNN [20] 92.4% 93.0% 96.3%
HodgeNet [60] 90.3% 95.7% 96.0%
Laplacian2Mesh (ours) 94.6% 96.6% 95.0%

Section 3.2, we pre-compute a set of intrinsic and extrin-
sic geometric features and transform them into the spec-
tral signals as the input of our network. Table 5 reports
the segmentation performance on the Vase class of COSEG
dataset, Manifold40 dataset, and the human body dataset
after removing each of the features. It shows that the Lapla-
cian2Mesh with the full set of features achieves the best per-
formance on all the three datasets. In Table 5, we highlight
the features that cause the greatest performance degradation
on each dataset. It indicates that various classes have differ-
ent dependency on the input features. Our Laplacian2Mesh
can automatically learn the weighting scheme to fuse the
diverse geometric features.

The multi-resolution signals. As described in Sec-
tion 3.1, the selection of the hyperparameter 𝑘 is of vital
importance to form the spectral basis, which helps filter out
the high-frequency noise. We compute the multi-resolution
spectral signals as the input of our network by selecting
k = {𝑘𝑖 | 𝑖 = 0, 1, 2} to form a set of basis and perform
the spectral transform.

Table 6 reports the segmentation performance statistics



Figure 10. A gallery of segmentation results of the COSEG
dataset. From top to bottom: Tele-aliens, Chairs, and Vases
classes.

with different hyperparameter settings, including the single-
resolution experiments (e.g. 128 − 0 − 0, 512 − 0 − 0,
749 − 0 − 0, with 749 being the smallest vertex num-
ber among all the meshes in the dataset) and the multi-
resolution experiments (e.g. 512− 128− 0, 512− 128− 32,
512 − 256 − 64). By comparing the single-resolution ex-
periments, it shows the importance of choosing a proper
𝑘 , as either the largest or a smaller 𝑘 will decrease the
performance. On the other hand, the comparison between
the single-resolution and multi-resolution experiments vali-
dates the effectiveness of our setting.

From a different perspective, it is intuitive and interest-
ing to visualize the learned features to understand the role of
the multi-resolution input signals. Note that the whole net-

(a)

(b) (c) (d)

(e) (f) (g)

Figure 11. t-SNE visualization of the network processing. We
project the intermediate spectral features back to the spatial vertex-
wise features for a better understanding. The vertices are colored
by their ground-truth segmentation labels. (a): the ground-truth
segmentation; (b-d): the encoded feature of each resolution before
any Laplacian pooling/unpooling; (e): the encoded feature after
fusing all the resolutions; (f): the decoded feature after the U-Net
processing, (g): the output segmentation predictions.

Table 5. The results of ablation experiments on the input features.
We highlight the best (bold) and the worst (underlining) perfor-
mance scores for each class. It can be seen that the importance of
geometric features varies on different datasets.

Method Vases Manifold40 Human Body

w/o vertex coordinates 85.9% 88.7% 87.4%
w/o vertex normal 93.2% 90.2% 87.3%
w/o Gaussian Curvature 92.2% 90.3% 87.7%
w/o EigenVectors 86.3% 85.3% 88.2%
w/o HKS 92.0% 89.8% 77.5%
w/o Dihedral Angles 90.5% 90.1% 87.1%
Laplacian2Mesh (ours) 94.6% 90.9% 88.6%

Table 6. The segmentation performance with the input spectral sig-
nals of different resolutions. The first three rows are the single-
resolution experiments, indicating that it is proper to take 𝑘 as one
half of the total number of vertices. The other rows show the re-
sults of using the multi-resolution inputs.

input sizes Human Body Tele-alien

749-0-0 84.8% 90.7%
512-0-0 86.9% 93.1%
128-0-0 86.7% 92.9%
512-128-0 87.1% 93.3%
512-128-32 88.6% 94.5%
512-256-64 86.3% 95.0%

work processing is in the Laplacian spectral domain, and
therefore we need to transform the spectral features F̃ back
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Figure 12. t-SNE visualization of the segmentation results with
and without the adjacency loss. The vertices are colored by their
ground-truth label. The adjacency loss obviously improves the
smoothness of the segmentation results.

Table 7. The ablation studies of the network architecture and the
adjacency loss.

