
TSDFFilter: Content-Aware Communication Planning for Remote 3D
Reconstruction

Xu-Qiang Hu
Tsinghua University
huxq@outlook.com

Yu-Ping Wang
The Beijing Institute of Technology

wyp cs@bit.edu.cn

Zi-Xin Zou
Tsinghua University

zouzx19@mails.tsinghua.edu.cn

Dinesh Manocha
University of Maryland
dmanocha@gmail.com

Abstract

We present a novel solution, TSDFFilter, for remote
3D reconstruction to relieve the high bandwidth require-
ment problem. Our approach is designed for scenarios
where agents are used to collect data using an RGB-
D camera and then transmit the information over the
regular network to a high-performance server, where
a global, dense, and volumetric model of a real-world
scene is reconstructed. Our approach uses a content-
aware communication planning framework in which
agents can prune the gathered RGB-D information ac-
cording to the transmission policy generated by the
server. To generate the transmission policy, we intro-
duce a confidence value to estimate how much each
RGB-D pixel contributes to the reconstruction quality,
and present an algorithm to find the confidence value.
As a result, agents can transmit less RGB-D informa-
tion without blindly compromising the reconstruction
quality as the key-frame method and down-sampling
method do. We implement our TSDFFilter framework
to achieve real-time agent-assisted 3D reconstruction.
Extensive evaluations show that comparing with the
key-frame and down-sampling methods, our TSDFFil-
ter framework can reduce the bandwidth requirement
by up to 36% with similar reconstruction Chamfer dis-
tance, and reduce the reconstruction Chamfer distance
by up to 78% with similar bandwidth requirement.

Keywords: Communication Planning, Remote 3D Re-
construction, TSDF, Transmission Policy.

1. Introduction

Reconstructing dense, volumetric models of real-world
3D scenes is an important research topic in Visual Me-
dia [4,36,42,43]. With the wide usage of consumer RGB-D
cameras, gathering visual information for 3D reconstruc-

(a) Image before pruning (b) Pruned image

(c) Image before pruning (d) Pruned image

Figure 1: Examples of how the pruning works. (a) and (c)
are RGB images before pruning. (b) and (d) are the pruned
RGB images (white pixels are pruned), and the required
bandwidth can be reduced about 50% and 90% respectively.
For (a) and (b), the camera is moving up. For (c) and (d),
the camera is moving to the right.

tion has become affordable, but data collection is still time-
consuming. Thus, offline 3D reconstruction, where recon-
struction is done after data collection, is time-consuming.
With the widely usage of RGB-D cameras on mobile de-
vices, and the development of robotics and drones, agents
are being used to automatically collect RGB-D data at re-
mote locations [6, 11]. Such a 3D scene reconstruction
framework is also called multi-agent collaborative dense
scene reconstruction, or remote 3D reconstruction for short.

Under the remote 3D reconstruction framework, each
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agent is responsible for capturing part of the scene. For
the reason of costs and energy, agents are not equipped with
powerful GPUs which are usually needed for real-time re-
construction. Therefore, agents transmit the gathered RGB-
D information to a high-performance server on which the
global 3D model is reconstructed. However, this frame-
work raises the requirements for high network bandwidth.
In [11], the authors stated that the network bandwidth re-
quired to transmit the RGB-D images captured by a Kinect
(640 × 480) is roughly 250Mbps, or 25Mbps if the same
sequence is compressed, but their WiFi router can only pro-
vide a bandwidth of about 8Mbps. The situation was even
worse when there were multiple RGB-D cameras, since
they competed for the bandwidth of the WiFi router and the
server’s network card. Due to this issue, in practice, of-
fline 3D reconstruction is usually preferred than remote 3D
reconstruction in order to obtain more precise 3D model.
Therefore, reducing the bandwidth requirements while re-
taining precision is essential for remote 3D reconstruction
to scale to more agents and higher-resolution cameras.

Similar bandwidth problems also arise in remote simul-
taneous localization and mapping (SLAM) systems [9, 24,
33, 34]. These systems also gather and transmit high-
resolution visual information to build a map and achieve lo-
calization. However, the main purpose of SLAM algorithms
is localization, and building a sparse map of the scene is suf-
ficient for accurate localization [8]. Therefore, not all col-
lected points are valuable to SLAM algorithms. Transmit-
ting only the feature points is sufficient and can relieve the
bandwidth problem for remote SLAM systems [29]. How-
ever, this kind of solution cannot be used for remote 3D
reconstruction frameworks.

