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Abstract

Most existing semi-supervised methods in medical
image segmentation often ignore optimize feature dis-
tribution, leading to weak inter-class separability and
poor decision boundaries. Additionally, the ambiguity
of target contours in medical images can result in mis-
segmentation due to a lack of understanding of con-
tour features. To address these issues, we propose a
novel semi-supervised segmentation framework called
Dual-stream Dense Contrastive Learning Network. Our
framework utilizes a prediction stream to obtain a seg-
mentation map and Signed Distance Map, which learn
from each other to explore complementary knowledge
and enhance the exploitation of contour features. In
our feature stream, we introduce the Dense Local Fea-
tures Contrastive Learning module, which consists of
Sampling by Shape Info (SSI) and Dense Local Features
Contrast (DLFC). SSI combines local shape informa-
tion to form the Balanced Coefficient, guiding the sam-
pling of positive and negative pairs between dense lo-
cal features. DLFC enhances intra-class compactness
and inter-class separability through contrastive learn-
ing, with consistency regularization to promote learning
efficiency. Our approach achieves significant improve-
ments over existing state-of-the-art methods on bench-
mark datasets for medical image segmentation.

Keywords: Semi-supervised learning, Local features,
Contrastive Learning, Image Segmentation

1. Introduction

Medical image segmentation technology [3, 42] can pro-
vide physicians with valuable assistance in localizing and
quantitatively analyzing tissue organs or lesion regions by
altering the visualization process of medical images. With
the current penetration of artificial intelligence technol-
ogy into various fields, intelligent analysis technology has

rapidly developed. This development has greatly facilitated
the application of artificial intelligence in medical image
segmentation, providing physicians with more efficient and
accurate diagnostic tools.

In recent years, deep learning [23, 43] has demonstrated
impressive success in medical image segmentation. How-
ever, these methods [1, 9, 28] typically require a large
amount of annotated data for training. Obtaining labeled
data can be prohibitively expensive, particularly in medi-
cal imaging, where only specialized medical experts can
provide reliable labels [17]. As a result, there has been
a surge of interest in methodological research under lim-
ited supervision. Fortunately, semi-supervised segmenta-
tion [19, 22, 34] attempts to apply merely a small amount
of labeled data and learns from a considerable number of
unlabeled data. These methods aim to reduce the amount
of required labeled data, while still achieving high-quality
segmentation results, making them an attractive option for
medical image analysis.

Several semi-supervised segmentation methods[34, 22,
33] focus on adding a certain degree of perturbations to
the original unlabeled data and enforcing consistency be-
tween the model predictions of the original and perturbed
data. However, the above method solely considers the con-
sistency of the final predicted segmentation map and fails to
consider the distribution of the optimized feature space. It
is beneficial for prediction if the model is allowed to learn
that features of the same class are aggregated in the feature
space and features of different classes are dispersed [38].
Fortunately, contrastive learning [5, 7] enables the model to
involve a large amount of unlabeled data to train the model
to optimize feature distribution by effectively selecting pos-
itive and negative pairs. However, the effect of contrastive
learning depends on the sampling of positive and negative
pairs. If similar features are adopted as negative pairs, it will
destroy the distribution of features. Concretely, Zhao et al.
[48] decomposed images into patches and proposed cross-
level contrastive learning to exploit local features, but the
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random sampling in negative pairs may lead to a decrease
in accuracy. Wu et al. [40] improved the random sampling
between patches based on pseudo-label, which lacks geo-
metric awareness. Consequently, our approach embeds the
predicting Signed Distance Map (SDM) [26] and the pre-
dicting segmentation map as the prediction stream, which
can strengthen the exploitation of contour features. At the
same time, a factor named Balanced Coefficient (BC) to
determine the local variability of SDM is proposed, which
guides the sampling of positive and negative pairs in local
features.

