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Figure 1. Given a photograph (a), our method is capable of modeling multi-style portrait reliefs with adjustable depth range and reasonable
depth ordering (b-d). In contrast, the state-of-the-art method of [35] can only generate a bas-relief with small depth range. Increasing the
depth range by linearly rescaling the bas-relief in depth direction produces unnatural geometrical details and unreasonable depth ordering
(e).

Abstract

This paper aims at extending the method of Zhang
et al.[35] to produce not only portrait bas-reliefs from
single photographs, but also multi-style reliefs with ad-
justable depth range and reasonable depth ordering. We
cast this task as a problem of style-aware photo-to-depth
translation, where the input is a photograph conditioned
by a style vector and the output is a portrait relief with
desired depth style. To construct ground-truth data
for network training, we first propose an optimization-
based method to synthesize high-depth reliefs from 3D
portraits. Then, we train a normal-to-depth network to
learn the mapping from normal maps to relief depths.
After that, we use the trained network to construct high-

depth relief samples from the given normal maps of [35].
As each normal map has pixel-wise photograph, we are
able to make correspondences between photographs and
high-depth reliefs. Taking the bas-reliefs of [35], the new
high-depth reliefs and their mixtures as target ground-
truths, we finally train a encoder-to-decoder network to
achieve style-aware relief modeling. Specially, the net-
work is based on a U-shaped architecture, consisting of
Swin Transformer blocks to process hierarchical deep
features. Extensive experiments have proven the effec-
tiveness of the proposed method. Comparisons with pre-
vious works have confirmed its flexibility and state-of-
the-art performance.
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Transformer ; Photo-to-depth translation.

1. Introduction

Portrait relief is a 2.5D sculpture in which portrait el-
ements are raised from the background with constrained
depth range [39]. Traditional methods [29, 1] modeled por-
trait reliefs from single photographs by using SFS (Shape
from Shading). Although geometrical details could be faith-
fully reconstructed, the resulting reliefs usually suffered
from unnatural depth ordering. Template-based methods
[31, 40] produced more realistic results by incorporating
3D priors, but a number of user interventions were required
to guide depth reconstruction, which brought difficulties to
common users. In the recent work of [35], Zhang et al.
presented a neural-based solution to model portrait bas-
reliefs from single photographs, without the need of any
user interventions. The main contributions were the first
photograph/bas-relief dataset and a CNN-based network for
photo-to-depth translation, which was able to handle photos
with various head poses, hairstyles and facial expressions.
However, this method can only produce bas-reliefs within
small depth range. To produce a high-depth relief, one
straightforward way is to linearly rescale the bas-relief in
depth direction, but this will exaggerate geometrical details
and generate a high-depth relief with poor depth ordering,
as shown the example in Fig.1e.

This paper aims at extending the work of Zhang et al.[35]
to produce not only portrait bas-reliefs, but also multi-style
reliefs with adjustable depth range and reasonable depth or-
dering, as shown the examples in Fig.1b-Fig.1d. We cast
this task as a problem of style-aware photo-to-depth trans-
lation, where the input is a photograph conditioned by a
style vector and the output is a portrait relief with desired
depth style. The main challenge for this task is the lack
of ground-truth data for network training. We notice that
the dataset of [35] has provided pixel-wise normal map
and bas-relief for each photograph. If we succeed in in-
ferring high-depth reliefs from the normal maps, then the
ground-truth data can be obtained by weighted depth inter-
polations. To this end, we first propose an optimization-
based method to synthesize high-depth reliefs from 3D por-
traits. Then, we train a normal-to-depth network to learn the
mapping from normal maps to relief depths. After that, we
use the network to infer high-depth reliefs from the given
normal maps of [35]. Taking the bas-reliefs, the inferred
high-depth reliefs and their mixtures as ground-truth data,
we finally train a neural network to achieve style-aware
relief modeling. Specially, we design the network with a
U-shaped encoder-decoder architecture, consisting of Swin
Transformer blocks [18] to process hierarchical deep fea-
tures. Due to the self-attention mechanism in modeling
long-range dependency, the proposed network shows better
performance than previous CNN-based architectures. We

make extensive experiments to prove the effectiveness of
the Transformer-based method. Comparisons with previous
works have confirmed its flexibility and state-of-the-art per-
formance. Our contributions are as follows:

(1) An optimization-based method for high-depth relief
synthesis from 3D portrait.

