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Abstract

Point cloud registration is fundamental to many com-
puter graphics and visual tasks. Previous pairwise ap-
proaches mainly deal with the registration with a high
overlapping hypothesis, while few existing methods ex-
plore the registration between low overlapping point
clouds. However, the latter registration task is chal-
lenging and essential, since the weak correspondence in
point clouds usually makes the algorithm tend to get
stuck in a local minimum. In this paper, we present
an accurate algorithm for the robust registration of low
overlapping point clouds using optimal transformation.
The core of our method is the effective integration of
geometric features with the probabilistic model hidden
Markov random field. First, we determine and remove
the outliers of the point clouds by modeling a hidden
Markov random field based on a high dimensional fea-
ture distribution. Then, we derive a necessary and suf-
ficient condition when the symmetric function is mini-
mized and present a new curvature-aware symmetric
function to make the point correspondence more dis-
criminative. Finally, we integrate our curvature-aware
symmetric function into a geometrically stable sampling
framework, which effectively constrains unstable trans-
formations. We verify the accuracy and robustness of
our method on a wide variety of datasets, particularly
on low overlapping range scanned point clouds. Results
demonstrate that our proposed method attains better
performance with higher accuracy and robustness com-
pared to representative state-of-the-art approaches.

Keywords: Point Cloud Registration, HMRF, Low
Overlapping, Outliers, Probabilistic Model.

Figure 1. Low overlapping point cloud registration. ICP tends to
get stuck into a local minimal due to insufficient correspondence,
whereas our proposed method returns highly accurate registration.

1. Introduction

Point cloud registration is an important and fundamental
task in computer graphics, computer vision, and robotics,
which can be utilized for various applications, such as 3D
scene reconstruction [11], simultaneous localization and
mapping (SLAM) [26, 15], indoor scene modeling and cul-
tural heritage management [36, 16], and so on. Given two
partial range scans, our goal is to seek a spatial transfor-
mation comprising a 3D rotation matrix R ∈ SO(3)1 and
a translation vector t ∈ R3 to optimally align them into a
common reference system.

The seminal work iterative closet point (ICP) [6] has be-
come the most frequently used method for point cloud reg-
istration. It iteratively builds up the point proximity and
calculates the transformation parameters via such as the sin-
gular value decomposition (SVD) [37]. However, there still
exist several challenges in the development of a versatile or
robust ICP. The primary challenge is the accurate registra-
tion of low overlapping point clouds caused by large per-

1SO(3) := {R ∈ R3×3|RRT = RTR = I3, detR = 1}.
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spective variations. As ICP highly depends on the initial-
ization or correspondence, low overlapping inputs usually
make it converge to a local minimum, as shown in Fig. 1.
Although there are many variants of ICP existing in the liter-
ature, most of them target on robustness or efficiency. There
still needs endeavor to explore and tackle this challenging
low overlapping problem.

Recently, the hidden Markov random field model
(HMRF) [9] is customized for point cloud registration prob-
lem [32], which shows potential power for dealing with
low overlapping scans. However, it merely minimizes the
point-to-point distance and ignores the 3D geometric fea-
tures of point clouds, which empirically enables higher ac-
curacy and more stable performance.

To explore geometric features and how to involve ge-
ometry into the probabilistic framework, in this work, we
propose a new method for low overlapping point cloud reg-
istration, which attains better results in both accuracy and
robustness. An overview of our method is shown in Fig. 2.
Instead of using the distance as the single criterion when
modeling HMRF, we also take geometric features such as
the planarity and anisotropy into consideration. This gives a
high dimensional feature distribution. Compared with dis-
tance residual, these features are more discriminative and
effective, which help estimate the overlapping region more
precisely, as shown in Fig. 2(b). In terms of the metric func-
tion, we utilize the symmetric distance including normals
and curvatures for error measurement. We demonstrate that
the proposed curvature-aware symmetric function results in
more meaningful and distinguished punishment than [30].
Additionally, we point out that the classical point-to-plane
metric [10] is a special case of our newly defined objective
function around the plane point, i.e., the point whose neigh-
boring local surface is a plane. Based on this curvature-
aware metric, we further use linear approximation of the
objective function and incorporate it into a geometrically
stable sampling framework, as presented in Fig. 2(c), in
which we leverage the matrix condition number to achieve
more stable transformations. Fig. 2(d) shows the interme-
diate result of our method after five iterations and the final
registration result is shown in Fig. 2(e).