In this paper, we propose a dual-stream dense contrastive
learning network for semi-supervised medical image seg-
mentation, which utilizes a large amount of unlabeled data
to optimize the segmentation process of the model. Our
network consists of a teacher-student model, a prediction
stream, a feature stream, and a Dense Local Features Con-
trastive Learning (DLFCL) module. The function of the
teacher-student model is to extract the features of the in-
put image and send them into the prediction stream and the
feature stream. The prediction stream simultaneously per-
forms the predicting segmentation map task and the pre-
dicting SDM task to strengthen the exploitation of contour
features through dual-task mutual learning. The DLFCL
module in feture stream enhances the intra-class compact-
ness and inter-class separability through Sampling by Shape
Info (SSI) and Dense Local Features Contrast (DLFC). The
SSI combines shape info to form BC, which guides local
feature contrastive learning in DLFC. We also add some
perturbations to the unlabeled data. For feature stream,
the variability of feature pairs can be reinforced to improve
contrastive learning efficiency, while for prediction streams,
the model’s understanding of global information can be en-
hanced to reduce overfitting. Extensive experiments con-
ducted on three publicly available datasets show that our
approach effectively exploits unlabeled data for learning
and outperforms other methods. Our main contributions are
summarized as follows:

• We propose a novel and generic dual-stream dense
contrastive learning network for semi-supervised seg-
mentation, which effectively leverages unlabeled data
for learning and enhances the utilization of contour in-
formation through dual-stream.

• We propose BC in the DLFCL module to guide the
sampling of positive and negative pairs between local
features and further improve intra-class compactness
and inter-class separability by contrastive learning.

• Extensive experiments on two challenging public
datasets demonstrate more satisfactory segmentation
results than other methods and achieve state-of-the-art
performance.

2. Related Work

2.1. Semi-Supervised Medical Image Segmentation

The goal of semi-supervised learning [8, 12, 37] is to op-
timize the learning process of the network over limited la-
beled data by using a large amount of unlabeled data. In
recent years, the semi-supervised method based on deep
learning [32, 41, 44] has become a hot research direction in
medical image segmentation. For example, using the idea
of adversarial learning, Zhang et al. [47] proposed an evalu-
ation network to distinguish the segmentation results of un-
labeled images and labeled images. Li et al. [29]proposed
a region-based attention method based on a confidence net-
work and applied adversarial learning schemes to adaptively
train the network using unlabeled data. In order to make the
multi-scale prediction of unlabeled images consistent, Luo
et al. [25] proposed a new uncertainty correction pyramid
consistency regularization framework to prevent model col-
lapse and detail loss. Li et al. [20] relied on extra shape
information for adversarial training. Luo et al. [24] real-
ized the consistency training of dual-task by inverting the
predicted SDM into the segmentation map. Different from
the above methods, we effectively utilize shape information
for local features contrastive learning to improve the feature
representation of the model.

2.2. Contrastive Learning

Contrastive learning [15, 35, 45] is a branch of self-
supervised learning [27]. Its goal is to embed the features of
the same category into the approximate feature space while
pushing out the features of different categories. Now con-
trastive learning has achieved great success in the field of
computer vision. Chen et al. [4] proposed the projection
head to project the features once and map the features to
a new dimension, providing a whole new framework for
follow-up work. Wang et al. [39] has designed a dense con-
trastive learning method that can perform dense contrastive
learning at the level of local features. The key to contrastive
learning is to select positive and negative pairs. Zhao et al.
[48] proposed cross-level contrastive learning for medical
image segmentation, but chose random sampling when se-
lecting negative pairs. Chaitanya et al. [2] took advantage of
the structural similarity of medical images to select positive
and negative pairs. Wu et al. [40] proposed positive and
negative pair sampling based on pseudo-label, improving
the process of contrastive learning. Our method provides a
novel way for contrastive learning by combining shape in-
formation with positive and negative pairs sampling.