(2) A multi-style solution for portrait relief modeling
from single photograph.

(3) The first Transformer-based architecture for photo-
to-relief translation.

2. Related works

Relief modeling. Relief modeling from 3D object or 2D
image has been a hot topic since the pioneer work of [6]. As
the depth values can be sampled from a 3D object with ar-
bitrary view direction, object-based relief modeling comes
down to a problem of nonlinear depth reconstruction. In-
stead of directly processing depth values, most of previous
works [28, 22, 41, 11, 36] generated bas-reliefs by first at-
tenuating large gradients at discontinuity edges, and then
recovering new depth fields from the scaled gradients. In
the current work of [10], Ji et al. proposed a learning-based
method to produce bas-reliefs from 3D objects. The relief
dataset was constructed by using the methods of [41] and
[11]. Due to the fast convolution operations, the network
was able to generate bas-reliefs in real time.

Modeling relief from 2D image is much more challeng-
ing than that from 3D object, because geometric priors,
which is available in a 3D object, have been lost during the
projection into 2D space. However, a 2D image is much
easier and less expensive to capture, indicating wider appli-
cation prospects. In the works of [29] and [1], SFS (Shape
from Shading) were utilized to produce portrait bas-reliefs
whose shadings approximate given photos. Although geo-
metrical details could be faithfully constructed, the results
suffered from unnatural depth ordering. To solve this prob-
lem, some works [31, 40] have used 3D templates to guide
depth reconstruction and produced more realistic results.
However, these methods required a number of user inter-
ventions to resolve shape ambiguities, which brought diffi-
culties to common users.

Several neural-based methods [24, 38, 9, 37] have been
proposed to model reliefs from single images without the
need of user interventions. However, none of these meth-
ods aimed at modeling portrait reliefs. Recently, Zhang
et al.[35] presented a neural-based solution to model por-
trait bas-reliefs from single photographs. The main con-
tribution was the first dataset that contains 23k pixel-wise
photo/bas-relief samples. To construct such a dataset, the
authors first synthesized normal maps from reference pho-
tos, and then generated bas-relief samples from the syn-
thetic normal maps. Finally, they used a CNN-based net-
work to achieve photo-to-depth translation. Due to the ver-



Figure 2. Limitation of [35] in generating high-depth relief (a) photograph and normal map in the dataset of [35]. (b) linear rescaling of
the bas-relief [35] in depth direction leads to unreasonable depth ordering and exaggerated geometrical details. (c, d) neither removing
the second term nor increasing the constant h in Eq.1 can generate comprising result due to the lack of geometrical constraints for depth
reconstruction. (e) high-depth relief predicted by our normal-to-depth network has reasonable depth ordering and natural geometrical
details.

satile training samples, the network is capable of handling
photographs with various head poses, hairstyles and facial
expressions. Besides the state-of-the-art performance, one
limitation of this method is that the network can only pro-
duce portrait bas-reliefs with fixed depth style and small
depth range. Thus, it is hard to apply it in specific scenar-
ios such as art decoration and memorial sculpturing, where
high-depth reliefs might be required to provide strong 3D
perceptions. In this paper, we aim at extending the method
of [35] to a multi-style version that allows users to freely
adjust the depth style to meet different application require-
ment.

Image-to-Image Translation. Image-to-image translation
(I2I) aims at learning the mapping from a source domain
to a target domain while preserving the content/structure
of the input. I2I with CNN-based architecture has been
broadly applied in image synthesis [20, 4], segmentation
[30, 32], style transfer [25, 5], inpainting [17, 23] and super-
resolution [19, 34]. As an alternative to CNN, Vision Trans-
former [26] designed a self-attention mechanism to capture
long-term dependencies between contexts and has shown
comparable performance with CNN. Recently, Swin Trans-
former [18] have achieved state-of-the-art performance in
many vision tasks as it integrated the advantages of both
CNN and Transformer. Following the hierarchical design,
many works have used Swin Transformer as backbone for
dense I2I tasks [2, 33, 16, 15]. In this paper, we cast relief
modeling from single photograph as a style-conditioning
I2I problem, where a style vector is used to control the
depth style of the output. Different from the method of [35]
that used ResNet blocks [8] for feature representation, we
design a U-shaped encoder-decoder architecture that takes
Swin-Transformer block [18] as basic unit. We show in the
experimental results that the Transformer-based network is
able to achieve better performance than CNN-based archi-
tectures for photo-to-depth translation.