In 3D reconstruction algorithms, all collected points are
potentially valuable. They improve the reconstruction qual-
ity by either providing new information or reducing er-
rors [27]. To relieve the bandwidth problem, remote 3D
reconstruction systems currently have only two options:
selecting key-frames or down-sampling the gathered im-
ages [6, 11]. Selecting key-frames results in the loss of
some information provided only by the dropped frames and
down-sampling the gathered images causes the details to be
ignored. Reducing bandwidth requirements without com-
promising reconstruction quality is still a challenging prob-
lem for remote 3D reconstruction frameworks.

Main Results: In this paper, we present a communication
planning algorithm for remote 3D reconstruction, TSDFFil-
ter. Instead of totally dropping some of the RGB-D frames,
our idea is to drop some RGB-D pixels. We introduce a
confidence value for each RGB-D pixel and theoretically
show that it can represent how much the RGB-D pixel con-
tributes to the reconstruction quality. Based on the confi-
dence value, the server can generate a transmission policy

to the agents. Further, based on the transmission policy, the
agents then transmit only the pixels that contribute more
to the reconstruction quality, and thus the bandwidth re-
quirement is reduced. We test our TSDFFilter framework
to achieve real-time 3D scene reconstruction. Experimental
results show that comparing with the key-frame and down-
sampling methods, our TSDFFilter framework can reduce
the bandwidth requirement by up to 36% with similar re-
construction Chamfer distance, and reduce the reconstruc-
tion Chamfer distance by up to 78% with similar bandwidth
requirement. The main contributions of this paper include:

(1) We present a communication planning framework for
remote 3D reconstruction, TSDFFilter, which can reduce
the bandwidth requirement while retaining more useful de-
tails.

(2) We present the confidence value for each RGB-D
pixel to estimate how much it contributes to the reconstruc-
tion quality, and an efficient algorithm to generate the con-
fidence value.

(3) We apply our TSDFFilter framework to practical
TSDF-based reconstruction system, InfiniTAM [17, 18],
and implement it based on ROS [32], which is the de-facto
robotic middleware.

(4) Our TSDFFilter framework is extensively evalu-
ated with data from three datasets (the Scannet RGB-D
dataset [3], the TUM RGB-D dataset [38] and the Cow
& Lady RGB-D dataset [28] and show significant results.
When the resulting reconstruction Chamfer distance is sim-
ilar, our TSDFFilter framework can reduce the bandwidth
requirement by up to 36% comparing with key-frame and
down-sampling methods. When the bandwidth is similar,
our TSDFFilter framework can reduce the reconstruction
Chamfer distance by up to 78% comparing with key-frame
and down-sampling methods.

2. Related Work

2.1. 3D Reconstruction

3D reconstruction is a common research interest in Com-
puter Vision, Robotics, and Multimedia. Since the emer-
gence of commodity RGB-D sensors (e.g., Microsoft’s
Kinect) and modern GPU programming frameworks (e.g.,
NVidia’s CUDA), real-time dense 3D reconstruction has be-
come feasible on commodity hardware. KinectFusion [16,
26] was one of the first real-time volumetric reconstruc-
tion frameworks. To handle large-scale scenes, the state-of-
the-art solutions [17, 27] organize voxels with a hash map.
To achieve high reconstruction quality, the state-of-the-art
frameworks [17, 18] employ the truncated signed distance
function (TSDF) [2] as the data structure to store integrated
depth images. Since the task of updating the TSDF value
of each voxel is suitable for data-parallel algorithms [46],
these frameworks rely on GPU to achieve real-time perfor-



mance [39]. Our work is designed for frameworks employ-
ing voxel hashing and TSDF. Prior arts [1] consider pixel
confidence maps in RGB-D reconstruction. Our work uses
pixel confidence maps to generate transmission policy.

2.2. Remote SLAM and 3D Reconstruction

Widely used mobile phone and commodity UAVs have
provided more convenient ways to capture sensor data. Re-
search has shown that these sensor data can be used for
SLAM and 3D reconstruction. However, when these de-
vices cannot provide the high performance required for real-
time algorithms, the sensor data must be stored and pro-
cessed off-line [49]. To process the sensor data in an online
manner, remote SLAM [9, 24, 34, 45] and remote 3D re-
construction [6, 11] frameworks have been proposed. Such
frameworks take advantage of the computing power pro-
vided by high-performance central server(s), and captured
sensor data are transmitted to the server(s).