2.3. Consistency Regularization

The purpose of consistency regularization [19, 30, 34] is
to effectively reduce overfitting and enhance the robustness
of the model by adding perturbations [33] to the same inputs
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Figure 1. Overview of our framework based on the Mean-Teacher model. The teacher model and student model share the same architecture,
the parameters of the student model are optimized by the weighted sum of Lseg, Lsdm, Lcons, and Lcontr , teacher model is updated by
Exponential Moving Average (EMA) of the student model. T (x) represents the addition of perturbations to the model, including rotation
and flipping, and S(y) converts the real labels into real Signed Distance Map (SDM).

and allowing the model to output the same contents as much
as possible. Laine et al. [19] proposed self-ensembling, in
which the same data is enhanced twice in sequence into a
model, encouraging the output of the model to be as consis-
tent as possible. Tarvainen et al. [34] proposed a teacher-
student consistency model to encourage different enhanced
inputs to have similar outputs in the teacher-student model.
Many of the existing semi-supervised medical image seg-
mentation methods rely on consistent regularization, Yu et
al. [46] proposed an uncertainty-aware framework to guide
the calculation of consistency loss by using the uncertainty
information provided by the teacher model. Li et al. [22]
encouraged to produce similar outputs by performing a cer-
tain rotation enhancement on the data sent to the student
model and teacher model. Hang et al. [10] introduced the
entropy minimization principle to design the local consis-
tency loss and enforced the global structural consistency by
matching the weighted self-information map.Our method
combines consistency regularization with contrastive learn-
ing and encourages the content of the feature layer of the
teacher-student model to be as consistent as possible while
adding perturbations to the images.

3. Method

3.1. Ovewview

In this section, we introduce the proposed semi-
supervised segmentation network based on dual-stream
dense contrastive learning, which effectively utilizes a small
amount of labeled data and a large amount of unlabeled data
to promote medical image segmentation results.

As shown in Figure 1, we first add various perturba-
tions to images and send them to the student model and
the teacher model respectively. Then the predicted SDM
and the predicted segmentation map are obtained using the
prediction stream while the feature map is obtained by the
feature stream. We learn the contrastive loss by DLFCL
module, and calculate the consistency loss for the predicted
segmentation maps generated by the teacher model and the
student model. The weight update method of the teacher
model is the Exponential Moving Average (EMA) [34] of
the student model, and the specific updating process is as
formula 1:

θti = αθti−1 + (1− α)θsi−1 (1)
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Figure 2. The details of the proposed Dense Local Features Contrastive Learning (DLFCL) module. In the Simpling by Shape Info (SSI),
BC is computed for each patch of SDM and negative pairs are determined according to the category of BC. The positive pair is a patch in
the same position. Dense Local Feature Contrast (DLFC) optimizes the feature distribution by contrastive learning.

where θti is the model weight of the teacher model at the
ith iteration, θsi is the weight of the corresponding student
model, and α is the EMA update weight, which determines
the dependence of the teacher model on the student model.

3.2. Base Framework

Mean-Teacher model. The proposed approach is based
on the mean teacher model [34], where both the student
and teacher models are DenseUnet [21]. In contrast, the
Unet [31] utilizes only convolution and pooling and the Re-
sUnet applies residual connections [11]. DenseUnet relies
on DenseNet [13] as the backbone to enable feature reuse by
connecting features from previous layers. Suppose that the
network has l layers and each layer has a nonlinear trans-
formation function Hl, DenseNet takes the features of all
previous layers as input by formula 2:

xl = Hl([x0, x1, ..., xl−1]) (2)

where [x0, x1, ..., xl−1] refers to the splicing of features
from layer 0 to l − 1.