Experiments Vases Chairs

Baseline 89.2% 93.8%
+ SE-block 90.6% 94.9%
+ Multi-resolution 91.3% 95.5%
+ Laplacian pooling/unpooling 93.3% 96.3%
+ Adjacency loss (full) 94.6% 96.6%

to the spatial domain via the inverse mapping:

F̂ = 𝚽𝑘F̃. (11)

We show the t-SNE visualization of the intermediate fea-
tures in Figure 11, where the color indicates the ground-
truth label of each vertex. The first row is the encoded fea-
ture of each resolution before any pooling/unpooling oper-
ation. The signals with mostly low-frequency signals, i.e.
𝑘 = 32, obtain more disjoint clusters, while the signals with
more high-frequency signals, i.e. 𝑘 = 512 have the en-
coded features gathered together probably because of the
distracting local details. However, after we fuse the fea-
tures from the multi-resolution signals during encoding, the
clusters are more separated at the boundary with the help of
the local information (see (d) and (e)). Finally, the features
are moved and clustered based on their semantic labels, as
the vertices on the human legs are moved together after the
decoding stage (see (e) and (f)). This visualization shows
the necessity of fusing the multi-resolution signals.

Network Architecture and Loss. We show how it
evolves with the key designs in our network and the loss
function. The quantitative evaluations are in Table 7. We
start from a baseline network implemented as a simple con-
volutional network with skip connections, which is similar
to the one-resolution component of our network while the
SE-blocks are replaced by the vanilla convolutional blocks.
We progressively equip the network with the SE-blocks
with small-sized convolution kernels, the multi-resolution

network architecture but with spatial pooling/unpooling,
our Laplacian pooling/unpooling operations, and the ad-
jacency loss. The quantitative evaluation clearly demon-
strates that our key designs are necessary to learn the mesh
semantics in the spectral domain.

The adjacency loss is used to guarantee the label coher-
ence property of the semantic segmentation on the mesh
surface. As indicated by the t-SNE visualization shown in
Figure 12, without the adjacency loss, some outlier vertices
may be assigned with a wrong label, leading to conspicuous
visual segmentation artifacts.

Kernel Size. As said before, our network should be
equipped with small kernel convolution. As illustrated in
Figure 5, we directly use the common convolution kernel
settings for SE-block [22], which is 𝑘𝑠 = 3. We also tried
using other kernel sizes for SE-block, but 𝑘𝑠 = 3 got the
best results. For the layers without the SE-block (the MLPs
in our network), we experimented with the impact of differ-
ent sizes of the kernel on the segmentation results.

We replace the MLPs in our network with convolutions
of different kernel sizes (i.e. 1, 3, 5, 7). From Table 8, we
can also find that a large convolution kernel does not bring
us similar benefits as it is used in 2D CNNs, on the contrary,
the large-sized kernel will degrade the performance of our
network. So we select 𝑘𝑠 = 1 (i.e. MLP) for the layers
without the SE-block.

Table 8. The segmentation performance with the different kernel
sizes.

Vases Chairs Human Body

kernel size = 7 92.3% 94.8% 86.5%
kernel size = 5 92.8% 95.6% 87.1%
kernel size = 3 93.5% 96.1% 87.5%
kernel size = 1 94.6% 96.6% 88.6%

5. Strengths and Limitations

5.1. Resistance to Noise

To test the robustness against noise, we construct the
noisy dataset by adding Gaussian noise of several levels (i.e.
0.005, 0.010, 0.050, 0.080, 0.1 w.r.t. the diagonal length of
each model) to the original human body dataset [42]. We
train our network with the original noise-free dataset and
test on the noisy meshes. Figure 13 shows the comparison
between DiffusionNet and ours with various settings.

Table 9 reports the quantitative comparisons. The Dif-
fusionNet performance has significantly decreased, as can
be seen, whereas our performance has essentially been
steady. Interestingly, once we replace the Laplacian pool-
ing/unpooling of our network by the max pooling (in other
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Figure 13. The qualitative results of testing the noise-resistance.
From top to bottom: As noise levels rise, segmentation outputs
of DiffusionNet diverge significantly from the ground-truth, while
ours is more in line with it.

Table 9. The mesh segmentation accuracy statistics when training
on the original human body dataset [42] and testing on the noisy
meshes. ♣ means that we use the max-pooling instead of Laplacian
pooling in our network. The DiffusionNet has a drastic decrease
while ours does not, which shows that ours is more robust to noise.

Method w/ Noise w/o Noise

DiffusionNet (xyz) [57] 64.4% 88.8%
DiffusionNet (hks) [57] 62.0% 90.5%
Laplacian2Mesh (ours) ♣ 60.2% 85.9%
Laplacian2Mesh (ours) 86.7% 88.6%

words, we apply the spatial U-Net directly to our spectral
signals), the performance has an obvious drop. This indi-
cates the necessity of our design to deal with the spectral
signals.

