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Figure 1: We propose a method for the embodiment of human lower-limb motion in VR using a single waist-wearable camera
(left). We estimate the global velocity (lower right) by learning from the features of the feet observed by the camera (middle)
and recover the lower-limb motions (upper right) with the body trunk moving according to the estimated global velocity. By
augmenting the virtual avatar with the recovered motion, we produce lower-limb embodiment in VR.

Abstract

Background: For the interactions in virtual reality,
it is essential to map the user’s physical motion to the
avatar in the virtual world. While reliable lower-limb
motions are available under pre-installed cameras, the
range of the walking motion is limited by the infrastruc-
tures. Method: We propose a new wearable solution to
reproduce the lower-limb motions and map them to the
virtual avatar in real time. We employ a single depth
camera and design a waist-wearable layout to capture
the lower-limb motions relative to the waist. By exploit-
ing the vision data observed by the camera, we further
estimate the global velocity of the user. Results: Experi-
ments are carried out to verify our solution. We quanti-
tatively evaluate the estimated global velocity with an
optical motion capture system. We also map the re-
covered lower-limb motion to the avatar and utilize a
standard questionnaire to measure the sense of embodi-
ment. The experiments show that our wearable solution

are feasible and effective, being applicable to different
people from the perceptual perspective. Conclusions:
The results verify that users are allowed to naturally ex-
plore the virtual world with the embodiment using the
lightweight equipment.

Keywords: lower-limb , waist-wearable , VR embodi-
ment

1. Introduction

As one of the most important daily human activities, mo-
tion of lower limbs contains a great amount of information
about human kinematics.

In today’s virtual reality (VR) interactions, developers
are able to reconstruct hand movements through hand con-
trollers, while special devices for reconstructing lower-limb
motions are less than hand tracking tools. However, when
users are in virtual reality and cannot see their whole body
in motion, it creates a strong sense of vertigo and unreal-
ism [14]. Therefore, it is necessary to capture and map
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the real lower-limb motion to the virtual avatar in real time
for interactions in VR. The setup of base station limits the
user’s range of motion, as the user can only move and inter-
act in a pre-defined area. Therefore, a solution that liberates
movement restrictions is necessary.Wearable devices are a
great solution to enlarge the interaction space.

Our ambition is to reconstruct the embodiment of the hu-
man lower limb in VR with just a single wearable camera.
Due to the limited field of view (FOV) of a camera, it is
not trivial to obtain sufficient visual information to recover
the lower limb motions. Therefore, we need to work on
the layout of the wearable camera for capturing lower-limb
motions. Besides, it is challenging to effectively exploit the
global information from the ego-centric view to track the
lower limbs.

In this work, we design a waist-wearable layout for the
real-time embodiment of human lower limb motion in VR,
as shown in Figure. 1. The camera hanging from the waist
shoots down to capture the movement of the feet. Since only
the motion of the limbs relative to the waist can be obtained,
the global motion of the body trunk cannot be directly cap-
tured. To solve this problem, we propose a learning-based
method–Lower Limb Transformer, which can effectively
cope with the problems of occlusion, to further estimate the
linear and angular velocity of the body. We quantitatively
evaluate the reconstruction quality of our method. In addi-
tion, we conduct user experiments to evaluate the perception
of reconstructed lower limbs for the virtual embodiment in
VR.

Our contributions in this paper are summarized as fol-
lows:

• We propose a novel waist-wearable layout for the em-
bodiment of human lower limb motion in Virtual Re-
ality.

• We propose Lower Limb Transformer(LLT), specifi-
cally designed for the reconstruction of lower limb mo-
tions with global movements.

• We evaluate the quality of the lower-limb motion and
the perceptual acceptance of the virtual embodiment.

2. Related Work

In virtual reality, embodiment of the lower limb has been
an issue worthy of study. Kilteni et al. [9] defined the sense
of embodiment toward a proxy body when its properties are
processed as if they were the properties of one’s own bio-
logical body. The lower-limb embodiment in VR is usually
separated into three different levels[9], the sense of self-
location, agency, and body ownership.