For remote SLAM frameworks, a major issue is what
data representation should be transmitted. Opdenbosch et
al. [29] proposed a solution where fast feature extraction is
performed at the agent, and the server performs the follow-
ing SLAM by collecting the features. These features are
sufficient to generate a sparse 3D map, but far from suffi-
cient to reconstruct a dense volumetric model. Therefore,
this kind of solution works well for remote SLAM, but is
not suitable for remote 3D reconstruction.

For remote 3D reconstruction, the only options are se-
lecting key-frames and down-sampling every frame [6, 11].
These two solutions can reduce the bandwidth requirement
significantly, but they also damage the reconstruction qual-
ity. The key-frame methods treat each image as a whole and
drop some full images without distinguishing which pixels
might be valuable. The down-sampling methods consider
all pixels to be of equal value, which is not always true.

Our idea is to distinguish which pixels are more valu-
able to the global model. This is difficult, if not impossible,
without knowing the status of the global map. Our solution
is inspired by Giamou et al. [10]. This work aims to detect
inter-robot loop closures for remote SLAM under a con-
strained network bandwidth. In this work, agents exchange
some meta-data before actually exchanging visual informa-
tion. Based on these meta-data, agents can design a policy
regarding which data should be exchanged. Our solution to
the remote 3D reconstruction also allows the server to give
some hints to the agent, so the agent can distinguish which
pixels are more valuable.

2.3. Video Streaming

Dynamic Adaptive Streaming over HTTP (DASH) [37]
is the de-facto standard for video streaming. By using the
DASH technique, each video is partitioned into segments
and each segment is encoded in multiple bitrates. Which bi-

trate to use for the next segment is determined by Adaptive
Bitrate (ABR) algorithm. Generally, video streaming ser-
vices aim to improve the Quality of Experience (QoE) by
increasing the average video bitrate, reducing rebuffering
events, and/or increasing video bitrate smoothness. These
factors cannot be satisfied at the same time, and existing
solutions have made significant improvements in balancing
these factors [7, 15, 22, 31, 35, 44, 47, 48].

Volumetric video streaming, such as point cloud-based
volumetric video [12, 20] or depth image (i.e., RGBD)-
based volumetric video [21, 40], is more in line with appli-
cation for 3D reconstruction, where remote agents transmit
captured color and depth information to the server. Some re-
searches extend DASH technique towards volumetric video
streaming [13, 41].

However, the DASH technique is not well suited for 3D
reconstruction services for two main reasons. On the one
hand, down-sampling method used in DASH when bad net-
work situation would lead to worse 3D reconstruction qual-
ity. On the other hand, some of content in sequence are
redundant which will not be contributed to improve 3D re-
construction, e.g., for those area of already being well re-
constructed. Our TSDFFilter algorithm only transmits the
content which is useful for 3D reconstruction.

There are also some works [19] employ video compres-
sion techniques to transmit RGB-D streams and achieve
competitive results. In all experiments of our framework
and the comparing frameworks, we employ the same image
compression algorithms for the convenience of implemen-
tation based on ROS [32]. It is feasible to change the com-
pression algorithms to video compression algorithms, but
we consider it orthogonal to our improvements.

3. Our Approach

Figure 2(b) illustrates our TSDFFilter framework. In our
framework, the agent transmits the pose T of the equipped
camera to the server, the server generates a transmission
policy π(T,G) based on the pose T and the global status G
of the server, and the agent prunes its RGB-D data from M
to M ′(M,π) based on the transmission policy. In contrast,
in the common framework (shown in Figure 2(a)), the agent
does not know any information from the server and can only
blindly transmit its poses and RGB-D data to the server.
Down-sampling and selecting key-frames can only reduce
the bandwidth requirement without knowing the needs of
the server.

Here, we assume that each agent knows its own pose.
This can be achieved separately by either low-cost SLAM
algorithms [25], low-bandwidth remote SLAM frame-
works [5], or other sensors (e.g., IMU) equipped on the
agent. Therefore, we can focus on how to transmit the in-
formation needed by the integration routines of 3D recon-
struction frameworks.