We conduct extensive experiments to validate the per-
formance of the proposed method and compare it with
representative state-of-the-art approaches on a wide vari-
ety of benchmark datasets. Results demonstrate that our
method attains several salient advantages than competitors,
i.e., more accurate for low overlapping point clouds, as well
as more robust against noise and outliers. To summarize,
the main contributions of this work are as follows:

• We propose a novel method toward low overlapping
point cloud registration via the effective integration
of geometric features and probabilistic model HMRF,
which achieves superior performance in both accuracy

and robustness than competitors.

• We theoretically deduce the optimal condition of the
symmetric function and incorporate curvature into it
to make the optimization more discriminative.

• We introduce a geometry-aware point pair sampling
process to improve the transformation stability.

2. Related Work

Due to the importance of point cloud registration on
practical applications, extensive pioneer works have been
made over the past several decades. The readers can refer
to [35, 7] for more comprehensive study. Here, we put our
focus on the rigid pairwise registration.

ICP-based Methods ICP proposed by [6] is one of the
most famous point cloud registration algorithm. After its
introduction, a lot of efforts have been devoted to improve
its efficiency and robustness. The most popular modifi-
cation for efficiency improvement is to refine the objec-
tive function of the original point-to-point distance by the
point-to-plane manner [10], in which the l2 distance from
source points to the tangent planes of their correspond-
ing points were calculated. Wang et al. [38] estimated
the local surface around each point as a quadratic sur-
face and introduced a squared distance function, which was
then demonstrated theoretically and experimentally to have
higher stability than the point-to-plane ICP [28]. Recently,
Rusinkiewicz [30] raised a symmetric objective function
taking normals of the point pairs into consideration, achiev-
ing the same simplicity and computational efficiency as the
point-to-plane metric, yet with a wider convergence basin.

Besides the improvement of convergence speed, many
work focused on the robustness promotion against noise
and outliers. Among these algorithms, a popular attempt
is to use robust estimators. Hontani et al. [20] revised the
original l2 norm of ICP as l1 norm to increase the algo-
rithm’s sparsity and robustness. Moreover, sparse ICP [8]
had their objective function based on the lp norm with
p ∈ (0, 1) and optimized it by the iterative framework Al-
ternating Direction Method of Multipliers (ADMM). An-
other line of work invoke M-estimators to depress the influ-
ence of large residuals. For example, fast global registra-
tion [41] took the Geman-McClure estimator as the penalty
function and conducted the alignment in one single stage
without the closest point queries, whereas Zhang et al. [40]
utilized the Welsch function to enhance the robustness. Al-
though these work are capable of relieving the outlier in-
fluence, when facing partially overlapping scenarios, they
directly regard the points in non overlapping regions as out-
liers, hence are prone to misalignment. Several work had
made attempts on low overlapping situations. For instance,



Figure 2. Overview of the proposed framework: (a) Input point clouds. The blue and yellow models represent the source P and the target
Q, respectively. (b) Overlapping region estimation. Brown points represent inliers located in the overlapping region. (c) Construction
of the geometric constraint with respect to inliers. Green points are selected under the curvature constraint and the point-pair sampling
strategy. (d) The intermediate registration result after five iterations. (e) The final registration result when iterations converge.

[17] discarded point pairs whose distances surpass a certain
threshold. Based on the neighbor priors, [32] distinguished
the inliers in overlapping regions from outliers by modeling
a hidden Markov random field, which showed advantages
on moderate overlapping.