Figure 3. Pipeline of high-depth relief synthesis from 3D portrait.
(a) input 3D portrait (b) original depth field with large depth dis-
continuities at portrait border (c) result of border descending (d)
result of depth reconstruction.

3. Method

3.1. Motivation

As mentioned above, Zhang et al.[35] introduced the first
relief dataset containing 22k pairs of photograph/bas-relief
samples. To construct such a dataset, the authors first esti-
mated normal maps from reference photos, and then gener-
ated bas-reliefs from the normal maps by minimizing:∫∫

Ω

((∇H −G)2) + µ · (H − h)2)dxdy (1)

where the first term was used to make the relief gradients
∇H as close as possible to the gradients G, which implic-
itly recovered geometrical details from the normals, and the
second term was used to constrain the relief within depth



range h, which explicitly limited depth variations.
Taking the bas-relief samples as ground-truth data, the

authors finally trained a neural network to achieve end-to-
end photo-to-depth translation. Limited by the training data,
the network can only produce bas-reliefs with small depth
range. To produce a high-depth relief, one straightforward
way is to apply a linear rescaling of the bas-relief in depth
direction. Obviously, this does not work due to the unrea-
sonable depth ordering and exaggerated geometrical details,
as shown the example in Fig.2b. We also generate a high-
depth relief either by removing the second term in Eq.1 or
by increasing the value of h. As shown in Fig.2c and Fig.2d,
none of the results are acceptable due to the lack of geome-
try constraints for depth reconstruction.

To ensure reasonable depth ordering, we propose an
optimization-based method for high-depth relief synthesis,
and train a neural network to learn the mapping from nor-
mal map to relief depth. After that, we use the network
to construct high-depth relief samples from the given nor-
mal maps of [35] (Section 3.2). In this way, we are able
to upgrade the dataset of [35] to contain not only bas-relief
but also pairwise high-depth relief for each reference pho-
tograph. Taking the bas-reliefs, the new high-depth reliefs
and their mixtures as target ground-truths, we finally train a
photo-to-depth network to achieve multi-style relief model-
ing in real-time (Section 3.3).

3.2. High-depth Relief Data Construction

In this section, the main task is to upgrade the database
of [35], making it contains not only bas-relief but also pair-
wise high-depth relief for each reference photograph. For
this task, we first train a network to learn the mapping from
normal map to relief depth, and then use the network to
construct high-depth relief samples from the normal maps
of [35].

We need to have enough ground-truth data for normal-to-
depth translation. Inspired by the works of [41, 38], we uti-
lize 3D portraits to synthesize high-depth reliefs. We have
collected a set of 3D portraits models with various identi-
ties, hairstyles and expressions. For each model, we sam-
ple 2.5D depth fields and render normal maps from mul-
tiple viewing directions (pitch θ ∈ [−5◦, 20◦] and yaw
ϕ ∈ [−45◦, 45◦] ) with a resolution of 360×360. As shown
in Fig.3b, the original depth field has large depth discontinu-
ities at portrait border. Following the basic rule of relief cre-
ation,we hope to bring the portrait border closer to the back-
ground, while preserve the original depth structure as much
as possible. Here, we propose a two-stage optimization-
based method to achieve this target. In the first stage, we lin-
early descend the border vertices towards the background.
The depth offsets inside the portrait caused by border de-
scending are computed by solving a harmonic equation:

L ·∆d = 0 (2)

whereL is the Laplace–Beltrami matrix and ∆d is the offset
vector needs to be solved. For the border vertices, we set the
descending values as 0.9 times of their original depths, and
take them as boundary conditions to solve Eq.1. After that,
we update the depth field by subtracting the offset vector
from the original one, d∗ = d−∆d, as shown the result in
Fig.3c.

In the second stage, we generate a high-depth relief from
the updated depth field by minimizing Eq.1, which equals
to solve the following linear system:

∆H + µ ·H = div G+ µ · h (3)

where ∆H is the depth Laplacian and div G is the diver-
gency of gradients that can be estimated from the known
normal map. In contrast to Eq.1 that defines h as a constant,
we redefine h as a non-constant vector: h = α · d∗ , where
α is the ratio for depth range scaling. Since h has provided
pixel-wise depth constraint, the depth ordering can be well
preserved in the final relief. We fix the background and
portrait border, and take them as boundary conditions when
solving Eq.3. By default, we set α = 0.4 and µ = 0.005.
Fig.3d shows the final relief after depth reconstruction.