(a) Illustration of the common remote 3D reconstruction framework, where the agent blindly transmits its poses and RGB-D
data to the server without knowing which data the server would prefer.

(b) Illustration of our TSDFFilter framework, where the server generates a transmission policy based on the pose and the
agent can prune its RGB-D data based on the transmission policy.

Figure 2: An overview of the frameworks for remote 3D reconstruction. In our experiments, the overall bandwidth require-
ments are compared.

3.1. Generating Transmission Policy

The key challenge is how to express and generate a trans-
mission policy that can conform to the following principles:

• The pruned RGB-D data and the original RGB-D data
should contribute similarly to the reconstruction qual-
ity.

• The transmission policy should be generated effi-
ciently.

• The transmission policy should help reduce the overall
bandwidth.

The first principle requires us to mine the properties of
the reconstruction algorithm. As we have stated, to achieve
high-quality 3D reconstruction, TSDF has become a de-
facto expression of high-quality 3D models. TSDF is a
volumetric representation of a scene for integrating depth
images. When integrating a new depth image, new voxels
that have never been captured before are allocated. Then,

the TSDF value TSDF (x) and the weight W (x) of each
associated voxel x are updated with Equation (1). t is the
truncation parameter, wi(x) is the weight for each round of
update, which is usually set as 1, di(x) is the depth captured
by depth camera, and zi(x) is the depth of the voxel.

TSDFi(x) =
TSDFi−1(x) ·Wi−1(x) + tsdfi(x) · wi(x)

Wi−1(x) + wi(x)

tsdfi(x) = max(−1,min(1,
di(x)− zi(x)

t
))

Wi(x) = Wi−1(x) + wi(x)

(1)

For each round of updates, the captured depth di(x) is
an approximate value of the depth from the view point to
the real-world surface, si(x). We can assume that di(x) is
a random variable that follows a normal distribution with
mean si(x), and each di(x) is independent (see Figure 3).
The variance σ2

i reflects the error introduced by the RGB-
D camera. Thus, we can deduce in Equation (2) that the



TSDFi(x) also follows a normal distribution after Wi(x)
rounds of update. In this normal distribution, the expecta-
tion reflects the real-world TSDF (x). Note that the vari-
ance becomes smaller as the update round Wi(x) increases.
Specifically, when all σj is the same, the variance becomes

σ2

t2·Wi(x)
which is inversely proportional to Wi(x).

di(x) ∼ N(si(x), σ
2
i )

tsdfi(x) ∼ N(
si(x)− zi(x)

t
,
σ2
i

t2
)

TSDFi(x) ∼ N(
Σ(sj(x)− zj(x))

t ·Wi(x)
,

Σσ2
j

t2 ·W 2
i (x)

)

(2)

Figure 3: The depth captured by the RGB-D camera can
be modeled as a normal distribution. For each voxel x, the
TSDFi(x) also follows a normal distribution after Wi(x)
round of updates.

For the second and the third principles, our purpose is
to express the transmission policy, which decides whether
each RGB-D pixel needs to be transmitted. If we can find
a voxel x on the ray corresponding to the RGB-D pixel
with its TSDF (x) = 0, we can estimate the real-world
TSDF (x) with the normal distribution of voxel x. If we
can estimate the real-world TSDF (x) with enough con-
fidence, we do not need further updates. Since smaller
variance indicates more confidence, and the variance is in-
versely proportional to Wi(x), we can set a WMAX to in-
dicate the confidence threshold. Thus, the error caused by
the generated transmission policy follows a normal distri-
bution in Equation (3), and we can expect the reconstruc-
tion Chamfer distance of the result dense model is about

σ2

t2·WMAX
. Since σ2 is a constant that reflects the error in-

troduced by the RGB-D camera, and t is a constant set by
the 3D reconstruction algorithm, the reconstruction Cham-
fer distance of the resulting dense model is expected to be
inversely proportional to WMAX .

Error(x) ∼ N(0,
σ2

t2 ·WMAX
) (3)

Figure 4: The pseudo code of generating a transmission pol-
icy based on the current pose of the agent.