Statistics-based Methods Apart from the variants of ICP,
statistical models are also customized for point cloud reg-
istration such as the Gaussian Mixture Models (GMM).
Jian et al. [21] treated the source and the target point clouds
as two GMMs, then the alignment problem was transformed
into minimizing the discrepancy of the two probabilis-
tic distributions under the KL divergence, while Tabib et
al. [34] directly minimized the l2 distance. Instead, coher-
ent point drift (CPD) [27] described one of the point clouds
as GMM, while the second set was realized via the max-
imum likelihood estimation. To encode more information
into the statistical framework, Danelljan et al. [14] com-
bined color feature with CPD together and designed the
color-guided probabilistic registration method. Neverthe-
less, this algorithm is limited to the colorful point cloud reg-
istration task. To improve the robustness of statistical meth-
ods against the point density variation, Lawin et al. [23]
modeled the underlying structure of the scene as a potential
probability distribution and put forward a density adaptive
point set registration method. In order to guarantee the con-
vergence of CPD algorithm and overcome the shortcoming
that CPD was relatively sensitive to rotation, [19] formu-
lated coherent point drift in a Bayesian setting and lever-
aged variational inference for the transformation solving.
Since statistical methods is based on the soft correspon-
dence with probability, they are intrinsically robust. How-
ever, compared with ICP, these approaches usually have
higher computational complexity.

Learning-based Methods With the advances of deep
learning in recent years, people have tried applying neu-
ral networks for 3D point cloud registration. The typical
idea is to replace main steps of the traditional pipeline in

point cloud registration with learning-based modules. To
be specific, Aoki et al. [5] combined PointNet [29] with
Lucas-Kanade (LK) algorithm [25] into a trainable deep
neural network named PointNetLK. Wang et al. [39] im-
plemented ICP algorithm from a deep learning perspective,
provided a simple structure to predict the relative position
of two point clouds, and relieved the local optima prob-
lem in the classical ICP pipeline. Lu et al. [24] presented
an end-to-end point cloud registration framework, in which
the learned matching probability was used to generate cor-
responding points rather than selecting them from existing
point pairs. Choy et al. [12] developed a differentiable
framework for registration which contained three modules.
Learning-based methods are able to represent features more
effectively, nevertheless, they usually require longstanding
training. As far as we know, the application of trained net-
works to point clouds out of the train or test set is not im-
mediate, which is still an open problem.

3. Methodology

Given two point sets P = {pi ∈ R3 | i = 1, 2, · · · , n}
and Q = {qj ∈ R3 | j = 1, 2, · · · ,m} potentially
scanned on the same object under different views, point
cloud registration aims to find the optimal rigid transforma-
tion (R, t) ∈ SO(3)×R3 to align the source point cloud P
with the target one Q. We first explore geometric features
and how to integrate them with the hidden Markov model
to make the pairwise correspondence more reliable.

3.1. Construction of Geometric Features

We adopt the 3D structure tensor or 3D covariance ma-
trix to describe the local geometric features of each point
pi ∈ R3. The mean vector µi ∈ R3 of the points in the
neighborhood Ni of pi is

µi =
1

|Ni|
∑

pk∈Ni

pk, (1)



where Ni = {pk ∈ R3|∥pk − pi∥2 < r} and r > 0 is the
support radius. The covariance Σi is

Σi =
1

|Ni|
∑

pj∈Ni

(pi − µi)
T (pi − µi). (2)

Since Σi is symmetric and positive definite, we attain λ1 ≥
λ2 ≥ λ3 > 0 after eigenvalue decomposition. We lever-
age the arithmetic combinations of eigenvalues to describe
the local geometric features of each point. The planarity P ,
anisotropy A and curvature C of pi is adopted to accommo-
date our purpose:

Ppi =
λ2 − λ3

λ1
Api =

λ1 − λ3

λ1
Cpi =

λ3

λ1 + λ2 + λ3
. (3)

3.2. Overlapping Region Estimation

To distinguish inliers in overlapping regions from out-
liers, similar to [32], we construct a probabilistic model
based on the HMRF. We use z and y to represent the hid-
den field of the unobserved inlier or outlier state and the
observed variables, respectively. In the work of [32], they
directly choose the distance residual between the closest
points as the observed variable y, which possibly leads to
misalignment when the initialization is unsatisfying. Fig. 3
shows the iterative process when applying the distance-
based HMRF for registration. As is observed, it performs
well under good initialization with the small rotation an-
gle (ρ = 15◦); however, as the rotation angle increases
(ρ = 30◦), indicating lower overlapping at initialization,
the registration result starts to fail.