By using the above method, we obtain about 15k pairs
of high-depth relief/normal map data, among which 13k
pairs are used for network training and 2k pairs are used
for network testing, as shown the examples in Fig.4. The
normal-to-depth network is based on a UNet architecture
[21], where the input is a three-channel normal map and
the output is one-channel depth map. The encoder has
four down-sampling modules with (32, 64, 128, 256) out-
put channels, and the decoder has four up-sampling mod-
ules with (256, 128, 64, 1) output channels. Each down-
sampling/up-sampling module is composed of two 5×5 con-
volution layers followed by ReLU activations. The loss
function for network training is defined by:

Ltotal = Ld + ω · LN (4)
where Ld is the mean depth error between predicted depths
and ground-truths, and LN is the mean angular error be-
tween relief normals and ground-truths. We use ω = 0.01
to balance the two loss terms. The network is trained by
using Adam optimizer [14] with a batch size of 16.

We evaluate the performance of the normal-to-depth net-
work by using mean depth error and mean normal angu-
lar error. The results are 1.03 × 10−4 and 3.42◦ respec-
tively on the testing data. Fig.4 shows the comparisons of
network predictions with ground-truths. The imperceptible
differences indicate that the network is capable of predict-
ing high-depth reliefs with good depth ordering even though
it receives only single normal maps without known depth
constraints.

Once the normal-to-depth network has been trained, we
use it to construct high-depth relief samples from the nor-
mal maps of [35]. As the network runs very fast (60fps),



Figure 4. Normal-to-depth network evaluation. From left to right for each example: normal map rendered from 3D portrait, ground-truth
relief generated by solving Eq.3, high-depth relief predicted by the normal-to-depth network, and normal angular error map.

Figure 5. Examples from the upgraded dataset. From left to right for each example: reference photo, normal map, bas-relief in [35] and
new high-depth relief predicted by our normal-to-depth network.

the whole process can be completed in less than one hour
including the time for data storage. Thus, we succeed in
upgrading the dataset of [35], which now contains not only
portrait bas-relief but also pairwise high-depth relief for
each reference photo, as shown the examples in Fig.5.

3.3. Multi-style Relief Modeling

In this section, the main task is to train a photo-to-depth
network to enable portrait relief modeling with adjustable
depth multi-style relief modeling. Inspired by the recent



Figure 6. Transformer-based architecture for style-aware photo-to-depth translation

work of [2] that use Swin Transformer [18] as backbone
for image segmentation, we design a similar Transformer-
based network for style-aware photo-to-depth translation.
The whole architecture is presented in Fig.6. The input is a
three-channel image including one-channel grayscale photo
and two-channel style maps, and the output is one-channel
depth map with a resolution of 384×384. Specially, the style
maps are generated by a two-element style vector and used
to control the depth style of the output relief.

Encoder. Following the specification of Swin Transformer
[18], we split the input image into non-overlapping patches
with size of 4×4 at the beginning of the encoder. Thus,
the raw-valued feature dimension of each patch becomes
4×4×3=48, and the patch token resolution turns to 96×96.
After that, a linear embedding layer is applied to project the
feature dimension from 48 to 96. The patch tokens then pass
through several Swin Transformer blocks and patch merg-
ing layers for hierarchical feature transformation. Similar
to the down-sampling operation in CNN, the patch merg-
ing layer is used to reduce the number of patch token (2×
down-sampling). At the same time, it doubles the dimen-
sion of the input features.
Decoder. The decoder has symmetric structure with the en-
coder. It consists multi-scale Swin Transformer blocks and
patch expanding layers. Different from the patch merging
operation in the encoder, a patch expanding layer [33] is
used to up-sample the resolution of patch tokens (2× up-
sampling) and decrease feature dimension. Similar to the
UNet architecture [21], skip connections are added to con-
catenate multi-scale features in the encoder and up-sampled
features in the decoder. In the end, we apply a dual patch
expanding layer [7] with Bilinear and Pixel-Shuffle up-
sampling to transform the feature maps to the original reso-
lution 384×384, and a linear projection layer to output one-
channel depth field.

