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Abstract

Style transfer is a popular research topic in the field
of computer vision. In 3D stylization, a mesh model is
deformed to achieve a specific geometric style. We ex-
plore a general neural style transfer framework for 3D
meshes that can transfer multiple geometric styles from
other meshes to the current mesh. Our stylization net-
work is based on a pre-trained MeshNet model, from
which content representation and Gram-based style rep-
resentation are extracted. By constraining the similarity
in content and style representation between the gener-
ated mesh and two different meshes, our network can
generate a deformed mesh with a specific style while
maintaining the content of the original mesh. Exper-
iments verify the robustness of the proposed network
and show the effectiveness of stylizing multiple models
with one dedicated style mesh. We also conduct ablation
experiment to analyze the effectiveness of our proposed
work.

Keywords: geometric learning, style transfer, styliza-
tion, optimization

1. Introduction

3D shape representation is a fundamental research topic
in the field of computer vision and computer graphics. As
a representation of 3D objects, triangular meshes have been
widely used because of their strong representation ability
for complex 3D models. However, due to the complex
topology and diverse data structure, manipulating and mod-
ifying the mesh are challenging. Enriching the mesh model
by editing existing models is inefficient.

In image processing, image style transfer based on deep
learning [8] has achieved fruitful results. We can learn from
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existing image data and synthesize new images with differ-
ent styles. The general image style transfer network works
as follows: First, a pre-trained model is used to extract high-
dimensional features of an image, and these features are de-
coupled to represent image content and style respectively.
Second, given a content image, a style image, and an ini-
tialized generated image, a loss function is defined to con-
strain the similarity between the implicit features of the gen-
erated image and the content and style features. Last, the
network updates the synthesized image through continuous
optimization so that it learns a new style while preserving
the original content. The success of image style transfer
proves that deep learning is a powerful tool for artistic cre-
ation and data augmentation. We are therefore inspired to
extend the image-to-image translation work [8] to the style
transfer of complex 3D mesh models.

In recent years, researchers proposed various methods
for 3D shape stylization and non-realistic modeling, such as
traditional energy optimization methods [36, 23] and style
transfer neural networks [37, 11]. The stylization methods
extract geometric styles from 3D mesh models. Styles may
refer to different geometric features in different applica-
tions, such as detailed textures, shapes, structures, and sizes.
The Laplacian surface editing algorithms [2, 32] focus on
transferring surface texture or coating to a smooth mesh. A
neural cage network [37] is proposed to warp a source shape
to match the general structure of a target shape while pre-
serving the surface details of the source. The Legolization
method [26] automatically rates a LEGO brick layout from
a 3D model, considering the shapes, colors, and layouts.
Cubic stylization [23] deforms a 3D model into the style of
a cube and maintains the texture. In this paper, we propose a
generic style transfer network that enables one mesh model
to present multiple geometric styles.

Our neural style transfer network takes a style mesh and
a content mesh as input. Unlike traditional hand-crafted fea-
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tures, we extract latent geometric features of mesh models
using a feature extractor. We adopt MeshNet [7] as the pre-
trained network to encode mesh features and feed it into
the proposed style learning network to deform generated
mesh. MeshNet provides the spatial and structural represen-
tation of a 3D model, which is beneficial for our network in
geometric learning ability. Our network optimizes the de-
formation of the synthesized mesh iteratively, allowing it
to learn specific geometric styles while maintaining good
quality. Furthermore, our network is robust and efficient in
handling non-manifold meshes with an arbitrary number of
triangular faces and is not affected by the processing order.
We demonstrate the effectiveness of the style transfer net-
work through rich experiments. Our specific contributions
are summarized as follows:

• We propose a neural style transfer network that general-
izes image-to-image translation [8] to style transfer be-
tween 3D meshes. Our network is generic in transferring
multiple styles to the target mesh with outperforming re-
sults.

• We classify the implicit features extracted by Mesh-
Net [7] into geometric style and intrinsic content, and
demonstrate that this feature design can effectively guide
the mesh to learn specific geometric style.

2. Related Work

Our neural style transfer network is closely related to
image-to-image translation, deep learning for mesh analysis
and 3D object stylization research.