Prediction Stream. The prediction stream contains the
task of predicting the segmentation map and an additional
task of predicting SDM. Since the SDM is an implicit rep-
resentation of contour information, some existing methods
[20, 24] applied SDM to segmentation tasks. Our approach
introduces SDM to allow the model to encode richer con-
tour features while guiding the positive and negative pairs
sampling process of dense local features. The tasks of gen-

erating the predicted segmentation map and the predicted
SDM in the prediction stream of our method can be given
by formula 3:

Mi = fseg(d(xi), η), xi ∈ X
Si = fsdm(d(xi), η), xi ∈ X

(3)

where d(·) represents the last layer of features extracted by
DenseUnet, fseg, fsdm represent the networks correspond-
ing to the predicting segmentation map task and the predict-
ing SDM task, respectively, η represents the perturbations
added to the input, and X represents the set of labeled and
unlabeled data.

Feature Stream: In our approach, the feature stream is
only for unlabeled data. First, the unlabeled data are aug-
mented with a variety of enhancements, including Gaussian
noise as well as rotation flipping. They are then fed into the
student and teacher models, respectively. The last layer of
features extracted from the model is projected into the new
dimension through the Projector layer to obtain the feature
maps. Mathematically as shown in formula 4,

P s
i = p(d(xi), ηs), xi ∈ Xu

P t
i = p(d(xi), ηt), xi ∈ Xu

(4)

where p(·) denotes the projector layer, P s
i and P t

i are the
feature maps obtained by the student model and the teacher
model, respectively, ηt and ηs are perturbations of the stu-
dent model and the teacher model, Xu represents all the
unlabeled data.
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3.3. DLFCL Module

As shown in Figure 2, the DLFCL module in our ap-
proach is divided into two steps. The first step is SSI, which
samples the positive and negative pairs in the feature map
through the shape information in SDM. The second step is
DLFC, which relies on the positive and negative pairs to
calculate the contrastive loss.

SSI. Different from the way that existing contrastive
learning methods select positive and negative pairs [48], we
propose a novel way of sampling positive and negative pairs
of dense local features based on SDM guidance, as shown
in Figure 2. We perform positive and negative pairs sam-
pling by applying the two feature maps and SDMs obtained
from the student model and the teacher model.

The projected feature maps Pi are cut into n × n fixed-
size patches. For the positive pairs, we select the patch at the
same location in the projected feature maps of the student
model and the teacher model. For negative pairs, our selec-
tion method is different from the previous method. In order
to measure the difference between each patch, we introduce
a metric BC based on the SDM to calculate the variability.

The calculation process of BC is as follows: After ob-
taining the SDM Si from the prediction stream, Si is also
cut into multiple fixed-size patches like feature maps Pi,
and theBC is obtained by summing the values in each patch
with formula 5:

BC =
∑
h,w

Si
h,w (5)

where Si
h,w is the value of the element at the current posi-

tion in the SDM. By summing up each element in the patch
of the SDM, it can be considered that the sum of all ele-
ments is greater than 0, then it can be considered that the
impact of the segmentation target in the patch is greater, on
the contrary, if the sum of all elements is less than 0, then
the impact of the background in the Patch is greater. There-
fore, we divide the patch into two categories according to
whether BC is greater than 0, which are called Target Patch
(TP) and Background Patch (BP). If a patch is TP, its nega-
tive pairs are all the BPs in the current batch. By calculating
the BC of each patch, we can complete the positive and neg-
ative pairs sampling of dense local features according to the
category of BC.

DLFC. After completing the sampling of positive and
negative pairs of dense local features, we apply Info-NCE
loss function [36] for contrastive loss calculation based on
the sampling result as formula 6 and formula 7:

Lcontr(qi) = − log
s(q, k+)

s(q, k+) +
∑

k−∈Ω−

s(q, k−)
(6)

s(q, k) = exp(
q · k
|q| · |k|t

) (7)

where s(q, k) represents the cosine similarity between fea-
tures, q and k+ denote the currently calculated patch with
n× n positive pairs, Ω− represents the set of selected neg-
ative pairs, and t is the temperature hyperparameter. Al-
though we can classify the patches into two categories ac-
cording to the sign ofBC, considering the unbalanced num-
ber of pairs in these two categories, therefore we do the pro-
cess of finding the mean value of Lcontr before back prop-
agation, and obtain the formula 8:

Lcontr =
1

M

M∑
m=1

n∗n∑
i=1

Lcontr(qi)

n2
(8)

where M is the number of unlabeled data.