Swin Transformer block. We follow the structure of Lay-
erNorm, multi-head self-attention module and residual con-
nection in Swin Transformer block [18]. The window-based
multi-head self-attention (W-MSA) module and the shifted
window-based multi-head self-attention (SW-MSA) mod-
ule are applied in two successive transformer blocks. In-
spired by [27], we modify the two-layer MLP by adding a 3
×3 depth-wise convolution between the first fully-connected
layer and GELU. We find that this slight change is very ef-
fective in eliminating block artifacts.

Training. We divide the database (Section 3.2) into two
groups, 20k for network training and 3k for network evalu-
ation. Each photograph has pixel-wise bas-relief and high-
depth relief. We define a set of style vectors to guide style-
aware relief modeling. The two basic depth styles, i.e. bas-
relief and high-depth relief, are specified with style vectors
[1.0, 0.0] and [0.0, 1.0] respectively. Assuming the vec-
tor elements be s1 and s2, the depth values of bas-relief
and high-depth relief be Db and Dh, the ground-truth re-
lief corresponding to [s1, s2] can be computed by weighed
depth interpolation:Dnew = s1 ·Db +s2 ·Dh. During train-
ing, we combine eight photos into a group, and assign each
photo with three kinds style vectors: [1.0, 0.0], [0.0, 1.0]
and [s1, s2], which correspond to Db, Dh and Dnew respec-
tively. The values of s1 and s2 are randomly selected from
{0.5, 1, 1.5, 2} and {0.2, 0.4, 0.6, 0.8, 1.0} respectively.
Thus, the batch size for network training becomes: 8×3=24.
We train the Transformer-based network using the same loss
function in Eq.4. We employ Adam optimizer [7] for 80
epochs using a cosine decay learning rate scheduler. An
initial learning rate of 0.001 and a weight decay of 0.05 are
used for back propagation.



Table 1. Network evaluations with multiple style vectors

Style vector

[1.0,0.0] [1.0,0.5] [1.0,1.0] [1.5,0.0] [1.5,0.5] [1.5,1.0] [2.0,0.0] [2.0,0.5] [2.0,1.0]

MDE(×10−4)

ResUnet 0.266 5.305 19.353 2.987 6.006 22.854 3.939 7.252 27.002

Our network 0.188 2.294 7.970 0.593 3.016 8.902 0.950 4.148 10.531

MNAE(°)
ResUnet 7.370 11.523 14.902 11.16 13.416 16.288 12.777 15.108 17.602

Our network 6.789 10.372 13.542 9.435 12.268 14.950 11.628 14.012 16.285

Figure 7. Perceptual evaluations. From left to right in each example: input photo, result of ResUnet, result of our Transformer-based
network and ground-truth. The style vector is set by [1.0, 1.0].

Figure 8. Effect of style vector with different element combination.
Depth range value is shown on the top-left of each figure. By
default, the x- and y- coordinate are limited in the range of [-1.0,
1.0]

4. Experimental Results

Network evaluation. In the work of [35], Zhang et al. de-
signed several CNN-based architectures to model portrait
bas-reliefs from single photographs. Through qualitative
and quantitative comparisons, they chose ResUnet as the
final network which gave the best results. To verify the ad-
vantage of the Transformer-based architecture, we compare
it with the CNN-based ResUnet in terms of mean depth er-
ror (MDE) and mean normal angular error (MNAE). For
fair comparison, we add two-channel style maps to the in-
put of ResUnet, and re-train the network using the same
data, loss function in Section 3.3.

As shown in Table 1, the Transformer-based network
outperforms both on MDEs and MNAEs with less parame-
ters (20.30M vs 95.92M). Particularly, the mean depth er-
rors (MDEs) have been reduced by a large margin. We
argue that the performance improvement is mainly caused
by the long-range self-attention mechanism, which can bet-
ter learn feature representation for photo-to-depth transla-
tion. We also make perceptual comparisons by taking style
vector [1.0, 1.0] as input. As shown in Fig.7, both results
have promising depth ordering, but the geometrical details



Figure 9. Modeling on FFHQ dataset [12]. Input style vectors are [1.0, 0.5] and [1.0, 1.0] respectively.