Overall, the algorithm for generating the transmission
policy is shown in Figure 4. The transmission policy is ex-
pressed with a binary image with the same size of the RGB-
D images. For each RGB-D pixel, we try to find a voxel x
on the corresponding ray that satisfies TSDF (x) = 0 and
W (x) ≥ WMAX . If such a voxel is found, the transmission
policy decides not to transmit the RGB-D pixel or, other-
wise, the transmission policy decides to still transmit the
RGB-D pixel. This routine is highly parallelizable and can
be accomplished quickly on the server with modern GPU,
which meets the second principle. The binary image that
expresses the transmission policy can be further compressed
to reduce the required bandwidth. We will verify the third
principle in Section 4.

3.2. Alternative Solutions

We can also theoretically analyze the error introduced by
the key-frame method and the down-sample method.

For the key-frame method, let key-frame ratio K ≤
100% represent the ratio of preserved frames, e.g., K =
25% indicates that one out of every 4 frames is preserved.
On average, this configuration is equivalent to the case
where each frame has a probability of K to be dropped.
Thus, for a voxel x that could be updated for W (x) rounds,
there are only K · W (x) rounds after key-frame selec-
tion. We showed in Equation (2), the error for a voxel x
whose TSDF (x) = 0 is inversely proportional to W (x).
Key-frame method reduces every W (x) by K times, and



therefore increase the error for every voxel by K−1 times.
If W (x) is large for all voxels originally, the key-frame
method introduces fewer errors; however, if W (x) is small,
the key-frame method could introduce large errors. In ex-
treme cases, for some voxel x whose W (x) = 1 originally,
it could be reduced to W (x) = 0, which means the voxel
x is completely lost. In this case, the error depends on the
distance to the next nearest voxel, which is not predictable.

For the down-sampling method, let down-sampling ratio
R ≤ 100% represent the ratio of preserved pixels on each
width and height, e.g., R = 25% indicates that a 1024×768
image will be down-sampled into a 256×192 image. On av-
erage, this configuration is equivalent to the case where each
ray of each frame has a probability of R2 to be dropped.
Similar to the analysis of the key-frame method, we can ex-
pect that the down-sampling method to increase the error
for every voxel by R−2 times. In practice, however, the
down-sampled RGB-D images are up-sampled by interpo-
lation back to the original resolution before being used to
achieve 3D reconstruction. If some part of the scene is a
plane, linear interpolation can accurately restore the depth
of the plane. However, on other parts of the scene, interpo-
lation introduces a large error in the depth of the observed
depth di(x).

3.3. Pruning RGB-D Data

When the agent receives the transmission policy from the
server, it is used to prune the RGB-D data. Since we have
represented the transmission policy with a binary image, we
can simply prune each pixel of the RGB-D data when the
corresponding pixel on the binary image is 0. The pseudo
code of pruning the RGB-D data is shown in Figure 5.

Figure 5: The pseudo code of pruning the RGB-D data.

Figure 1 shows two examples of how the pruning works.
Figure 1(a) shows an RGB image in the Scannet RGB-D
dataset, and Figure 1(b) shows the image after our pruning
routine. At run time, the camera is moving to the upper-
right. At the rays corresponding to the upper-right side of
the pose, there is not enough information, and the transmis-
sion policy of those pixels is 1. Therefore, we cannot drop
those pixels. In contrast, the bottom-left side of the pose has

already been updated enough times, and most of the pixels
are pruned. Similarly, for Figure 1(c) and (d), the camera is
moving to the right, and most pixels on the left are pruned.

Figure 6: The effectiveness when image compression meth-
ods working on our pruned RGB-D images. As more pixels
are pruned, the size of the compressed image decreases in a
linear fashion.

Before the server can achieve the reconstruction task
with the pruned RGB-D data, there is an issue about how
to transmit pruned RGB-D data efficiently. In our pruned
RGB-D images, many pixels are pruned and replaced with
depth 0 and the color black (i.e., (R, G, B)=(0, 0, 0)). We
find that ordinary compression methods for RGB images
and depth images work well, since connected regions of the
same value can be greatly compressed. In order to quantify
the effectiveness when image compression methods work-
ing on our pruned RGB-D images, we conduct a study.
We generate a series of images by pruning pixels from the
same image, compress them with the same PNG compres-
sion level, and measure their sizes. The result is shown in
Figure 6. As we can see, as more pixels are pruned, the size
of the compressed image decreases in a linear fashion. The
decrease in size will directly result in a reduction in band-
width, which is exactly what our framework needs.

Finally, after the server receives the pruned RGB-D data,
it can achieve the reconstruction task. Since the depths of
the pruned pixels are 0, they will not contribute to the re-
construction.