3.4. Loss Function

We need to define the loss for semi-supervised medical
image segmentation. Total loss Ltotal is divided into super-
vised loss and unsupervised loss as formula 9:

Ltotal = Lsup + Lunsup (9)

where Lsup is loss with labeled data, Lunsup is loss with
unlabeled data.

Loss with labeled data. For labeled data, our method
generates a predicted segmentation map and a predicted
SDM through the prediction stream, so that the supervised
loss consists of two parts, Lseg and Lsdm by formula 10:

Lsup = Lseg + wsdmLsdm (10)

where wsdm is the hyperparameters to balance the Lsdm.
Lseg denotes the segmentation loss, and the cross-

entropy loss is computed from the predicted segmentation
map and the real segmentation map, which can be expressed
as formula 11:

Lseg = − 1

N

N∑
i=1

yi log(fs,seg(d(xi))) (11)

where N is the number of labeled data.
Lsdm is the signed distance regression loss, again calcu-

lated from the SDM and the true SDM, and to obtain the
true SDM, we need to transform the true labels as formula
12:

S(x) =


− inf

y∈C
‖x− y‖2 , x ∈ Cin

0, x ∈ ∂C
+ inf

y∈C
‖x− y‖2 , x ∈ Cout

(12)

where ‖x− y‖2 is the Euclidean distance between dif-
ferent pixels and y is the pixel on the contour of the target
object. −inf and +inf are infimum. Cin and Cout are the
internal and external pixels of the target object, we further
normalize each pixel in SDM to [−1, 1].
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After obtaining the true SDM, We calculate Lsdm by the
predicted SDM and the real SDM with formula 13:

Lsdm = − 1

N

N∑
i=1

‖fs,sdm(d(xi))− S(yi)‖2 (13)

where S(yi) denotes the true SDM transformed by the true
labels.

Loss with unlabeled data. For unlabeled data, our
method consists of Lcontr and Lcons. Consequently,
Lunsup can be expressed as formula 14:

Lunsup = wcontrLcontr + wconsLcons (14)

where wcontr and wcons are the hyperparameters to balance
the respective losses, the Lcontr is detailed in Section 3.3.
Lcons is the consistency loss. We enhance the distribu-

tion of images at the feature level by using a large amount of
unlabeled data through contrastive learning, and we intro-
duce consistency regularization in order to enhance the pre-
dicted segmentation map again using unlabeled data. First,
we add a certain amount of different Gaussian noise to the
input images into the teacher model and the student model,
and randomly flip and rotate the input of the teacher model,
and after the model outputs the predicted segmentation map,
it is again recovered by flipping and rotating it, and the
model consistency loss is defined by minimizing the KL di-
vergence of the predicted segmentation map generated by
the two models as formula 15:

Lcons =
1

M

M∑
u=1

fs,seg(d(xu), ηs) · log
fs,seg(d(xu), ηs)

T−1(ft,seg(T (d(xu)), ηt))

(15)
where T (·) denotes the random flip and rotation of the im-

ages, ηs and ηs are the noise added into the student model
and teacher model, respectively.

4. Experiments

4.1. Datasets

To validate the effectiveness of our method, we conduct
a series of experiments on two publicly available medical
image datasets, including a skin lesion segmentation dataset
and a gastrointestinal polyp segmentation dataset.

Skin lesion segmentation dataset. The skin lesion
segmentation dataset in our experiments is the ISIC 2017
dataset [6], which consists of a training set of 2000 anno-
tated skin images, a validation set of 150 images, and a test
set of 600 images, all image resolutions range from 540 ×
722 to 4499 × 6748.