2.1. Image style transfer network

Image-to-image translation networks aim to convert the
style of an artistic image (such as cartoon, oil painting,
and watercolor) into a target image so that they have simi-
lar artistic style. Gatys et al. [8] proposed a convolutional
neural network that can separate and recombine natural im-
ages’ content and style features. They use deep features
to construct a Gram matrix to represent styles, which is
adopted in many style transfer networks for images and
point clouds [3]. Their method is computationally expen-
sive since it requires repeated forward and backward passes
through the pre-trained network. To improve efficiency,
Johnson et al. [15] proposed to use perceptual loss defined
on high-level features for training feed-forward transforma-
tion networks.

Image style transfer can also be achieved using Gener-
ative adversarial networks(GANs) [9]. Pix2Pix [14] uses
conditional GANs for image-to-image translation tasks,
where the network is conditioned on an input image and
generates a corresponding output image. Unlike Pix2Pix
trained on aligned image pairs, CycleGAN [40] learns

image style without paired samples based on the “cycle-
consistent” structural assumption. Pix2Pix and CycleGAN
can only translate one image domain to another at a time.
Whereas, StarGAN [4, 5] performs image translations for
multiple image domains by using only a single model.
StyleGAN [18] proposes a GAN formulation to generate
high-resolution synthetic images based on the progressive
growth mechanism. The pyramidal layer blocks in Style-
GAN control disentangled features of different scales, thus
style-mixing between two images can be performed natu-
rally.

2.2. Deep learning for mesh analysis

Meshes provide an efficient and non-uniform represen-
tation for 3D geometries. Researchers have proposed dif-
ferent neural networks for 3D mesh analysis in recent
years [21, 7, 31, 12, 28, 10, 20]. These networks encode
high-dimensional features based on the vertices, edges, and
faces of the mesh to improve the performance on classi-
fication or segmentation tasks. Xu et al. [35] proposed
directional convolution on a surface mesh to solve the
shape segmentation problem, defined the rotation-invariant
mechanism, and utilized curvature to guide the convolu-
tion on faces. MeshNet [7] is a neural network on meshes
that extracts face features and aggregates them with neigh-
boring information. It utilizes different per-face process-
ing and symmetry functions to solve the irregularity prob-
lem on meshes and can deal with non-manifold cases.
MeshCNN[10] performs convolution within local neighbor-
ing edges and accomplishes mesh pooling via edge collapse.
It learns which edge to collapse to expose and expand the
important features while discarding the redundant ones.

PD-MeshNet [28] is a primary-dual framework that re-
lies on two graphs specifically defined for meshes assigning
features to both edges and faces. The dual graph allows
dynamic feature aggregation to be performed on neighbor-
ing features for the graph node by using an attention mech-
anism. MeshWalker [20] can learn 3D shape and topol-
ogy directly from a given mesh by random walking along
the mesh surface. It works well even when the training
dataset is small. Following the introduction of MeshNet [7],
MeshNet++[31] is a deeper neural network that can learn
the local structure at multiple scales and exhibits robust-
ness to mesh decimation. SubdivNet[12] uses loop subdivi-
sion sequence connectivity as a basis to offer general con-
volution directly defined on meshes. Many other networks,
such as the dilated convolution network [30], have also been
proposed recently to improve the mesh representation abil-
ity [21].

2.3. 3D object stylization

Mesh deformation algorithms [41, 29] allow the local
rigid deformation of meshes to synthesize objects with par-
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Figure 1. Visualization of different methods for stylization on an
example model. (a) Original model; (b) developable surfaces [33];
(c) cubic stylization [23]; (d) ours.

ticular styles. Mesh editing algorithms based on Laplacian
coordinates [2, 32] can transfer texture or coating styles
to the target mesh. Some algorithms can design geome-
try flows or filters to create stylized geometry, such as gen-
erating edge-preserving smoothing geometry [39] and cre-
ating developable surface modeling [33]. Aiming directly
at 3D object stylization, Liu et al. [23] presented a cubic
stylization algorithm that turns object shapes into the cubic
style by optimizing the As-Rigid-As-Possible (ARAP) en-
ergy with `1-regularization aligning rotated vertex normals
with coordinate axes. Xu et al. [36] proposed a style transfer
framework for co-analysis of a 3D set via style-content sep-
aration through anisotropic part scales. Berkiten et al. [1]
proposed a displacement map transfer algorithm that con-
verts existing high-quality, detailed 3D models to simple
shapes with no textures.