Many researches are continuously exploring the feasi-
bility and optimization of human embodiment [3]. Em-
bodiment of lower limb is also a major topic of embodi-
ment [20, 11]. As mentioned in[29], human motion in the

virtual world does not have to be exactly identical to real-
world motion for embodiment. Usually, in the virtual world,
users are not able to perceive subtle deviations, such as mi-
nor changes in direction or velocity. [40] Researches[28, 1]
have also shown that the human body has a certain tol-
erance for lower limb movement errors in VR. With the
observation, the embodiment of lower limbs in the virtual
world has its practical significance, such as redirected walk-
ing [25, 21].

Lower-limb motion capture is closely related to the vir-
tual embodiment of lower-limb and other interactions in
VR. In general, the highest accuracy can be achieved by us-
ing external devices and reflective markers for lower limb
motion capture. For instance, marker-based optical mo-
tion capture (Mocap) systems [18, 16]. There are also
monocular systems that do not rely on markers [6, 17, 19,
13]Although external devices can provide lower-limb mo-
tion with high accuracy, there are some insurmountable
drawbacks due to their measurement methods. One is that
such systems need to be installed in special laboratories,
which requires a complex and costly installation process
and takes a lot of time for preparation. Secondly, the mea-
surement range is limited by the monitoring area of the cam-
eras, which does not allow users to move freely.

This limitation can be lifted by a wearable device. Wear-
able IMU-based lower-limb motion reconstruction is one
solution. It integrates the sensed acceleration and angular
velocity to recover the motion trajectory of the foot. Exist-
ing gait analysis methods based on wearable inertial sensors
commonly use the zero-velocity update (ZUPT) [27, 31]
to eliminate integration errors accumulated in the swing
phase, and the effectiveness of ZUPT relies on the accu-
rate detection of the fully standing phase[39]. However,
it is difficult to find a threshold with universal applicabil-
ity among the existing methods for determining the real
standing phase[32, 38]. Yi et al. [35] proposed a real-time
motion reconstruction method that uses six IMUs to esti-
mate the pose and global translation by fitting the body size
through a neural network. However, each sensor is usually
limited to measure properties at a fixed location, and it is
difficult to match information between multiple sensors.

Another type of wearable solution is to use wearable
cameras [7, 22, 10]. However, these systems were not able
to find the global motion in the world coordinate system.
Meanwhile, some wearable camera solutions use an inside-
out approach to estimate human root motion by shooting
outward from a camera tied to user’s body [26, 36, 37].
They relied on bundle adjustment to solve for the transform
of the camera. However, if no prominent visual features
were inside the camera view, the SLAM-based method may
lose tracking of the camera.

In contrast to these methods, our approach attempts to
estimate the translation and rotation of the entire body as



well as the lower limb motion in the world coordinate sys-
tem through a wearable depth camera.

In addition, multi-sensor fusion methods are also emerg-
ing. Cha et al. [2] proposed a real-time system for dy-
namic 3D capture, relying on cameras embedded in a head-
mounted device and IMUs worn on the wrist and ankle.
Machine learning is used to estimate the wearer’s motion
combining the inputs from vision and inertial sensors. Win-
kler et al. [33] proposed a reinforcement learning frame-
work that takes in sparse signals from an HMD and two
controllers to simulate full body motions. However, such
multi-sensor fusion methods are not specifically designed
for the motion of the lower limbs. They are all data-driven
to regress the feet motion through sensors worn on the head
and hands. Besides, they all use multiple sensors, while we
try to work with only one wearable camera.

3. Method

Our ultimate goal is to reconstruct the motion of the hu-
man lower limb for virtual embodiment with just a single
wearable camera. We will first talk about the wearable cap-
turer settings as well as the data acquisition step. Then we
will introduce our Lower Limb Transformer(LLT) to extract
the global motion from the captured local signals. At last,
we talk about how we drive the virtual avatar with the re-
constructed motion.