Gastrointestinal polyp segmentation dataset. The gas-
trointestinal polyp segmentation dataset is from Kvasir-
SEG [14], which includes 1000 labeled images, the image
size is 332×487 to 1920×1072. We randomly divided the

data into a training set and a test set, where the training set
contains 700 images and the test set is the remaining 300
images.

4.2. Implementation Details and Evaluation Metrics

All experiments are implemented by PyTorch, and the
experimental environment is Ubuntu 20.04. We train 20000
iterations on the Tesla V100 GPU, the batch size is 8, the
number of patches is set to 8×8, The projector layer is im-
plemented by a Conv→Avgpool→ ReLU architecture and
the number of channels changed from 64 to 128, the stride
of Avgpool is 2. wsdm is set to 0.5, wcons is gradually in-
creased from 0 to 1.0 by Sigmoid curve, and wcontr is taken
as 0.1. We resize all the images to 224×224 by bicubic in-
terpolation. The network was trained with Adam optimizer
[16] with a learning rate of 0.0001. We apply the EMA
method [34] to update the teacher model weights, where α
is set to 0.999 [22]. DenseUnet [21] is set as the backbone
in all comparison experiments for a fair comparison.

To quantitatively evaluate the performance of the model,
we adopted six evaluation metrics, including Jaccard Index
(JA), Dice coefficient (DI), Mean IOU (MIOU), pixelwise
Accuracy (AC), Sensitivity (SE), and Specificity (SP).

4.3. Comparison Experiments

To validate the effectiveness of the proposed method, a
comparison is made with several existing state-of-the-art
semi-supervised segmentation methods, including MT [34],
UAMT [46], TCSMv2 [22], CAC [18], URPC [25], DTC
[24] and CDCL [40].

Comparison experiments on the ISIC 2017 dataset.
The proposed semi-supervised segmentation method is
compared with other methods on the ISIC 2017 dataset. In
the training set, we set two different proportions of labeled
data to contain 5%(100) labeled data and 15%(300) labeled
data, respectively.

As shown in Figure 3, the TCSMv2, URPC and CAC fail
to capture the details of melanoma sufficiently, and cannot
handle the cases with coarse borders. In comparison, our
method can perfectly segment the detailed information and
can achieve a more accurate segmentation effect in the case
of unclear edges, which is suitable for real labels.

It can be seen from Table 1 that the JA and DI of each
semi-supervised segmentation method are greatly improved
compared with the only supervised DenseUnet, indicating
that unlabeled data has been effectively utilized in each
method. In particular, our method outperforms CAC by
0.34% and 0.63% in JA and DI metrics respectively for 5%
of labeled data, and MIOU is higher than DTC by 0.88%
for 15% of labeled data.

Comparison experiments on the Kvasir-SEG dataset.
To verify the generalization of the proposed method, we
conduct two sets of semi-supervised segmentation experi-
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Figure 3. Visualization of different semi-supervised methods for the ISIC 2017 dataset under 15% labeled data, with the red solid line
indicating the true label and the blue solid line indicating the segmentation results of each method.

Table 1. Performance of different semi-supervised segmentation methods on the test set of the ISIC 2017 dataset.

Method Labels Metrics
JA DI MIOU AC SE SP

DenseUnet 2000 78.60 86.48 76.94 85.60 88.69 97.21
DenseUnet

100(5%)

74.86 83.22 69.95 93.82 88.26 94.46
MT[34] 75.19 83.38 70.35 94.36 84.05 98.31

UAMT[46] 75.56 83.83 70.45 93.78 83.83 97.67
TCSMv2[22] 75.77 83.91 71.11 94.30 84.83 96.52

CAC[18] 76.43 84.43 72.41 94.45 84.25 96.66
URPC[25] 75.69 83.90 72.34 92.89 85.84 95.04
DTC[24] 75.84 84.02 71.57 93.92 84.45 97.80