Different from the previous approach, in this work,
we incorporate geometric features to the observed vari-
able y and model the hidden Markov random field un-
der high-dimensional probabilistic distributions. We define
the observed variable y = [y1,y2,y3,y4]

T ∈ R4, where
y1,y2,y3,y4 denote the distance, the difference of pla-
narity, anisotropy and curvature between closest points.

Given the observed variables y, our target is to distin-
guish the inliers, namely the points in the overlapping re-
gion, from the outliers (the non overlapping points). The
prior hypotheses we made are:

• The inliers typically lie closer to their closest points
than the outliers.

• The geometry differences between inliers and their
closest points are typically smaller than the outliers.

• The neighbors of the inlier tend to be inliers, while the
neighbors of the outlier tend to be outliers.

According to these hypotheses, we adopt two normal dis-
tributions of different parameters i.e., normally distributed
for inliers and normally distributed for outliers to model y.

Since unobserved states z are modeled as a Markov random
field, the probability distribution of z is a Gibbs distribution
according to the Hammersley-Clifford theorem [13], i.e.,

PG(z) = W−1exp(−H(z)), (4)

where W =
∑

z exp(−H(z)) is the normalizing factor and
H(z) is the energy function. In our case, we choose the
following energy function:

H(z) = −β
∑
i′∼i

wi,i′zizi′ , (5)

where wi,i′ represents the edge weight between zi and zi′

and β ≥ 0 is a parameter relevant to the interactive strength.
To simplify computation, we further use the mean field to
approximate the posterior distribution PG(z|β). Then the
k-dimensional normal distributions are used to present the
conditional density f . The detailed approximation steps and
the final likelihood of the joint distribution are reported in
Supplemental Material.

We adopt the expectation maximization (EM) algorithm
to estimate the maximum likelihood parameters of the
model and the hidden state. In E-step, we calculate the hid-
den state or posterior probability of the point cloud given
the parameters, while in M-step, we calculate the parame-
ters that maximize the expected likelihood. We present the
theoretical deduction of the concrete EM steps in Supple-
mental Material for easy understanding. After the hidden
state estimation, we choose the points pi whose hidden state
zi > 0 and curvature Cpi > τ as inliers. Then we optimize
the objective function defined in the following section.

3.3. Objective Function

The traditional point-to-plane ICP merely takes one nor-
mal into the objective function, recently [30] proves the po-
tential of the symmetric function for point cloud registration

(p− q) · (np + nq), (6)

where n⋆ is the normal of a point ⋆. The analysis of the
relative position of p and q in Eq. 6 gives the following
conclusion.

Proposition 1 Points p and q and their normals np and nq

lie in the same cylinder, if and only if Eq. 6 equals to zero.

Theoretic proof is presented in Supplemental Material.
From the proof, we conclude that without the considera-
tion of the geometric characteristics of each point, all cylin-
ders with arbitrary circle radius satisfy the above condition,
and the residual generated by their points get no punish-
ment.However, we mainly want the point pairs with the
same geometric characteristic (the local surfaces around



Figure 3. The iterative process of [32] with the rotation angle ρ = 15◦ (top) and ρ = 30◦ (down), where brown region indicates the
estimated overlapping part. As observed, [32] converges to a local minimal when the initialization is unsatisfying (ρ = 30◦).

both points are the same) to slide between each other with-
out punishment. To this end, we further consider the curva-
ture feature, then the improved objective function is