3.1. Data Acquisition

Our key idea is to adopt wearable vision for lower-limb
motion embodiment. Limited by the FOV of the camera, it
is difficult to capture sufficiently large views of the entire
lower limbs from a single camera. Inspired by the headset
capturer in [2], we propose to use the downward views from
the camera. Instead of installing the camera on the headset
and guessing the knee joints from the captured leg motion,
we propose to estimate the lower-limb motion by directly
tracking the feet, which are the end-effectors of the lower
limbs. In this case, we are able to reliably find the low-
limb motion from data-driven inverse kinematics [23, 8,
15]. Considering that the feet are mostly visible to the waist,
we design to install the camera at the waist in that the body
trunk is relatively stable and slow in motion than human
head, and the image quality is expected to be better than
headset capturers.

We make a prototype of our waist-mounted capturer to
implement the designed layout, as shown in Figure. 2. We
3D-print a platform to fix the camera and stick the platform
to a belt. With the wearable design, the camera is consid-
ered to be rigidly attached to the waist without noticeable
sliding. If the camera is tightly attached to the waist to
shoot down, it will be obscured by clothing. We optimize
the layout for a better view by suspending the camera 10cm
away from the waist. In our physical prototype, we use the

Figure 2: The prototype of our waist-mounted capturer. The
extended brunches fixed with reflective markers are used to
collect the training data. They can be removed after the
training stage.

Realsense depth camera, which can acquire both color im-
ages and binocular IR images for the estimation of the depth
channel. Similar to the work [12], we set up three colored
marker on each shoe to facilitate tracking the feet, as shown
in Figure. 2.

There are still challenging problems to recover the vir-
tual embodiment from the captured images. Because we
track the feet in the view of the waist-mounted camera, we
may only directly estimate the low-limb motion relative to
the waist. For embodiment in VR, we also need to track the
global motion of the user so that we are able to well align
the virtual avatar to the VR scene. Because the HMD only
tracks the head motion, which may move when the user ob-
serves the VR scene, we cannot directly use the tracked mo-
tion of the HMD to define the global motion of the virtual
avatar. Therefore, we will work to compute for the global
motion of the body trunk using the data from the waist-
mounted camera. Our insight is that the relative motion
of the feet hides the information of the global velocity of
the body trunk. As illustrated in Figure.3, the gait from the
egocentric view is different when the user straightly walks
or makes a turn. The two feet are not always visible to the
waist-mounted camera. We will explore how to work with
the unstructured data for producing the virtual embodiment
of lower-limb motion.

3.2. Lower Limb Transformer

With the captured images from the waist-mounted cam-
era as the input, we introduce our Lower Limb Transformer
(LLT) for producing the global velocity of the body trunk,
which will be later used in the virtual embodiment. The



Figure 3: The gait from the egocentric view is different
when the user walks or makes a turn.

pipeline of LLT is illustrated in Figure. 4. In this work, we
model the human as a rigid body rather than a mass point.
The output global velocity includes a translational and a ro-
tational component. Because the captured images are from
an egocentric view, in this stage, we also model the output
translational velocity vi and the rotational angle θi at the ith
frame in the egocentric coordinate system. In other words,
at each time step, we estimate the body trunk to move along
the vector vi in the egocentric view and the marching di-
rection turns about an angle of θi, as shown in Figure. 5.

3.2.1 Feature Extraction

Here we introduce the feature extraction stage from the cap-
tured images. Since the user may walk on the floor with
unknown patterns or wear different clothes, it is not reliable
to transfer the learned network for arbitrary users in differ-
ent trials. We, therefore, propose to extract features using
3D vision based on the designed wearable solution. Specif-
ically, we track the relative pose of each foot with respect
to the camera as the features using the markers on the shoes
(Figure.2).

To extract the 3D vision features, we first segment the
colored markers in the image. The RGB images are con-
verted into HSV channels, denoised and segmented using
color thresholds in real time, similar to [12]. With the
aligned depth channel, each segmented marker point in the
image coordinate system is assigned with its depth, forming
its 3D coordinate in the camera coordinate system.