Recently, researchers proposed many neural networks
for 3D stylization. Liu et al. [25] proposed a network that
allows users to edit an input 3D surface by simply select-
ing an image processing filter. It is a differentiable ren-
derer with a stochastic multi-view gradient-descent proce-
dure that can back-propagate the changes in the image do-
main to the mesh vertex positions. Wang et al. [37] pro-
posed a neural network for detail-preserving shape defor-
mation inspired by traditional cage-based methods [17, 22].
They designed cage-prediction and deformation-prediction
models to warp a source shape to match the target shape.
Inspired by MeshCNN [10], Hertz et al. [11] designed a
deep network to learn geometric texture from local tri-
angular patches and generate mesh vertex displacements
for synthesizing local geometries. Yin et al. proposed
3DStyleNet [38] to predict a part-aware affine transforma-
tion field that naturally warps the source shape to imitate the
geometric style of the target. Michel et al. [27] proposed
Text2Mesh to predict color and local geometric details of
3D mesh which conform to a target text prompt. Some styl-
ization methods emphasize texture learning or coat trans-
fer [32, 25, 11], while our network focuses on the structure
or shape style transfer. As in Figure 1, we show different
stylization of bunny model generated by some representa-
tive methods and our network.

3. Method

In this section, we describe the neural style transfer of 3D
meshes. We first present the architecture of the proposed
geometric style transfer in Section 3.1. Then we explain
how to transfer the geometric style between meshes based
on the deep features extracted from the mesh representation
network [7] in Section 3.2. Last we describe the strategy for
selecting style and content feature layers in Section 3.3.

3.1. Network architecture

Related mesh stylization work have tried to guide style
learning by some low level hand-crafted features, such as
object size [36], surface normal [23, 19, 24], or curva-
ture [6]. In our work, we try to guide the mesh deformation
by high-level latent features generated by a neural network.
We focus on transferring the geometric style from the style
mesh to other meshes. Inspired by image style translation
work [8], we design a neural style transfer network to guide
the generated mesh to learn new geometric styles and pre-
serve the original content.

We present the overall architecture of the neural style
transfer for meshes in Figure 2. The network takes a content
mesh and a style mesh as input and obtains their deep fea-
tures from a mesh representation network, namely, Mesh-
Net [7]. Then, it extracts the style and content representa-
tions as a reference for the synthesized mesh. Our network
continuously optimizes the vertex positions of the generated
mesh guided by the style similarity to the style mesh and
the content consistency to the content mesh. In addition,
we propose a shape regularization to ensure mesh quality
during deformation.

As shown in the gray box of Figure 2, the pre-trained
MeshNet is used to map mesh attributes to latent space con-
sisting of geometric features for subsequent classification.
MeshNet [7] is a 3D shape representation network based
on direct convolution on mesh faces, and the intermediate
features it extracts can represent the spatial and structural
information of the mesh. In our work, we find that the de-
coupling of the latent geometric features of the mesh pro-
vides the possibility to learn and transfer geometrical styles
between meshes.

3.2. Neural style transfer between meshes

Given a content mesh and a style mesh, we sample the
mesh to obtain the same number of triangular faces. The
initial features of a triangular face include center coordi-
nate, corner vector, face normal, and neighboring triangle
index [7]. We denote the content mesh as C ∈ Rnt×k

and the style mesh as S ∈ Rnt×k, where k and nt are the
numbers of input feature channels and triangle faces of the
mesh, respectively. The initial feature channel k of a trian-
gular face is 18 in the mesh model. Our network attempts to



Figure 2. The overall architecture of the neural style transfer network for 3D meshes. The network in gray box is the pre-trained MeshNet [7]
for classification task. Inside the dashed box are the feature layers where we extract content and style of mesh from the MeshNet. Our
network utilizes MeshNet as feature extractor of input meshes to guide the optimization of the generated mesh. The blue solid arrow
represents forward propagation, and the red dashed arrow represents back propagation.