CDCL [40] 76.34 84.48 72.36 94.90 85.54 97.42
Ours 76.77 85.06 72.45 94.93 86.14 97.44

DenseUnet

300(15%)

76.80 84.75 71.74 94.47 86.19 96.13
MT[34] 77.05 85.09 73.44 95.04 85.06 98.41

UAMT[46] 77.25 83.55 72.45 94.48 85.98 96.51
TCSMv2[22] 77.43 85.47 74.16 94.82 87.97 96.31

CAC[18] 77.48 85.41 74.00 95.63 86.48 95.99
URPC[25] 77.10 85.13 74.62 93.70 84.89 96.13
DTC[24] 77.20 85.08 74.37 93.84 82.33 97.80

CDCL [40] 77.73 85.59 75.03 93.95 83.53 96.89
Ours 78.05 86.31 76.04 95.45 88.70 96.53

ments on the Kvasir polyp segmentation dataset, containing
10%(70) labeled data and 20%(140) labeled data, respec-
tively.

As shown in Figure 4, three polyps with different shapes
and blurred borders were present in the first sample. The
MT, TCSMv2 and DTC only segment two polyps. The
UAMT, URPC and CDCL produce a mis-segmentation of
the region where the third polyp is located. Specially, the
proposed method completely segmented the three polyps.
For the second sample, the proposed method is smoother at
the edges compared to other methods.

According to Figure 4 and Table 2, our method im-
proves the contour awareness of the target by introducing
SDM with implicit shape representation, thus outperform-
ing other methods in several metrics. With 20% labeled
data, our method outperforms URPC by 0.30% in the JA

metric and 1.09% in the MIOU metric than UAMT.

4.4. Ablation experiments

We conduct multiple ablation experiments on the ISIC
2017 dataset to verify the effectiveness of our proposed
framework. All experiments contain only 5% (100) of the
labeled data, using JA and DI as evaluation metrics.

Ablation experiments on each module. Our method
sets DenseUnet as the segmentation network, introduces
SDM to enhance contour constraint, and applies dual-
stream dense local features contrastive learning and consis-
tency regularization to improve the utilization of unlabeled
data.

The above three modules correspond to Lsdm, Lcontr

and Lcons, respectively. To verify the effectiveness of the
above modules, we conduct a series of ablation experiments

7



Figure 4. Visualization of different semi-supervised methods for the Kvasir-SEG dataset with 20% labeled data, the solid yellow line
indicates the true label and the solid blue line indicates the segmentation results of each method.

Table 2. Performance of different semi-supervised segmentation methods on the test set of the Kvasir-SEG dataset.

Method Labels Metrics
JA DI MIOU AC SE SP

DenseUnet 700 83.83 89.81 81.81 97.11 91.60 98.38
DenseUnet

70(10%)

78.84 86.63 77.65 96.05 93.56 96.88
MT [34] 80.61 87.40 79.76 95.95 89.62 97.64

UAMT [46] 80.56 87.48 79.89 95.95 89.81 97.74
TCSMv2 [22] 80.96 87.47 79.21 96.21 89.41 97.93

CAC[18] 80.98 87.42 80.16 96.06 88.83 97.58
URPC [25] 79.79 86.57 78.62 95.64 90.73 96.79
DTC[24] 80.63 87.21 78.37 95.99 90.17 97.73

CDCL [40] 79.41 86.42 78.90 95.78 90.70 96.87
Ours 81.24 88.08 79.97 96.62 93.69 97.29

DenseUnet

140(20%)

81.46 87.78 79.48 96.24 89.28 98.33
MT [34] 82.01 88.54 79.76 96.30 89.80 98.42

UAMT [46] 82.22 88.59 80.33 96.57 93.02 97.35
TCSMv2 [22] 82.40 88.79 80.18 96.72 92.00 97.88

CAC[18] 81.97 88.19 80.19 96.13 90.15 97.74
URPC [25] 82.59 88.87 79.37 96.40 90.60 98.57
DTC[24] 82.17 88.37 79.28 96.48 88.60 97.65

CDCL [40] 82.44 88.54 79.76 96.30 89.80 98.42
Ours 82.89 88.98 81.42 96.61 90.08 98.50

Table 3. Ablation experiments on each module.