4. Evaluation

To show practical results, our experiments are carried out
completely online. We use three datasets, Scannet RGB-
D dataset [3], TUM RGB-D SLAM dataset [38] and Cow
& Lady real-world RGB-D dataset [28]. We select 6 se-
quences of different lengths from the three datasets, because
we consider them representative to different scenarios. The
detail and characteristic of these 6 sequences are shown in
Table 1. Each data sequence is replayed on the agent side
and transmitted to the server side for 3D reconstruction. On



the server side, we run the InfiniTAM framework [17,18], a
state-of-the-art 3D reconstruction framework. All software
modules (i.e., 3D reconstruction and data sequence replay-
ing) are connected with ROS middleware. For convenience,
we use image compression algorithms employed by ROS in
data transmission. The ROS version is Melodic on Ubuntu
18.04.

4.1. Comparison with Mobile Reconstruction Methods

In the remote 3D reconstruction scenario, agents trans-
mit the collected data to the server to utilize the powerful
computing resources of the server to complete the recon-
struction task and generate a reconstruction model. How-
ever, we can also use the extremely limited computing re-
sources on agents to complete the reconstruction task. We
refer this kind of solutions as mobile reconstruction meth-
ods. Voxfield [30] is the state-of-the-art TSDF-based mo-
bile reconstruction framework, which can complete recon-
struction tasks without the support of high-performance
GPU.

In order to show the difference between the remote
reconstruction framework and the mobile reconstruction
framework, we first conduct an experiment comparing the
results of Voxfield and InfiniTAM. We run the experiment
multiple times under varying voxel size settings. The pro-
cessing time per frame is recorded to compare the execution
efficiency, and the error is calculated to compare the qual-
ity of the resulting models generated by two frameworks.
The error is calculated as the reconstruction Chamfer dis-
tance [23] between the generating reconstruction models
and the ground-truth model provided by datasets. The
Chamfer distance is calculated between the reconstructed
mesh N and the ground-truth G is:

dCD (N,G) =
1

2N

∑
n∈N

min
g∈G

∥n−g∥22+
1

2G

∑
g∈G

min
n∈N

∥g−n∥22

(4)
Table 2 shows the results. We can see that with the

support of high-performance GPUs, the InfiniTAM method
only takes about one percent of the processing time of Vox-
field method to complete the reconstruction task with the
same voxel size, and generate a 3D model with smaller er-
ror at the same time. Therefore, in order to obtain higher
quality models and more efficient execution efficiency, we
need the agent to transmit data to the server for 3D recon-
struction. When the voxel size is small, it will be difficult
to complete the reconstruction task only by relying on the
agents’ limited computing resources.

4.2. Numeric Comparison

The main purpose of our TSDFFilter framework is to re-
duce the bandwidth requirement while retaining more use-
ful details. To measure detail retention, we use the rostopic

bw tool on each ROS topic. The overall bandwidth require-
ment is the sum of transmitting the RGB-D data from the
agent to the server and transmitting the transmission pol-
icy from the server to the agent. In order to measure detail
retention capabilities, we measure the Chamfer distance be-
tween the resulting reconstruction models and the ground-
truth model. The ground-truth model is achieved by running
the same reconstruction algorithm in an off-line manner, be-
cause we would like to show the effect of our communi-
cation planning algorithm by showing the difference of its
results with that of the off-line results.

There is a parameter in our TSDFFilter framework that
can affect the result, i.e., the threshold WMAX . We run the
experiment multiple times with different values of WMAX

to show the influence of this value on the result. For com-
parison, we run the experiment with the key-frame method
and the down-sampling method.

Since our TSDFFilter framework prunes the transmitted
information based on its own features, it is expected that
these results would differ when using different sequences.
To make a fair and extensive comparison, we run the exper-
iment with 6 sequences from 3 different datasets, shown in
Table 1.

All of the results are organized into Figure 7. The fig-
ure shows the reconstruction errors that can be obtained by
the above three methods under different bandwidth condi-
tions. With the increase of WMAX , our method can ob-
tain smaller model error under the same bandwidth condi-
tion. Each figure includes the results of handling a differ-
ent sequence in three methods, including down-sampling,
key-frame and our TSDFFilter. For the key-frame method,
each point has different a key-frame ratio K, resulting in
different bandwidths and reconstruction Chamfer distance
results; for the down-sampling method, each point has dif-
ferent down-sampling ratio R; for our TSDFFilter frame-
work, each point has different threshold WMAX . Each sub-
figure includes the normalized bandwidth requirement (the
horizontal axis) and reconstruction Chamfer distance (the
vertical axis). The bandwidth requirement is normalized by
dividing by the bandwidth required to generate the ground-
truth.