Because the 3D position of each visible marker may not
be accurate due to the various lighting conditions or mo-
tion blur, we further extract the 3D transform of the foot
to regulate the tracked markers. Specifically, we store the
3D positions of the markers on the left foot p̄i and those
on the right foot p̄i in the standing pose as the initial state.
Suppose in the ith frame, the visible markers are extracted
to be pi and qi. We solve for the best rigid transform of
the left foot by fitting pi to p̄i using Procrustes methods[5].
Because the markers on one foot may not always be visible
to the camera, we solve for the 3D rigid transform when all
the three markers are visible. If only two markers are visi-
ble, we assume the foot does not twist and rigidly transform

on a plane parallel to the ground. In this case, a 2D rigid
transform is fitted. If more than two markers are lost in the
3D vision, we do not solve the rigid transform at the frame
and tag it as invisible. The same process is adopted for the
right foot.

After the feature extraction stage, we organize the fea-
tures sent to the LLT network as X(l) = {x(l)

i } and
X(r) = {x(r)

i }. At the ith frame, the feature vector cor-
responding to the left foot x(l)

i = {t(l)i ,u
(l)
i ,v

(l)
i }, where

t
(l)
i is the tracked translation of the left foot, u(l)

i and v
(l)
i

are the first two columns of the tracked rotation matrix.
The rotational component for the neural network is orga-
nized as suggest in [41]. We stack the feature vector x(l)

i

into the time series X(l) and feed the time series into the
LLT network along with the time series of the visibility tag
S(l) = {s(l)i | s(l)i = 0 or 1}. The features for the right foot
X(r) are organized in the same way.

3.2.2 Network Architecture

In order to learn from the time series with patterns and miss-
ing data, we design a network architecture using the self-
attention mechanism proposed in [30]. To this end, we pro-
pose the Lower Limb Transformer, an attention-based two-
stream network. The structure of the LLT network is shown
in Figure.4. We first deal with the features extracted from
the tracked left and right feet separately in two streams. For
the ith time step, we design a window size N and feed the
features of the left and right feet as a time sequence start-
ing from its previous N frames. Two Transformer blocks
are used to extract deep features from the feature sequence
of the left foot X(l) and the right foot X(r), respectively.
Facing the case of missing foot features, we use the vis-
ibility tag S(l) and S(r) to trigger the mask operation in
order to keep invisible data out of the calculation of self-
attention. Suppose the outputs of the single-foot masked-
attention block are Y (l) and Y (r) respectively, we concate-
nate them to form a feature Z = Concat(Y (l), Y (r)) as
the integrated feature of two feet. Observing that there are
states that both feet are visible or one of them is visible, we
design the two-stream structure to dynamically trigger the
features from the two feet according to the visibility tags.
In this case, the network produces useful deep features in
presence of unstructured visibility states.

Next, the concatenated feature Z is fed into another at-
tention block for capturing the correlation of the overall
foot motion in the time window. The final output is passed
through a MLP + FC blocks [24], where the output is the
linear and angular velocity in ego-centric coordinate system
over a sequence of time. To provide supervision for train-
ing the lower limb transformer, we define the following loss



Figure 4: The pipeline of our proposed Lower Limb Transformer.

Figure 5: Linear velocity vi and the rotational angle θi at
the ith frame in the egocentric coordinate system

function:
L = Lv + λLθ (1)

where we use the mean squared error (MSE) for both the
linear velocity loss Lv and angular velocity loss Lθ, and λ
weights those two components.

3.2.3 Training

Dataset. Because the wearable layout of the camera is
new, we construct a dataset of the captured images from the
waist-mounted camera as well as the corresponding veloc-
ity of the body trunk by ourselves. As shown in Figure.2,
we attach reflective markers and use an optical Mocap sys-
tem, OptiTrack, to precisely track the rigid transform of the
camera. Because the camera is rigidly attached to the waist,
we extract the global velocity of the body trunk with the
tracked motion and convert the velocity to the ego-centric
coordinate system as the training data. We have recruited
three normal users walking freely with the waist-mounted
camera. In total, we have collected a dataset of more than
1 × 105 frames of the captured images and the tracked ve-
locity of the body trunk as the training data.