transfer the geometric style of S to C by generating a new
mesh M . Using a pre-trained MeshNet as an encoder to ex-
tract decoupled high-dimensional features, the style transfer
network tries to synthesize a mesh that can exhibit the struc-
tural style of S while maintaining content consistency with
C. We define the loss function in Equation (1). The neural
style transfer continuously optimizes the generated meshM
by minimizing the following loss function:

Loss(C, S,M) =Lc (C,M) + λs ∗ Ls (S,M)

+ λr ∗ Lr(M),
(1)

where Lc(C,M) is the content loss, which is used to mea-
sure the difference in content representation between C and
M , Ls(S,M) is the style loss to measure the difference
in style representation between S and M , and Lr(M) is
a shape regularizer that enforces the uniform shape of tri-
angular faces. λs and λr are the hyperparameters that bal-
ance the weights of content representation, style represen-
tation, and shape regularization. The style transfer network
predicts new vertex positions of M by optimizing the loss
function to obtain the final stylized mesh.

The attributes of input mesh, such as vertex position, face
normal, and neighboring relationship, are encoded by the
feature extractor into latent space F(·) ∈ Rnt×d consisting
of content and style representation. d is the total number of
feature channels in the latent space. Specifically, we denote

{lc} =
{
l1c , l

2
c , . . . , l

p
c

}
as the content layers, and {ls} ={

l1s , l
2
s , . . . , l

q
s

}
as the style layers for computation of the

loss. In the following definition, we ignore the superscript
and subscript, and use l to denote one feature layer.

Content loss measures the difference in content repre-
sentation between content mesh C and generated mesh M .
M is initialized toC and then updated by predicting the new
position of each vertex. We expect M to retain basic con-
tent information in C during style learning; then, the gen-
erated mesh and content mesh can be regarded as different
styles of the same object. Let Fl(·) denote the latent fea-
tures through a certain layer l in the feature extractor. The
row of Fl(·) is the number of triangular faces of the input
mesh, and the column corresponds to the number of feature
channels at layer l. We extract feature layers representing
mesh content and define the content loss between C and M
as follows:

Lc (C,M) =
∑

l∈{lc}

∥∥Fl(C)− Fl(M)
∥∥2
2
, (2)

where {lc} is the set of layers in the feature extractor for
content representation.

Style loss measures the difference in style representation
between style mesh S and generated meshM . We hope that
the geometric style of M is closer to S after each optimiza-
tion step. We utilize the Gram matrix to compute the geo-



Figure 3. Style transfer results of different geometric styles. The first row shows style meshes, the first column shows content meshes, and
the rest shows the results obtained by our style transfer network.

metric style of feature layer l by measuring the character-
istics of each feature channel and the spatial correlation of
different feature channels in latent feature Fl(·). We denote
Gram matrix of feature layer l as G

(
Fl(·)

)
∈ Rn×n, where

n is the feature channels of that layer. The geometric style is
calculated by equation G

(
Fl(·)

)
= (Fl(·))>(Fl(·)). The

ijth element of the G
(
Fl(·)

)
is the inner product of the ith

and jth column vectors of Fl(·).
After calculating the Gram matrix of a specific layer for

S and M , we define the style loss as follows:

Ls (S,M) =
∑

l∈{ls}

‖G
(
Fl(S)

)
−G

(
Fl(M)

)
‖22, (3)

where {ls} represents the feature layers from MeshNet re-
lated to geometric style. The strategy for the selection of
content feature layers {lc} and style feature layers {ls} is
discussed in Section 3.3.

Shape regularization is necessary to ensure the uni-
formity and quality of triangular faces in M during opti-

mization in our network. Minimizing only the content and
style loss terms may result in a low-quality mesh contain-
ing irregularly-sized or locally oscillatory faces and drifting
vertices, see Figure 6. AssumeM contains ne and nv edges
and vertices, respectively. Let V be the nv × 3 matrix con-
sisting of coordinates for all the vertices of the mesh M and
E = {ei} be the edge set of M . Also let L be the Laplace
matrix of size nv × nv of M . We follow [16] to enforce
the smoothness of the predicted mesh M by adding a shape
regularization Lr to the objective function:

Lr =λe ∗ Ledge + λnLnormal + λl ∗ Llaplacian, (4)

where

Ledge =
1

ne

∑
ei=(v,v′)∈E

‖v − v′‖2 , (5)

Lnormal =
1

ne

∑
ei∈E

1− cos(n̂, ñ), (6)



with n̂ and ñ the normal of two adjacent faces of ei, and

Llaplacian = ‖L · V ‖1. (7)

The hyperparameters λe, λn, and λl are used to balance the
effects of different shape regularization terms. We provide
the ablation study on shape regularization to verify its ef-
fectiveness in Section 4.3.1.