In general, with a lower key-frame ratio K, a lower
down-sampling ratio R, or a lower threshold WMAX , the
bandwidth requirement becomes lower while the recon-
struction Chamfer distance become higher. The bandwidth
requirement when using the key-frame method or the down-
sampling method is less affected by the content of differ-
ent sequences. On the other hand, the bandwidth require-
ment when using our TSDFFilter framework differs when
handling different sequences. The result of reconstruction
Chamfer distance values verifies the analysis in Section 3
that the reconstruction Chamfer distance using our TSDF-
Filter is inversely proportional to WMAX . In Figure 7, we



Dataset Sequence Characteristic Description

Scannet
scene0709 00 The scene is a medium kitchen. Captured with the camera moving

around a kitchen.
scene0710 00 The scene is a room and the camera

aim at nearly the same direction.
Captured with the camera translating
and aiming at nearly the same direc-
tion.

scene0717 00 The scene is large and most voxels
has a small W.

Captured with the camera moving in
a big college dormitory.

TUM fr1/xyz The scene contain people and there
is information overlap between the
frames of this sequence.

Recorded laboratory desks and a stu-
dent sitting in a chair.

fr1/desk The scene doesn’t contain any people
and there is large overlap between the
frames of this sequence.

Recorded laboratory desks without
people.

Cow & Lady cow and lady The scene is large and there are not
many effective pixels measured by
the depth camera.

Recorded an indoor scene with a cow,
mannequin and a few other typical of-
fice accessories.

Table 1: Sequences used in experiments.

Voxel Size Process Time (s) Reconstruction Chamfer Distance (m)
Voxfield InfiniTAM V / I Ratio Voxfield InfiniTAM V / I Ratio

0.080 0.0887 0.000597 148.7 0.0631 0.0526 120%
0.040 0.0959 0.000572 167.5 0.0341 0.0295 115%
0.020 0.1035 0.000609 169.9 0.0223 0.0188 119%
0.010 0.1379 0.000618 223.0 0.0234 0.0222 106%
0.005 0.4244 0.000636 667.5 0.0323 0.0256 126%

Table 2: Comparison between the state-of-the-art mobile 3D reconstruction framework (Voxfield with only CPU) and remote
3D reconstruction framework (InfiniTAM with GPU) under varying voxel sizes. The “V / I Ratio” column means the value
of Voxfield divided by the corresponding value of InfiniTAM. With the same voxel size, the processing time of Voxfield is
more than 100 times that of InfiniTAM, and the reconstruction Chamfer distance is also larger.

show that Wmax values varies from 1 to 205. Specially, we
show the extreme result when the threshold WMAX = 1,
which indicates a pixel will be pruned as long as it has been
observed once. Another extreme result is when the thresh-
old WMAX = 255. This threshold is so high that our TS-
DFFilter framework can prune little pixels. In this case, the
resulting normalized bandwidth requirement is about 80%,
which also indicates that the bandwidth required for trans-
mitting the transmission policy is low. However, the re-
sulting reconstruction Chamfer distance is not zero because
of the uncontrollable randomness. For WMAX = 50 and
75, the results are comparable with the key-frame method
and the down-sampling method. With similar bandwidth
requirements, our TSDFFilter framework can achieve about
70% lower reconstruction Chamfer distance.

We should note that, for the Cow & Lady sequence, the
bandwidth for our TSDFFilter framework is high even when
WMAX = 1. This is probably because of the characteristics
of the Cow & Lady sequence. In this sequence, the camera
moves along without turning back, and thus each frame is
valuable.

4.3. Visualized Reconstruction Results

In addition to the numeric results, we also visualize an
example of the results to show the advantage of our TSDF-
Filter framework.