Figure 10. Modeling on stylized images. Input style vectors are [1.0, 0.5] and [1.0, 1.0] respectively.

are weaker than those of the ground-truths. Compared to
the ground-truths, our predictions contain less geometrical
noises at the face regions.
Effect of Style Elements. The style vector [s1, s2] is used
to control the depth style of the output. Fig.8 shows the re-
liefs produced by different element combinations. It can be

seen that the depth range and depth ordering vary smoothly
with the adjustment of s1 and s2, while the same depth
range might be produced by different style vectors. For in-
stance, the reliefs produced by the style vectors [0.0, 1.0]
and [2.0, 0.6] have same depth range (0.356), but the depth
ordering looks quite different, particularly at the face re-



Figure 11. Reliefs fabricated by NC machining with different ma-
terial. Top: plaster. Bottom-left: acrylic. Bottom-right: copper
plated with gold.

gion. In each row, the depth range gradually rises with the
increasement of s2. In each column, although the depth
range also rises with the increasement of s1, the change of
depth ordering is more impressive.

In real applications, the values of s1 ∈ [0.0, 2.0] and
s2 ∈ [0.1, 1.0] can be determined in accordance to the mate-
rial used for relief fabrication. For example, a middle s1 and
a small s2 are suitable to produce a metallic bas-relief. For
the applications of art decoration and memorial sculpturing,
a large s2 would be appropriate to produce a high-depth re-
lief. In case that the relief is made of low-reflective material
such as stone and plaster, a large s1 can be applied to en-
hance the contrast of facial features. In case that the relief
is made by high-reflective metallic material, it is better to
reduce the value of s1 to avoid excessive surface distortion.

Modeling on FFHQ dataset. Fig.9 shows the experimental
results on FFHQ database [12]. Different from the method
of [35] that requires a mask map for network prediction, our
method does not need any portrait mask. Supervised by the
training data, the network is able to identify the foreground,
and output a portrait relief with zero background. Due to
the versatile training data, the network can handle photos
with various skin colors, hairstyles, expressions, poses and
illumination conditions.
Modeling on Stylized Images. The proposed network can
also model portrait reliefs from stylized images such as
paintings, pencil drawings and caricatures. As shown in
Fig.10, although the stylized images differ a lot from real-
world photos, and some portraits even have exaggerated fa-
cial expressions, the network is still able to produce reliefs
with promising appearances.
Fabrication. Once a desired portrait relief has been gen-
erated, it can be converted into the form of 3D mesh, and
fabricated by NC machining or 3D printing. Fig.11 shows

Figure 12. Comparisons with previous methods. (a) input photo.
(b) result of Wu et al.[29]. (c) result of Zhang et al.[40]. (d) result
of Zhang et al.[35]. (e-h) our results with input style vectors [1.5,
0.0], [0.0, 1.0], [1.5, 0.5] and [2.0, 1.0] respectively.

several examples fabricated by NC machining. From top
to bottom, the reliefs are made of non-metallic material
(plaster), transparent material (acrylic) and metallic mate-
rial (copper plated with gold) respectively. It can be seen
that all results have natural depth orderings and rich geo-
metrical details.
Animation. The Transformer-based network runs very fast
(60fps) and can be used to produce real-time relief anima-
tions from portrait videos. Please refer to the animations in
the supplemental material. In each frame of the animation,
we render the relief using Blinn-Phone shading algorithm.
Discussion. It should be noted that some other strategies
can also be applied to reach the target of multi-style relief
modeling. For example, one can first train a neural network
using our relief data to infer a high-depth relief from sin-
gle photograph, and then use the method of [35] to produce
a pixel-wise bas-relief. After that, a desired style of relief
can be generated by weighted depth interpolation. For an-
other example, one can also train a neural network to infer a
high-depth relief, followed by taking advantage of previous
model-based methods such as [40] and [36] to generate a
portrait relief with desired depth range and depth ordering.
However, these alternatives are much more time-consuming
than our single-pass solution in this paper, which runs net-
work only once without any additional computation.
Comparisons with previous methods. We now compare
our method with previous works of [35, 29, 40], which also
aim at modeling portrait reliefs from singe photographs. As
shown in Fig.12, the method of Wu et al. [29] succeeds in
recovering facial details, but the resulting relief has unnatu-
ral depth ordering. The result of Zhang et al.[40] has good
depth ordering and fine facial details due to the template-
based depth optimization. However, only the face region



(a) (b) (c) (d) (e) (f)

Figure 13. Hair comparisons. (a) result of Chai et al.[13]. (b) result of Zhang et al.[35]. (c-f) our reliefs produced with style vectors [1.0,
0.0], [0.0, 1.0] and [1.0, 1.0] respectively.