3.3. Selection of feature layers

As introduced previously, MeshNet [7] adopts face-unit,
feature splitting, and effective mesh block strategies for
mesh representation. In our network, we use {lc} and {ls}
to denote the feature layers extracted from MeshNet, re-
spectively for calculating the content loss and style loss.
In this section, we analyze the latent features encoded by
MeshNet and show how to select style features from the im-
plicit features of the style mesh so that the generated mesh
can learn its geometric style.

We show the simplified architecture of the MeshNet
model in Figure 2. Based on the center, corner, normal, and
neighboring information of original triangular faces, Mesh-
Net adopts two descriptors to split features of faces into the
spatial feature and structural feature. The spatial descrip-
tor takes the center coordinate of faces as input to generate
high-level features relevant to spatial position. In our net-
work, we consider the spatial features to be the content layer
{lc} of the mesh, and we want the content of the generated
mesh to be as close as possible to the content of the content
mesh. The structural descriptor consists of two parts: the
first part takes the corner value of each face as input to cap-
ture the “inner” structure of faces and focus on shape infor-
mation; the second part takes the normal value of each face
and its neighbors as input to capture the “outer” structure of
faces and focus on the local environment. We believe that
the structural features generated by the structural descriptor
represent the geometric style of the mesh on some level. For
example, latent features encoded from both a face’s normal
and the relations to its neighbors show a specific pattern of
a cube model, which can serve as its geometric style.

Given the spatial and structural features of triangular
faces, MeshNet adopts the mesh convolution block to ex-
pand the receptive field of faces by aggregating information
of neighboring faces. Furthermore, MeshNet designs com-
bination and aggregation operations on spatial and struc-
tural features to generate global features for the classifica-
tion task. We experiment by selecting the latent feature of
each block from MeshNet as style features in our network
and perform ablation study in Section 4.3.2.

4. Experiments

In Section 4.1, we present the dataset and training set-
tings of the proposed neural style transfer network. In

(a) (b) (c)
Figure 4. Comparison of the cubic stylization [23] method and
our method. (a) Original models, (b) cubic stylization and (c) ours.
Our results demonstrate better properties in terms of the preserva-
tion of object content and the degree of cubic stylization.

Section 4.2, we demonstrate the qualitative results of our
network and the comparison experiments with relevant ad-
vanced stylization methods. In Section 4.3, we perform ab-
lation studies to validate the network design. In Section 4.4,
we discuss the limitation of the proposed neural stylization
network.

4.1. Experimental setting

Dataset. Our network adopts a pre-trained MeshNet for
the feature extractor of mesh models. We use a simpli-
fied version of ModelNet40 [34] called Manifold40 [12] to
train the MeshNet on classification task. Manifold40 [12]
dataset contains 12,311 triangular mesh models across 40
categories, among which 9,843 are used for training, and
2,468 are used for testing. The mesh models in this dataset
are watertight, and each model contains 500 faces. Man-
ifold40 dataset is used for training MeshNet on classifica-
tion task, and we use the pre-trained model to extract latent
features of our mesh models. We collect some classic and
popular triangular mesh models for style transfer learning,
such as animals, humans, artifacts, cars, etc. Before train-



Figure 5. Neural style transfer of a scissor model. The first row shows original models and the second row shows stylized models.

ing, we pre-process the mesh model by sampling it to 2000
faces, moving it to the geometric center, and normalizing it
to a unit sphere.