Method Labels Metrics
JA DI

DenseUnet

100(5%)

74.86 83.22
DenseUnet w/ Lsdm 75.53 84.00

Ours w/o Lcontr 75.78 83.93
Ours w/o Lcons 75.95 84.16

Ours 76.77 85.06

on their losses, and the results are shown in Table 3. Ac-
cording to Table 3, it can be seen that after the introduc-
tion of SDM, the accuracy of the model is effectively im-
proved, with a 0.67% improvement compared to the JA of
DenseUnet. The JA with Lcons removed alone decreased
by 0.82% compared to the original but was 0.42% higher

than that with the introduction of SDM only. Finally, re-
moving Lcontr alone decreases JA by 0.99%, which is also
0.25% higher than introducing only SDM. The above ex-
perimental results show that our proposed modules are ef-
fective and complementary, and both are effectively using
unlabeled data to improve model accuracy.

Ablation experiments on sampling methods. In order
to verify the advantages of our proposed method for neg-
ative pairs sampling, we conduct ablation experiments on
the sampling methods of negative pairs, which are random
sampling and all sampling. Specifically, random sampling
is to randomly select some patches as negative pairs, while
all sampling is to consider all the patches excluding posi-
tive pairs as negative pairs, and the experimental results are
shown in Table 3. If choose random sampling, JA and DI
are down 0.81% compared to our method. For the case of
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Table 4. Ablation experiments on the sampling method.

Method Labels Metrics
JA DI

Ours w/o Lcontr

100(5%)

75.78 83.93
Random 75.96 84.25

All 75.46 83.76
Ours 76.77 85.06

Table 5. Ablation experiments on the patch size.

Method Labels Metrics
JA DI

2x2
100(5%)

75.89 84.24
4x4 76.46 84.46
8x8 76.77 85.06

choosing all sampling, JA and DI decreased by 0.32% and
0.17% respectively than those without contrastive learning.
The data in Table 3 shows that the sampling method is cru-
cial in contrastive learning and that the sampling method we
propose is effective.

Ablation experiments on patch size. In order to verify
the effect of patch size on our proposed method, we con-
duct relevant ablation experiments, including experiments
for the cases of patch number under 2x2, 4x4, 8x8. The ex-
perimental results are shown in Table 5, and it can be seen
that the highest accuracy is achieved with the number of
Patches of 8x8, where JA is greater than 4x4 by 0.31% and
DI is greater than 2x2 by 0.82%. Thus the patch size has no
significant effect on the overall performance of our method,
which indicates that our method works well in contrastive
learning of local features at different scales.

5. Conclusion

In this work, we propose a dual-stream dense contrastive
learning network for semi-supervised medical image seg-
mentation, which effectively exploits the unlabeled data to
achieve more precise segmentation. We rely on the predic-
tion stream to obtain the predicted segmentation map and
predicted SDM, and leverage their implicit mutual learning
to enhance the utilization of contour features. To address the
insufficient feature representation capability, we apply the
DLFCL module in the feature stream to improve intra-class
compactness and inter-class dispersion by contrastive learn-
ing. We also adopt consistency regularization, which effec-
tively improves the contrastive learning efficiency and the
robustness of the model. The extensive experimental anal-
ysis demonstrates the effectiveness of our proposed method
achieves significant improvements against existing state-of-
the-art methods. In the future, we will continue to explore
the extension of our approach to 3D medical image segmen-
tation and the multi-class case.
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