Network Training. For the robustness of the network and
sufficiency of training data, we utilize a sliding window
(size N = 50) for the training data preparation. We use
the Adam optimizer with a learning rate of 1 × 10−2 and
train for nearly 20 epochs for convergence. The total num-
ber of epochs is 30 with proper early stopping and the batch
size is 32. Moreover, we set the λ = 1 in loss.

Implementation details. We have high requirements for
the real-time performance of the network. Since the output
data of the pre-processing module is around 25FPS, if the
neural network processing is too slow, it will lead to lag-
ging of the embodiment in VR. We use the last frame of the
output sequence as the estimated velocity.

Our computational setting includes a desktop with
NVIDIA RTX 3080 Ti,i5-10500 CPU for training and eval-
uating the model. The Unity3D editor is used to run inverse
kinematics and visualize the virtual avatar in VR.

3.3. Lower Limb Motion Embodiment

With the tracked feet and the regressed global veloc-
ity, we are ready to complete the virtual embodiment for
the lower-limb motion in real time. First, we use inverse
kinematics to trigger the local lower-limb motion with the
tracked feet as the end-effector motion. In our implemen-
tation, we use a template rigged mesh of an average human
body as the proxy, convert the tracked feet to the coordinate
system at the root of the kinematics chain and solve for the
lower-limb joint angles using inverse kinematics. [23, 8].
With the obtained joint angles, we can embody the low-limb
motion into a virtual avatar by applying forward kinematics.

In order to reproduce the full 3D motion of the virtual
avatar, we integrate the global velocity obtained from LLT
to translate and rotate the virtual avatar. As for the camera



Figure 6: The lower limb embodiment (middle row) from the captured images (upper row) from the waist-mounted camera.
We also plot the estimated velocity and the reconstructed motion under the third-person observation.

control in the virtual scene, in our prototype system, we use
the Oculus RiftS as the HMD, which is free of base stations.
We fix the viewpoint of the VR headset at the head position
of the virtual avatar to produce a first-person perspective.

4. Experiment

4.1. Results

In this section, we conduct qualitative and quantitative
experiments on our proposed system.

We tested our system by wearing the camera and freely
moving in a room. The virtual embodiment was obtained
and displayed in the HMD in real time. We show one clip
of the results in Figure.6. In the top and middle row of
the figure, we compared the captured raw images from the
waist-mounted camera and the recovered motion of the vir-
tual avatar. In the lower row of Figure.6, we also plotted the
estimated velocity of the body trunk from the proposed LLT
along with the third-person view of the reconstructed avatar
motion.

The global velocity was aligned in the egocentric coor-
dinate system with a dashboard style, where we used the
black dashed line to illustrate the forward orientation of the
body in the current time step. The translational velocity Vi

was represented by the green arrow. The red arrow indi-
cated the orientation of the body in the next frame and the
estimated angular displacement θi was the angle between
the orientations of the two frames. We integrated the global
velocity in the egocentric coordinate system and shown the
corresponding 3D motion from a third-person perspective
at the side. By observing the grid pattern on the ground, the
motion was perceived to match with the input.

4.1.1 Quantitative Evaluation

In our quantitative evaluation, we compared the recon-
structed motion with the results from a Mocap system as
the reference. The user wore our waist-mounted camera and
was allowed to walk freely walked in a room with the Opti-
Track as the Mocap system. We attached reflective markers
on the waist-mounted camera to track its position.

After the capture, we extracted the velocity of the tracked
camera using Mocap and converted it into the egocentric
coordinate system as the reference data. Then we compared
the reconstructed velocity from our system and the results
were plotted in Figure.7. In all test datasets, the average
error of the output body speed is 0.0288m/s and the average
error of the angular velocity is 0.0234rad/s.