5.2. Non-watertight & Non-manifold Mesh Segmentation

Many mesh segmentation methods [20, 25] are designed
on the premise that the input mesh must be watertight or
manifold or both, which limits their usage on a wider range
of various mesh datasets. For example, SubdivNet [25] as-
sumes that every face of the mesh should have 3 neighbor
faces. MeshCNN [20] requires each edge to be shared by

(a)

(c) (d)

(b)

Figure 14. Our Laplacian2Mesh is able to perform segmentation
on the non-watertight and non-manifold data. (a) and (b) are non-
watertight vases and chairs, respectively; (c) has a non-manifold
vertex, and (d) has a non-manifold edge.

two triangular faces. Therefore, these methods will fail
even with a small number of small gaps or non-manifold
elements (non-manifold vertices or non-manifold edges).

We show our segmentation results on the non-watertight
and non-manifold meshes in Figure 14. Our Lapla-
cian2Mesh is flexible to deal with various structures [48,
58]. If the edge is a non-manifold edge, our solution is
to use robust-laplacian [58] and discard all dihedral angles
corresponding to this edge. In addition, if the face f𝑖 is a
boundary face, we will fill the missing dihedral angle value
with the value 1, which means that this location has gentle
terrain.

5.3. Incomplete Models

We select some models from the COSEG dataset and the
Human-Body dataset, and manually delete some triangle
faces. Note that it results in open surfaces, which cannot be
processed by other mesh understanding networks. We test
these incomplete models with the pre-trained segmentation
network.

The top two rows of Figure 15 show the segmentation re-
sults when more and more triangle faces are removed, while
the last row shows the segmentation of different shapes. It
can be observed that the overall segmentation results re-
main reasonable and sound, indicating that our model can
be generalized to incomplete models. However, as shown in
the human case, the broken models may have poorly fine-
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Figure 15. The results on incomplete models. The red dashed
boxes on the mesh indicate the deleted parts. The green dashed
boxes highlight the inaccurate segmentation boundaries.

grained segmentation at the boundaries of the parts near the
removed region. It’s an interesting future direction to study
that how the spectral-based deep understanding methods are
affected by different geometric and topological changes.

5.4. More Merits

Besides the ability to deal with all kinds of mesh defects
and noise, the biggest advantage of our approach is to de-
couple various shape understanding tasks from the tedious
and complicated triangulation. It can also support various
kinds of inputs, such as meshes and point clouds, as long as
the Laplacian matrix can be equipped. To summarize, learn-
ing the latent features in the spectral domain rather than the
spatial domain inherits the nice properties of the spectral
analysis.

5.5. Limitations

The side-effect of the high-frequency filtering in our
spectral transform is the missing of local features in some
unusual cases. Taking the Cube Engraving dataset [32]
as an example, each model in this dataset is a cube with
a facet being “engraved”, as demonstrated in Figure 16.
The engraved objects are important semantic hints. This
dataset contains 4600 objects with the 3910-690 train/test
split. But our approach regards the engraved objects as
high-frequency information. Not surprisingly, as reported
in Table 10, our Laplacian2Mesh ignores the local shape
classification and performs worst among all the mesh clas-
sification methods.

6. Conclusion and Future Work

We present Laplacian2Mesh, a general network archi-
tecture for mesh understanding in the spectral domain. Our
network takes the multi-resolution spectral signals as the in-

shoe car camel

Figure 16. The Cube Engraving dataset [32]. Our method fails
on this dataset since our approach deems the engraved objects as
high-frequency information.

Table 10. The classification accuracy statistics on the Cube En-
graving dataset [32].

Method Accuracy

PointNet++ [50] 64.3%
MeshCNN [20] 92.2%
PD-MeshNet [45] 94.4%
MeshWalker [31] 98.6%
SubdivNet [25] 98.9%
Laplacian2Mesh (ours) 91.5%

put, and follows the structure of the U-Net architecture. We
design the small-sized SE-blocks and propose the Lapla-
cian pooling/unpooling operations to fuse the features from
different levels of resolutions. The ablation studies demon-
strate the necessity of our key designs to enable the learn-
ing of spectral mesh signals. Compared to state-of-the-
art methods, our approach not only achieves competitive
or even better performances on the mesh classification and
segmentation tasks, but also can handle non-watertight and
non-manifold meshes. It also owns the nice feature of being
noise-resistant.