(p− q) · (µ̄qnp + µ̄pnq), (7)

where µ̄p = µp/(µp+µq) and µ̄q = µq/(µp+µq) are nor-
malized curvatures of p and q, respectively. From Eq. 7,
we observe that when the curvature µp = µq , the objective
function is equivalent to the primary symmetric objective
function. However, when the curvature µp ≫ µq , µ̄q ≈ 0,
we can approximate the local surface around q as a plane.
In this situation, our proposed objective function (Eq. 7) is
equivalent to the popular point-to-plane function. There-
fore, our objective function of the two point clouds P and
Q is defined as

n∑
i=1

∥(Rpi −R−1qi + t) · (µ̄q,inp,i + µ̄p,inq,i)∥22. (8)

3.4. Stable Point-Pair Sampling

After the determination of the overlapping region be-
tween two point clouds, we further propose a point-pair
sampling strategy to constrain the uncertainty transforma-
tion based on the curvature aware symmetric function, by
which the registration becomes more stable in the existence
of large percentage of non-feature points. Like [30], we
adopt linear approximation to transform Eq. 8 as

n∑
i=1

∥((p̃i − q̃i) ·ni +((p̃i + q̃i)×ni) · ã+ni · t̃)∥22, (9)

where p̄ and q̄ are the mean value of selected points pi and
its correspondence qi. We have p̃i = pi − p̄, q̃i = qi − q̄,
ni = µ̄q,inp,i + µ̄p,inq,i. Considering the last two terms
of Eq. 9, we figure out that the ith term of the objective
function will change if the given vector [(p̃i + q̃i)×ni,ni]
is moved by the transformation vector [∆ãT,∆t̃T]:

∆ei =
[
∆ãT,∆t̃T

] [(p̃i + q̃i)× ni

ni

]
. (10)

Eqs. 9 and 10 show that if the vector [(p̃i + q̃i)× ni,ni] is
perpendicular to [ã, t̃], then the value of the objective func-
tion will not change. From the above analysis, we investi-
gate the covariance matrix C ∈ R6×6:

C =

[
(p̃1 + q̃1)× n1 · · · (p̃n + q̃n)× nn

n1 · · · nn

]

·

 ((p̃1 + q̃1)× n1)
T nT

1
...

...
((p̃n + q̃n)× nn)

T nT
n

 .

(11)

The matrix C encodes the error variations when the source
point cloud P is moved from its ground-truth location
(which is aligned with the target point cloud Q) by trans-
formation [∆ã,∆t̃]:

∆ϵ =
[
∆ãT,∆t̃T

]
C

[
∆ã
∆t̃

]
. (12)

Suppose the ordered eigenvalues of C after eigenvalue de-
composition are λ1 ≥ λ2 ≥ · · · ≥ λ6 and their corre-
sponding eigenvectors are x1,x2, · · · ,x6, we find that if



the transformation parameters [∆ã,∆t̃] equal to the eigen-
vector whose corresponding eigenvalue is relatively small,
then in this direction the changed error ∆ϵ in Eq. 12 will
also be small. As is defined in [18], we term this uncon-
strained direction. In order to avoid the possible uncon-
strained direction, we sample the point pairs to let the con-
dition number c = λ1

λ6
of C as close to one as possible. See

Supplemental Material for a detailed introduction to our ge-
ometry induced sampling method and the pseudo-code of
our point-pair sampling process.

4. Experimental Evaluations and Discussion

In this section, we perform extensive experiments to
evaluate the accuracy, robustness, and efficiency of the pro-
posed method, and compare it with representative state-of-
the-art approaches. The implementation of these competi-
tors are publicly available online and their detailed param-
eter settings are listed in Supplemental Material. We adopt
the following root mean-squared error (RMSE) to quanti-
tatively measure the registration quality

RMSE =

√√√√ 1

N

N∑
i=1

∥R̂pi + t̂−Rgpi − tg∥22, (13)

where (R̂, t̂) and (Rg, tg) represent the estimated and
the ground truth transformation, respectively. We use 10-
nearest-neighborhood points for normal calculation. To be
statistically representative, we perform 50 experiments for
each test and report the average performance of the RMSE
and timings. All experiments are executed on a laptop with
a 2.50 GHz Intel Core i5-7200 and 4 GB RAM.