Figure 8 shows the visualized results of the Scannet
scene0710 00 sequence. Figure 8(a) illustrates the recon-
struction result with the key-frame method (K = 0.75);
Figure 8(b) illustrates the reconstruction result with the



(a) TUM-fr1/xyz (b) TUM-fr1/desk

(c) Scannet-scene0709 00 (d) Scannet-scene0710 00

(e) Scannet-scene0714 00 (f) Cow & Lady

Figure 7: The numeric comparison results. Each figure includes the results of handling a different sequence with three
method: down-sampling, key-frame and our TSDFFilter. The figure shows the bandwidth requirements that need with
different the reconstruction errors using these three methods. With the increase of WMAX , our method can work in less
bandwidth requirement conditions with the same reconstruction errors.

down-sampling method (R = 0.75); Figure 8(c) illustrates
the reconstruction result with our TSDFFilter framework

(WMAX = 50); Figure 8(d) illustrates the reconstruction
result with off-line manner (i.e., the ground truth). The



(a) Key-frame (b) Down-sampling

(c) TSDFFilter (Ours) (d) Ground Truth

Figure 8: Visualized reconstruction results of the Scannet scene0710 00 sequence. Each subfigure is generated by one of
the four methods. In each subfigure, the first row illustrates higher views of the reconstructed models and the second row
illustrates the detail within the yellow box and red box, which shows the detail on the door handle and sweeping robot. In the
yellow boxes, we can clearly see the door handle, which indicates that our TSDFFilter framework successfully retains more
details. The down-sampling method loses more detail because it has more depth values which are estimated by interpolation;
the key-frame method, on the other hand, tends to smooth the result.

bandwidth requirements for these sets of results are simi-
lar. The first row of each subfigure illustrates higher views
of the reconstructed models. The second row of each sub-
fiugre illustrates the detail within the yellow and red boxes,
which shows the detail on the door handle and sweeping
robot. From the parts within the yellow boxes, we can
clearly see the door handle, which indicates that our TS-
DFFilter framework successfully retains more details. In-
terestingly, our TSDFFilter framework successfully retains
more details around the door knob (shown in the yellow
boxes) than the ground truth. This is because our TSDF-
Filter framework stops updating voxels whose confidence
value is high enough, and can probably avoid these voxels
being damaged by future inaccurate scans.

Figure 9 shows the visualized results of the Scannet
scene0714 00 sequence. Each subfigure illustrates the re-
construction result with one of the four methods. The first
and second rows illustrate the full views of the reconstructed
models. The third and fourth rows illustrate the detail within
the red and yellow boxes, which shows the detail on the
sofa and wall. From the parts within the yellow boxes, we
can clearly see our TSDFFilter framework can obtain more
points compapred to the key-frame method. From the parts
within the red boxes, we can clearly see the sofa, which in-
dicates that our TSDFFilter framework successfully retains
more details and the down-sampling method introduce out-
liners. The down-sampling method loses more detail be-
cause it has more depth values that are estimated by inter-



(a) Key-frame (b) Down-sampling

(c) TSDFFilter (Ours) (d) Ground Truth

(e) Key-frame (f) TSDFFilter (Ours) (g) Ground Truth

(h) Down-sampling (i) TSDFFilter (Ours) (j) Ground Truth

Figure 9: Visualized reconstruction results of the Scannet scene0714 00 sequence. Each subfigure is generated by one of
the four methods. The first and second rows illustrate higher views of the reconstructed models. The third and fourth rows
illustrate the detail within the yellow boxes and red boxes. The key-frame method loses a lot of points,and the down-sampling
method produces lots of outliers.

polation; the key-frame method, on the other hand, tends
to smooth the result; and our TSDFFilter framework retains
much of the detail.

5. Conclusion and Future Work

We have presented a communication planning frame-
work for remote 3D reconstruction called TSDFFilter. In
our TSDFFilter framework, agents do not blindly transmit
their data but are instead able to prune their data accord-
ing to the transmission policy generated by the server. To



generate the transmission policy, we present the confidence
value for each RGB-D pixel to estimate how much it con-
tributes to the reconstruction quality and an efficient algo-
rithm to generate the confidence value. Experimental re-
sults show that our TSDFFilter framework can reduce the
bandwidth requirement and overcome the disadvantages of
down-sampling and key-frame methods.

As far as we know, this is the first remote 3D recon-
struction framework that applies feedback from the server
to guide the agents how to transmit data. Besides, our TS-
DFFilter framework focuses on TSDF-based reconstruction
method, and cannot be directly applied on semantic-aware
approaches, such as [14, 50]. But it would be an interesting
future work.
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