There is a vast of directions for further exploration. First,
to perform the Laplacian spectral transform, we need to
compute the eigendecomposition of the Laplacian matrix
for each shape. Consequently, the eigenvectors, or to put
it another way, the spectral basis, are not aligned among
the shapes in the dataset. In our Laplacian2Mesh network,
we seek for the small-sized SE-blocks to solve this prob-
lem. However, aligning the spectral basis will enable us to
make use of the larger receptive fields, which will probably
improve the performance in the mesh understanding tasks.
Also, although we have concluded that the multi-resolution
spectral signals are stronger than the single-resolution in-
put, it’s still a remaining question on how to automatically
select the hyper-parameters, i.e. the number of eigenvec-
tors, to adapt to different shape datasets.
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Appendices

A. Eigendecomposition Matrix

For triangle meshes, a common choice of the
discrete Laplacian is cotangent Laplacian, which
forms the basis for the theory of discrete holomor-
phic functions and discrete Riemann surfaces.
It arises naturally via linear
finite elements, discrete ex-
terior calculus, electrical net-
works, and minimal surfaces.
This operator is very sparse,
easy to build, and generally
works well for unstructured
meshes with irregular vertex distributions, which also can
be used on non-manifold meshes by accumulating per-
triangle matrices [48, 58].

For a manifold triangle mesh, the discrete Laplacian Δ

of a scalar function 𝑓 at a vertex 𝑣𝑖 can be approximated as:

Δ 𝑓 (𝑣𝑖) :=
1

2𝑆𝑖

∑︁
𝑣 𝑗 ∈𝑟1 (𝑣𝑖 )

(𝑐𝑜𝑡 𝛼𝑖 𝑗 + 𝑐𝑜𝑡 𝛽𝑖 𝑗 ) ( 𝑓 (𝑣 𝑗 ) − 𝑓 (𝑣𝑖))

(A.1)
where 𝑟1 (𝑣𝑖) is over all the 1-ring adjacent vertices of 𝑣𝑖 ,

𝛼𝑖 𝑗 and 𝛽𝑖 𝑗 are the two angles opposite to edge 𝑣𝑖𝑣 𝑗 , and 𝑆𝑖
is the vertex area of 𝑣𝑖 .

Then, the Laplacian is encoded in a sparse matrix L ∈
R𝑛×𝑛 for the mesh M, such that

©«
...

Δ 𝑓 (𝑣𝑖)
...

ª®®®¬ = L ·
©«

...

𝑓 (𝑣𝑖)
...

ª®®®¬ (A.2)

We define M as the diagonal matrix whose 𝑖-th entry
along the diagonal is twice the vertex area 𝑆𝑖 , that is

M−1 = 𝑑𝑖𝑎𝑔(· · · , 1
2𝑆𝑖

, · · · ). (A.3)

Then, the discretization of the Laplacian can be represented
as

L = M−1C. (A.4)

As we know from [34], the eigendecomposition of L is
the generalized eigenvalue problem for 𝜆 eigenvalues with
corresponding eigenvectors Φ, which satisfies the following
formula:

L𝚽 = M−1𝝀𝚽, (A.5)

where 𝝀 = 𝑑𝑖𝑎𝑔(𝜆0, 𝜆1, · · · , 𝜆𝑛−1), and 𝚽𝑇M−1𝚽 = I.
To facilitate computation, the generalized eigenvalue

problem is equivalently transformed into the standard
eigenvalue problem. So Eq. A.5 is rewritten as

(ML)𝚽 = 𝝀𝚽. (A.6)

Deriving from Eq. A.4, we know that Eq. A.6 can be written
as

C𝚽 = 𝝀𝚽, (A.7)

where 𝚽𝑇𝚽 = I in the formula.
To simplify computations in our work, the eigenvector

matrix 𝚽 is derived from performing an eigendecomposi-
tion on the cotangent weight matrix (Eq. A.7) instead of the
discrete Laplace-Beltrummy matrix (Eq. A.5).

In [35], since the authors obtained the eigenvectors by
eigendecomposition of Laplacian, the spectral reconstruc-
tion is written as

V̂ = 𝚽𝑘 (𝚽𝑇
𝑘MV). (A.8)

If we directly eigendecompose the cotangent weight matrix,
then the spectral reconstruction is

V̂ = 𝚽𝑘 (𝚽𝑇
𝑘V). (A.9)

Comparing A.8 and A.9, we can find that the term of vertex
area can be ignored in our Laplacian2Mesh.