(a) (b) (c)

Figure 14. Comparisons with hand-made reliefs. (a) input photos.
(b) reliefs created by artists. (c) our results.

can be constructed in the final bas-relief. The method of
Zhang et al. [35] models full head features through a CNN-
based network, but the result is limited within a small depth
range. Instead, we extend the method of [35] to a general-
ized version, which is able to produce not only bas-reliefs,
but also portrait reliefs with adjustable depth style, as shown
the results in Fig.12.

Next, we compare our method with the work of [3],
which focuses on hair modeling from a single photo. By
combining depth clues and hair priors in an optimization
framework, the method of Chai et al.[3] is able to construct
high-fidelity hair geometry, as shown in Fig.13b. However,
it requires user interventions to segment the hair region in
a pre-processing stage, thus bringing difficulties to users.
In contrast, the method of [35] constructs hair geometry
through a neural network, without the need of hair segmen-

tation. However, it requires a mask map [13] to identify the
foreground. In contrast, our method does not need any mask
information. It implicitly extracts hair features from the in-
put photo, and outputs hair geometry naturally fused with
the face region and the background. As shown in Fig.13d,
our results generated by style vector [1.0, 0.0] have compa-
rable hair quality with the ones in Fig.13c. In case a new
style vector is fed to the network, the strength of geometri-
cal details can be adaptively adjusted, as shown in Fig.13e
and Fig.13f.

Finally, we compare our results with reliefs created by
artists. Given a reference photo, artists usually utilize mul-
tiple sculpturing tools to model a portrait relief. On one
hand, manual operation is flexible in dealing with different
type of head features, even the ones with poor image qual-
ity. On the other hand, the modeling quality highly depends
on the skills of the artists. Differently, our multi-style so-
lution models portrait reliefs in an end-to-end way. Once a
reference photo and a style vector are fed into the network,
it takes advantage of shading clues in the input photo and
automatically outputs a relief that mimics the appearance of
the input. As shown in Fig.14, our method produces more
realistic results than those created by artists.
Artistic evaluation. We have invited 5 skilled artists to
evaluate the quality of our experimental results. All artists
have over three years of experiences in modeling portrait
reliefs. We provide each artist 100 photographs from FFHQ
dataset [3] and corresponding relief models produced by
four types of style vectors [1.0, 0.0], [1.0, 0.5], [1.0, 1.0]
and [2.0, 1.0]. The artists are asked to score the reliefs from
four attributes respectively: face quality, hair quality, depth
ordering and feature sharpness. The score varies from 2 to
5, indicating poor (2), medium (3), good (4) and excellent
(5) respectively.



Table 2. Artistic evaluation

Face
quality

Hair
quality

Depth
order

Feature
sharpness

Artist #1 4.5 4.0 4.0 3.0
Artist #2 4.0 3.8 4.2 3.2
Artist #3 4.2 4.0 4.0 3.6
Artist #4 4.0 4.0 4.2 3.2
Artist #5 4.0 3.6 3.8 3.0
Mean score 4.14 3.88 4.04 3.2

Evaluation results are reported in Table 2, where the
mean scores are 4.14, 3.88, 4.04 and 3.2 respectively. All
artists have given positive feedbacks on the face quality, hair
quality and depth ordering. They report that the high-depth
reliefs look more impressive than the bas-reliefs with small
depth range. They also point out that the sharpness of some
portrait features such as eyes and cloth collars should be
enhanced. All artists support the multi-style strategy, which
increases the flexibility of relief creation and provides users
more choices to meet different application requirement.

In this paper, we present a multi-style solution for por-
trait relief modeling from a single photograph. To pro-
vide ground-truth data for network training, we upgrade
the database of [35], making it not only contain bas-relief
sample, but also pixel-wise high-depth relief for each pho-
tograph. Taking the two types of reliefs and their mix-
tures as target ground-truths, we finally train a photo-to-
depth network to achieve style-aware relief modeling. The
Transformer-based network allows users to freely adjust the
depth style to meet different application requirement. Ex-
perimental results and comparisons with previous methods
has proved the state-of-the-art performance of the proposed
method.

Our method still has some limitations. Similar to the
work of [35], it fails to handle photographs with blurring
portrait features and hard shadows. Currently, it is not ef-
fective in modeling hats, eyeglasses, beards and collars due
to the lack of training data. We plan to solve these problems
in the future.
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