We also integrated the estimated velocity to illustrate the
walking trajectory of the body trunk as shown in right col-
umn in Figure.7. The trajectory captured by OptiTrack was
also drawn in the subfigures.

By comparing the integrated trajectories, we found the
recovered trajectories from our wearable capturer are sim-
ilar to the real data, but we could still observe deviations.
Especially with the increase of time, the gap of trajectories
became larger. This drift is due to the accumulation of the
velocity error in the integration. It is common for wear-
able capturers and known as the dead reckoning in source-
free navigation systems [34]. Note that it is challenging to
quantitatively compare the global trajectory using inside-
out cameras and the global trajectories usually were not
compared in previous studies.

For the applications of virtual embodiment in VR, as the
users have tolerances on perceiving the distortion of the
walking view, the trajectory of the virtual avatar does not



Figure 7: The estimated translational velocity (lower left) and angular velocity (lower right) of straight walking compared
with the optical Mocap results. We plot our recovered velocity in red lines and the reference data in black lines. The
comparison between recovered trace (red lines) and the reference trace (black lines) obtained from Mocap systems.

Figure 8: The relative error of velocity and angle velocity while users making different kinds of motions

have to be exactly the same as the real trajectory [21, 29].
As long as the estimated egocentric velocity from our
framework is within a certain range, the user will not per-
ceive such deviation of the embodied motion. According
to [29], the deviation in speed should be within downscal-
ing by 14% and upscaling by 26%. Users can be turned
physically about 49% more or 20% less than the perceived
virtual rotation. Note that these scales are measured for

mapping from the virtual walking to the real world. For
the virtual embodiment, we essentially develop an inverse
map from the real-world motion to the virtual avatar. There-
fore, the tolerance on the scale of the linear speed is in
[−20.635%, 16.276%], and the relative error of the angu-
lar speed should be in [−32.888%, 25%] according to [29].
We collected the relative errors of the estimated velocity
and plotted them by checking with the perceptual range, as



shown in Figure.8.
From the results, we found that the relative error of the

speed located inside the range of the reported perceptual
tolerance at most of the time. We also checked the his-
togram of the relative error. In the test set of straight walk-
ing, the percentage of relative error of linear speed falling
in the ideal interval is 95% and the percentage of relative
error of angular speed falling in the ideal interval is 71%,
while 94.17% and 77.5% during turning right and 82.73%
and 71.81% during turning left. As the majority of the data
were within the perceptual tolerance and we did not observe
extremely large relative errors in a continuous time slot, we
expected the virtual embodiment worked well in terms of
perception by inspecting the objective data.

4.1.2 User Study

We further conducted a user study and collected subjec-
tive data to check whether the final embodiment was ac-
cepted by common users. We recruited 10 participants in
this study. They were university students (9 male) aged
from 21 to 27 (mean 24.1). They all had either normal or
corrected- to-normal vision. 5 of them had experience in
exploring VR environments or playing VR games.

In the user study, subjects wore an Oculus headset and
the designed belt mounted with the camera. Subjects were
asked to walk freely around the field, completing straight
and turning movements, and observe the virtual lower-limb
embodiment through the HMD. We compared our method
as the experimental mode to embodiment using a template
motion as the reference mode. In the reference mode, we
generated virtual embodiment using the same virtual avatar
while its motion was simply created by rigidly transform-
ing a pre-programmed template walking animation using
the integrated path from the HMD. In the experiment, each
participant tested the embodiment with the reference mode
and experimental mode in a random order. Then, they were
asked to score the embodiment of the lower limb on a ques-
tionnaire and interviewed for more subjective feedback.

We used a standard questionnaire to measure the sense
of embodiment based on [4]. We adapted the questionnaire
for the lower limb reconstruction, which consisted of nine
items and three subsets of questions, including body own-
ership (Ownership), agency and motor control (Agency),
and body position (Location), as listed in Table. 1. The
users are allowed to actively observe their lower limbs in
the virtual world. In addition, the avatar walks with the
captured motion is compared to a pre-programmed template
motion. Then the subscales of ownership, agency, and loca-
tion scores as shown in Figure.9.