Accuracy Test Firstly, we use four point cloud datasets
from the Stanford 3D Scanning Repository [3], i.e., Bunny,
Armadillo, Dragon, and Buddha for accuracy test. They are
captured by a Cyberware 3030 MS laser scanner with dif-
ferent scanning perspectives, thereby having partial over-
lappings, as illustrated in the first column of Fig. 4. We
compare the proposed method with the Point-to-Point ICP
(P2P-ICP) [6], Point-to-Plane ICP (P2N-ICP) [10], HMRF-
ICP [32], as well as two popular statistics-based registration
methods including GMM [21] and CPD [27]. The statis-
tical results of each compared method are reported in Ta-
ble 1. From which, we conclude that the proposed method
attains the overall highest accuracy, i.e., the top accuracy
on Bunny, Armadillo and Baddaha, and the second best ac-
curacy on Dragon. P2P-ICP and P2N-ICP are efficient, but
their RMSE are relatively larger than ours. HMRF-ICP con-
sumes more overall time than ours, however, its registration
accuracy is still unsatisfying, since its average RMSE are
almost 10 times larger than ours. CPD achieves higher ac-
curacy than GMM, especially on Armadillo and Baddaha,

nevertheless, both of them are subject to highly computa-
tional complexity. We present several registration examples
in Fig. 4, where the color maps in the lower right indicate
the registration deviations under the logarithmic scale.

Robustness Against Noise Subsequently, we assess the
robustness of the proposed method against noisy data. To
this end, we add a series of Gaussian noise with zero
mean and different variance to the source point cloud of
the friends dataset [2]. The variance σ2 ∈ [0.00, 0.09] is
varied with the step size equal to ∆σ2 = 0.01. We fur-
ther compare our method with the robust approaches in-
clude Generalized ICP (G-ICP) [31], Fast Global Regis-
tration (FGR) [41], Sparse ICP (S-ICP) [8], Fast and Ro-
bust ICP (FR-ICP) [40]. The test results are reported in
Fig. 5(a). As observed, the methods P2N-ICP, GMM and
G-ICP, showing significant deviations, are more sensitive to
noise than the rest ones. With noise level increasing, FGR
starts producing large RMSE, indicating that it is less robust
to heavy noise. In contrast, CPD, FR-ICP and Ours achieve
the overall highest robustness, also, they are substantially
stable. Fig. 6 exhibits the comparison samples of all com-
pared methods under the contamination of σ2 = 0.06.

Robustness Against Outliers We also test the influence
of outliers for point cloud registration. We adopt the Bimba
dataset from the AIM@SHAPE repository [2] for test.
Some samples are illustrated in Figs. 7(a) and 7(b). Out-
liers are uniformly distributed within the bounding box of
the source point cloud, and the number of them is equal
to λN , where N is the amount of the original points, and
λ ∈ {1%, 3%, 5%, 10%, 20%, 50%, 100%, 200%}. Ac-
cording to Fig. 5(b), we conclude that FR-ICP and our pro-
posed method are more robust against outliers than com-
petitors. HMRF-ICP has the third best performance, nev-
ertheless, its time consumption is twice as much as ours.
For the other ICP-based methods, they get significant de-
viations when outliers are over 20%, partially because of
the poor initialization and the erroneous correspondence
caused by outliers. Outliers have a degree of impacts on
statistics-based methods, since they keep relatively stable
performance, which can be attributed to their soft corre-
spondence scheme with probability. However, they show
low-quality registration results even without the existence
of outliers, hence they are preferable to coarse registration
tasks. Instead, our method exhibits highly accurate registra-
tion performance. Fig. 7(a) and 7(b) present several com-
parison samples with λ = 50% and 200%, respectively.

Initialization Impact Next, we evaluate the performance
of all algorithms under different initialization. For this pur-
pose, we exert various rotation angles to the source point
cloud of the Berkeley Angel dataset [22], of which the main



Table 1. Quantitative results of average RMSE and computation time (in seconds) with different registration methods on Stanford datasets.
Bold fonts indicate the best performance. Our method attains the overall best accuracy along with reasonable runtime.