Training settings. We use the same hyperparameters
for mesh style transfer throughout the experiments on dif-
ferent models. We apply the pre-trained MeshNet model
with 92.75% classification accuracy as the feature extractor
in our neural network. We train the style transfer network
for 300 epochs taking content mesh C and style mesh S
as input. The generated mesh M is initialized to content
mesh C at the beginning of model training. The hyperpa-
rameters in the loss function are set as follows: λs = 0.01,
λr = 30, 000, λe = 1.0, λn = 0.01, and λl = 0.1. Before
training, we normalize C and S so that the extracted mesh
content and style representations have comparable propor-
tions. To obtain the final generated style-transferred mesh,
we use the Adam optimizer with an initial learning rate of
0.002. β1 and β2 of Adam optimizer are set to 0.9 and
0.999, respectively. We update the vertex positions of the
generated mesh iteratively until the energy converges or the
maximum number of training epochs is reached. The train-
ing process for 300 epochs takes up one or two minutes for
all the stylized models in the paper.

4.2. Qualitative results of mesh neural style transfer

We select triangular meshes with specific geometric
styles as style meshes, such as cube, octahedron, decahe-
dron, and icosahedron models. The neural style transfer
network deforms the content mesh to present the geomet-
ric style above.

Figure 3 shows the stylization results for various triangu-
lar mesh models, with original models in the first column.
By specifying the cubic model as the style model, the net-
work converts the input model into a square-shaped model
while preserving the content characteristic of the original

mesh as much as possible, see the second column of Fig-
ure 3. In other columns, we show the results with the octa-
hedron, decahedron, and icosahedron styles.

Similar style transfer methods have been proposed be-
fore, such as mapping models to polycube [13] and deform-
ing models to cube based on ARAP energy with a normal
regularization [23]. In the experiment, we mainly compare
our method with the cubic stylization algorithm [23]. In
Figure 4, the second column shows the cubic stylization re-
sults, and the third column shows our results. Two methods
take the same mesh models with 2000 triangular faces as
input. We can see from the results that our method gen-
erates similar cubic style as Liu’s method [23], and our
method is able to preserve more local structures of the con-
tent mesh. For example, the structural information of the
Spot’s face, Shiba’s legs, and camel’s neck are well pre-
served, and the results are more aesthetically pleasing. In
addition, Liu’s method only yields cubic stylization, but our
method is more generic since it can transfer more geometric
styles to the source model.

Moreover, we choose a scissor model as the style mesh
to learn its geometric style shown in Figure 5. The scissor
has a single normal distribution presenting a flattened shape.
Figure 5 shows that the normal diversity of the model sur-
face is significantly reduced after stylization. However, un-
like the cubic style, the scissor style has flattened the model,
and the model body exhibits multiple parallel faces.

4.3. Ablation studies

4.3.1 Importance of shape regularization

In this section, we design the ablation study to verify the
effectiveness of the shape regularization term introduced in
Section 3.2.



Figure 6. Cubic stylization with (last row) and without (second
row) the shape regularization. The results in last row show that
shape regularization enhances the smoothness of results.

In Figure 6, we show the cubic stylized meshes ob-
tained with and without shape regularization. If the net-
work uses only style and content losses without shape con-
straints, irregularly-sized faces, flipped faces, and drifted
vertices may be introduced in the result meshes. As can be
observed in the second row of Figure 6, the dolphin model
contains flipped faces on its back, the feet of the cat model
turn to visually inaesthetic, and some vertices at the head
part of the fertility model drift away from the surface. In
contrast, the last row shows the stylized model under shape
regularization with better quality. The surface is smoother,
and the shape of triangular faces is more uniform. In sum-
mary, the ablation experiments confirm the importance and
effectiveness of shape regularization in our style learning
network.

4.3.2 Impact of different feature layers

Our style transfer network is based on the geometric
representation of the mesh from the pre-trained MeshNet
model. Selecting the feature layers {lc} and {ls} for content
and style is essential in our network. To verify whether the
selection of feature layers is reasonable, we design ablation
experiments to show how different choices of feature layers
affect the stylization ability of our network. As discussed in
Section 3.3, we take the spatial features as the content lay-
ers {lc}, thus in the ablation study we mainly focus on the

selection of style layers {ls}.
Given the triangular faces of input mesh, MeshNet en-

codes basic features into latent features of multiple layers.
First, the input features are fed to the spatial and structural
descriptors to obtain spatial and structural features. Second,
the 1-ring neighbors are aggregated by mesh convolution
blocks to get more comprehensive feature. Then the net-
work generates final classification score through MLP lay-
ers. Based on the architecture of MeshNet, we try to select
features of different layers as the style {ls}. We introduce
the following four feature layers:

L1) Spatial features generated by spatial descriptor with
triangular face information as input;

L2) Structural features generated by structural descriptor
with triangular face information as input;

L3) The output features of the first mesh convolution block
with spatial and structural features as input;

L4) The output features of the final mesh convolution block
as input.