B. Quantitative Comparison

We use the meshes in the Tele-Alien dataset to perform
eigendecomposition and spectral reconstruction. There are
three metrics we used to evaluate the performances of
the two methods, which are the mean of eigendecomposi-
tion time (MET), the mean of spectral reconstruction er-
rors (MRE), and the mean of spectral reconstruction time
(MRT).

MET is the average time taken by all meshes in the
dataset to perform eigendecomposition, which is defined as

𝑀𝐸𝑇 (M0,M0, · · · ,M𝑁𝑚−1) =
1
𝑁𝑚

𝑁𝑚−1∑︁
𝑖=0

𝑡𝑖 , (A.10)

where 𝑡𝑖 is the eigendecomposition time for the mesh M𝑖 ,
and 𝑁𝑚 is the number of mesh models in the dataset.

For spectral reconstruction, the goal is that the mesh re-
constructed with fewer eigenvectors has a smaller recon-
struction error than the original mesh model, which means
that the distance between the vertex coordinates v̂𝑖 of the
mesh M̂𝑖 obtained by spectral reconstruction and the ver-
tex coordinates v𝑖 of the original mesh M𝑖 should be as
small as possible. Therefore, we perform spectral recon-
struction by choosing different numbers of eigenvectors (i.e.



k = {751, 400, 100, 80, 40, 20, 10}), and then the MRE is

𝑀𝑅𝐸 (M0,M0, · · · ,M𝑁𝑚−1) =
1

𝑁𝑚𝑁𝑘

𝑁𝑚−1∑︁
𝑖=0

𝑁𝑘−1∑︁
𝑗=0

∥v̂𝑖 𝑗−v𝑖 𝑗 ∥,

(A.11)
where 𝑁𝑘 is the number of combinations of eigenvectors,
which is 𝑁𝑘 = 7 in our experiment. MRT is the average
spectral reconstruction time of the meshes in the dataset
with different 𝑘𝑖 , which is

𝑀𝑅𝑇 (M0,M0, · · · ,M𝑁𝑚−1) =
1

𝑁𝑚𝑁𝑘

𝑁𝑚−1∑︁
𝑖=0

𝑁𝑘−1∑︁
𝑗=0

𝑡𝑖 𝑗 ,

(A.12)
where 𝑡𝑖 𝑗 is the spectral reconstruction time for the mesh
M𝑖 when 𝑘 𝑗 eigenvectors are chosen.

As the results are shown in Table A.1, we can know that
we can perform eigendecomposition faster because we do
not need to calculate the area term, and our method achieves
lower MRE and uses less MRT. The comparison between
the eigendecomposition of Laplacian and the eigendecom-
position of cotangent weight matrix experiments validates
the effectiveness of our reasoning.

Table A.1. The performance of discrete Laplacian matrix and
cotangent weight matrix for the task of spectral reconstruction.
”MET” is the mean of eigendecomposition time for the meshes
in the Tele-Alien dataset, ”MRE” is the mean of spectral recon-
struction error, and ”MRT” is the mean of spectral reconstruction
time.

Method MET ↓ MRE ↓ MRT ↓

Laplacian 1048ms 6.55 × 10−1 2.18ms
cotangent (ours) 824ms 6.33 × 10−1 1.27ms

C. Dense Meshes

We compare the mesh segmentation of our Lapla-
cian2Mesh on sparse meshes [68] (used in the main paper)
and dense meshes [25]. Table A.2 reports the segmenta-
tion results and the running time on sparse meshes in the
first two rows, and those on dense meshes in the bottom
two rows. The experiment in the last row shows that our
method can also achieve gratifying performance on dense
meshes. However, as shown in this table, the performance
relies on the input size of the network, i.e. the number of
eigenvectors used to form our multi-resolution spectral sig-
nals. Dense meshes require larger memory space and com-
putation amount to perform the eigenvector decomposition
and the transformation between different eigenvector basis.
With our current implementation, we can only run the ex-
periment on dense meshes with input size 1024-256-64 in
order to prevent the out-of-memory issue. It’s worth noting

that our method requires at least 𝑁/2 eigenvectors (input
size 4096-1024-256 for the dense mesh dataset) to obtain
the best performance, as described and validated in the main
paper, which means that our method has the potential to get
better results on dense meshes.

The sparse matrix computation techniques are useful to
solve this issue. There has been some research [57, 60]
using sparse computation for eigenvector decomposition
and spectral signal processing. Implementing our Lapla-
cian2Mesh with the sparse matrix computation techniques
will further improve the performance.
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