Methods Bunny Armadillo Dragon Buddha
RMSE Time RMSE Time RMSE Time RMSE Time

P2P-ICP [6] 0.145 4.53 0.076 0.80 0.057 0.80 0.078 3.35
P2N-ICP [10] 0.132 15.64 0.018 0.53 0.023 1.17 0.054 1.74

GMM [21] 0.286 73.42 0.154 50.39 0.057 56.76 0.217 15.06
CPD [27] 0.238 276.25 0.037 150.80 0.013 158.24 0.027 260.66

HMRF-ICP [32] 0.207 24.30 0.102 8.03 0.037 7.28 0.112 13.88
Ours 0.027 5.42 0.017 6.78 0.018 7.29 0.019 7.86

Figure 4. Registration results on four Stanford scanning datasets. The color-coding in bottom right visualizes the error between the
registration results and the ground-truth alignments.
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Figure 5. Statistic of RMSE under different test settings. (a) RMSE with different noise levels, where noise variance σ2 ranges from 0.00
to 0.09. (b) RMSE with different outlier ratios {1%, 3%, 5%, 10%, 20%, 50%, 100%, 200%}. (c) RMSE with different initial rotation
angels, where θ ranges from 0◦ to 100◦.

axis is attained by principle component analysis (PCA). The
rotation angle ρ changes from 0◦ to 100◦ with the step size
equal to 10◦. Note that large rotation angles indeed indi-
cate lower overlappings at initialization. We report the test
results in Fig. 5(c), where we observe that except GMM,
all methods perform well when ρ ≤ 50◦. However, as rota-
tion angles become larger, FR-ICP and S-ICP return signifi-
cant errors. P2P-ICP and P2N-ICP share the similar perfor-

mance, and their maximum angle tolerance or breakdown
point is 60◦. When ρ > 70◦, HMRF-ICP also generates
large deviations, whereas our method works fairly well even
under ρ = 100◦. Additionally, the proposed method is more
stable than CPD and achieves the highest accuracy, where
its RMSE is still less than 0.05 at ρ = 100◦. We present
registration results with the misalignment angle ρ = 90◦ in
Fig. 8.



Figure 6. Comparison samples of different methods under noise contamination σ2 =0.06. The blue and the yellow models represent the
source and the target point clouds P , Q, respectively. #P and #Q denote their point number. RMSE (abbreviated as r) and the runtime
(t) are reported under each result. The log-scale color map in bottom right visualizes the registration error compared with the ground-truth
alignments. Our proposed method attains the second highest registration accuracy with comparable speed.

Low Overlapping Test Previous experiments have
demonstrated the promising performance of the proposed
method, in this test, we assess its performance with respect
to the low overlapping point clouds specially. This case
is difficult to handle yet frequently emerges in real-world
scenarios. Apart from previous competitors, we further in-
volve RANSAC optimized in Open3D library 2 for com-
parison. We use two range scans from the TUM RGB-D
dataset [33] which have a low rate of overlapping, as illus-
trated in Fig. 9. The RMSE and runtime of each method are
reported under their registration results in Fig. 9. Results
demonstrate that traditional ICP-based methods (P2P-ICP
and P2N-ICP) suffer from high RMSE in low overlapping
situations, hence good initialization is usually required. The
statistics based methods (GMM and CPD) get high RMSE
since they also take outliers (points in the non-overlapping
region) into consideration. Because of erroneous correspon-
dence or false judgement of outliers, FR-ICP and S-ICP also
generate high RMSE. Although G-ICP, FGR, RANSAC and
HMRF-ICP have relatively lower RMSE compared to the
aforementioned methods, their registration results are not
accurate enough. However, our proposed method attains
the lowest RMSE with comparable convergence speed. The
reason is that based on the geometric features, it is able
to select the right inliers from input points for registration,

2https://github.com/isl-org/Open3D

meanwhile reject the outliers in non-overlapping domains.
Nevertheless, traditional ICP-based methods treat all points
equally as inliers, hence are prone to resulting in deviations.