From the results of the t-test analysis, we found that there
was a significant difference between the two groups of data
(t=-0.42). Compared to embodiment using the template mo-

Table 1: Questionnaire to measure the sense of embodiment

Subscale Question

Ownership

1)I felt as if the virtual representation of the foot
moved just like I wanted it to,
as if it was obeying my will.
2)I felt as if the virtual representation of the lower
limb was someone else’s.
3)It seemed like the lower limb belonged to me.

Agency

1)It felt like I could control the virtual lower
limb as if it was my own body.
2)The task was easy to perform.
3)I felt as if the virtual avatar was moving by
itself.

Location

1)I felt as if my body was located where I saw the
virtual body.
2)I felt out of my body.
3)I felt dizzy during the experiment.

Figure 9: User-rated scores of the questionnaire. The solid
bar represents the scores using our method and the hollow
bar represents the scores using template motion.

tion, the gait from our method was more consistent and re-
alistic, yielding a satisfactory embodiment in our experi-
ments. We found that the realistic motion played an im-
portant role in terms of body ownership and agency. While
we assumed our score in terms of location might not out-
perform the reference mode, the results still showed signifi-
cance because the template gait did not match with the real



walking velocity, making it hard to correctly estimate the
real location.

After the experiment, we interviewed each participant
and asked them about their subjective feelings about the
lower-limb embodiment. Most participants believed that the
virtual embodiment corresponded to their real lower limbs
most of the time.

4.2. Discussion

In this work, we work for virtual embodiment of the
lower-limb motion from a single wearable camera. It can
be applied to various tasks in VR such as roaming in the
virtual scene. The recovered lower-limb motions are also
expected to be used in assessment tools for rehabilitation or
as signatures for gait recognition. We test our method with
various walking motions. Although walking is the most typ-
ical lower limb motions in VR exploration, we also expect
to recover other lower-limb motions by incorporating more
training data about different motions.

In addition, we adopt the first-person vision and innova-
tively locate the viewpoint around the waist. To the best
of our knowledge, this is the first attempt to experiment
with the lower-limb motion reconstruction with this view,
whereas many wearable solutions are generally based on
IMUs. In this work, we exploit modern machine learn-
ing algorithms with the self-attention mechanism and report
the reconstructed lower-limb motions with only vision data
from the new view. Results with better quality are expected
if the inertia measurements are well fused into our pipeline.

In this work, the virtual embodiment is well perceived
when the user looks downward in the virtual scene. We
adopt the tracked transform of the feet to estimate the global
velocity of the body trunk in presence of missing data due to
occlusion. However, we do not learn for the unknown feet
transforms due to occlusion. In order to produce the anima-
tion in a third-person view, in our current implementation,
we extrapolate for the transforms of the invisible feet with a
linear regression. In our application of virtual embodiment,
we find the users in the experiment do not see their heels of
the virtual avatar in casual VR interactions. Therefore, the
simple treatment with the missing data does not affect the
virtual embodiment in practice.

5. Conclusion

We propose a wearable solution for the virtual embodi-
ment of lower-limb motions based on a single camera. We
design a novel first-person view of the camera by mounting
it on the waist. By exploiting the vision information from
the new perspective, we learn for the global velocity of the
body trunk and successfully reconstruct the lower-limb mo-
tions in real time. We show that the recovered lower-limb
motions work well for virtual embodiment based on the re-
sults from quantitative evaluation and subject studies. With

the single wearable camera, we build our system with a low
cost while the embodiment is recovered in real time, which
shows its potential for VR systems in open environments.

In the future, we will add more lower limb motions with
more diverse user datasets to improve the generalization
and accuracy of our method. Moreover, the error of our
wearable solution can also be reduced by incorporating with
IMU or other sensors.
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