In Figure 3, we show the stylization of mesh models with
feature L3 as the style feature. We show the stylization re-
sults with other feature layers as the style feature in Fig-
ure 7, where we can observe that by choosing different fea-
tures as the style, the meshes generated by the network are
quite different. We analyze the effect of different layers in
the following:

• The second and sixth columns in Figure 7 show the
stylization utilizing feature L1 in the style loss. The
spatial descriptor mainly extracts the spatial position
information of the style mesh. The generated mesh
is optimized to be similar to the style mesh in spatial,
resulting in dramatic shape expansion and non-realistic
effect.

• Using L2, the structural features, as the style of mesh,
the network generates better results than using feature
L1. The structural descriptor encodes the normal and
neighboring information of each triangular face, repre-
senting the model’s local geometric features.

• Combining spatial and structural features, the network
generates a smoother mesh with the target geometric
style. Our experiments finally adopt this choice of
style layer, and it can be seen from many results that
the style transfer network can well deform the model
to a specific style and ensure the mesh quality.

• After further encoding feature L3, we obtain higher
level features L4 of the style mesh. However, the



Content mesh L1 L2 L3 L4 L1 L2 L3 L4
Figure 7. Effects of selecting different feature layers as style of a mesh in our network. The first row is the style mesh, the first column
is the content mesh, others correspond to the results of four feature layers. It can be observed that the geometric styles extracted from the
different feature layers are substantially different.

geometric difference between style mesh and con-
tent mesh decreases after layer-by-layer encoding,
which indicates that the middle-level features can more
clearly represent the geometric style of the mesh.

Hence, considering the performance of the feature layers
mentioned above, we select feature L3 in our style transfer
network to extract the geometric style of the mesh model. It
extracts abundant explicit geometric features, matches our
intuitive understanding of the model style visually, and the
deformed mesh model is quite aesthetically pleasing.

To show the stylized models more clearly , we only show
the geometric models without texture in Figure 4. To further
demonstrate the advantages of our method in practice, we
add the texture mapping on cubic style models in Figure 8.
Our method can deform the smooth cartoon model into a
cubic style and preserve the structure of the model well. For
example, Spot’s horns, face, and legs show line structures,
and the octopus’ head presents a polyhedron silhouette.

4.4. Limitation

Our network can capture the normal distribution of style
models, such as models with multiple flat surfaces or raised
sharp corners. However, the pre-trained MeshNet mainly
learns feature representation on spatial distribution and
shape structure, and has limited ability to encode surface de-
tails. Therefore, the proposed style transfer network doesn’t
perform well in learning surface textures. As shown in Fig-

(a) (b)

Figure 8. Cubic stylization with textures. (a) original models and
(b) stylized models.

ure 9, we choose a rail sphere with specific texture details as
the style model. However, as we can observed in Figure 9
(c), the geometric pattern is not successfully transferred to
the vase model.



(a) (b) (c)
Figure 9. Limitation of the proposed network. (a) Content mesh;
(b) style mesh and (c) style transfer result. The vase model fails to
learn the geometric texture details of the rail sphere model.

5. Conclusion

We propose a neural style transfer network for 3D
meshes that can transfer the style of a model to another
model while preserving its content features. Our ap-
proach successfully generalizes the classic 2D image-to-
image translation method [8] to 3D mesh style transfer by
using a pre-trained MeshNet model to extract the content
and style features of a 3D model. Compared with the ex-
isting mesh style transfer algorithms, our network architec-
ture is simple and effective and can be generalized to learn
multiple styles. In addition, our network doesn’t require a
manifold mesh as input. Therefore, our network can serve
as a stylization tool that is beneficial to enrich the sample
numbers of mesh databases. Considering the limitations of
the proposed method, in the future, we will try to use other
pre-trained models with a better ability to extract the local
texture of the model to learn the surface styles.
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