Furthermore, we design experiments to analyze the in-
fluence of different overlapping rates on registration results.
We choose four representative methods in our experiments,
namely Sparse ICP, Fast and Robust ICP, HMRF-ICP and
Ours, since they are designed to be more robust to low over-
lapping cases. For comparison, we randomly select eight
kinds of point clouds from the TUM RGB-D dataset [33],
with their adjacent interval α ∈ {1, 2, 3, 4, 5, 10, 15, 20}.
For instance, when α = 5, the target and source point
clouds required registration have indexes (0, 5), (1, 6), · · · .
The overlapping rate will get much lower as α increases.
For each class point cloud, we use 100 frames to ensure the
overlapping rate changing from 5% to 100% for test, hence
there are in total of 800 point cloud pairs for registration.
The overlapping rate of each pair is estimated as follows:

d1 := dist(p,pnearest)

d2 := dist(p,qnearest)
(14)

χA(p) =

1 if
d2
d1

< ϵ

0 otherwise

(15)

the source point p is considered to be on the overlapping
region A if the distance d2 to its nearest point of another

https://github.com/isl-org/Open3D


(a) Registration results under 50% outliers

(b) Registration results under 200% outliers

Figure 7. Qualitative comparison under the contamination of (a) 50% and (b) 200% outliers. In situation of 50% outliers, G-ICP attains
the highest accuracy with the least computation time, while our method also gets promising result. For 200% outliers, our method still
successfully registers the point clouds, along with fairly lower RMSE and fast speed.



Figure 8. Comparison samples under the initial rotation angle ρ = 90◦. Our method outperforms the others with higher registration
accuracy, especially under large initial rotation angles or low overlappings.

Figure 9. Registration results of different methods for the low overlapping model. Our method outperforms all competitors with the highest
registration accuracy, meanwhile having a reasonable time consumption.

point cloud qnearest versus the distance d1 to the nearest
point of its point cloud pnearest in Eq. 14 is less than certain
threshold. In our experiments, we set the default tolerance
ϵ to be 15 in Eq. 15.

The three rows in Fig. 10 show the influence of different
overlapping rates on RMSE, translation error and rotation
error, respectively. We figure out that when the overlapping
rate is high, all methods work well and FR-ICP has the min-
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(d) Average translation error
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(f) Max and Min translation error
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Figure 10. Quantitative results of RMSE, translation error, and rotation error under a set of overlapping rates. We present the average,
median, and maximum-minimum value on the first, second, and third column, respectively. As observed, the error increases when the
overlapping rate decreases.

imum average RMSE. However, when the overlapping rate
decreases, its performance deteriorates rapidly. Its median
RMSE exceeds 0.5 when the overlapping rate is less than
70%. HMRF-ICP and our method perform well at moder-
ate overlapping rate, and our method has lower translation
error and rotation error in average. When overlapping rate
is below 20%, no methods perform fairly well on all cases,
but our method can still work well on some cases since the
minimum RMSE, translation error and rotation error of our
method are the lowest compared with the others. There-
fore, we conclude that our method has wider convergence
basin than competitors under low overlapping settings. We
present a test sample with the low overlapping rate equal to
0.3999 in Fig. 11. More experimental results of different
approaches under different overlapping rates are reported in

Supplemental Material.

Sequence Point Cloud Test In this section, we evaluate
the performance of each method on sequence point clouds.
We adopt the ETH laser dataset[4] and the KITTI dataset[1]
for test. For the ETH laser dataset, the ”Apartment” se-
quence that contains 45 point clouds are used. We align the
adjacent point cloud pairs in the sequence and calculate the
RMSE as well as the running time. Since the number of
points is too large in raw data, we randomly sample 20%
candidate points for registration. However, methods like
CPD and GMM still suffer from fairly high computational
complexity, hence the number of candidate points for these
two methods is further reduced to seven thousand. From
the result presented in Fig. 12, we observe that our method



Figure 11. Registration results when overlapping rate equals to 0.3999. The first row illustrates the original point clouds attained based on
RGB image and depth map. The second row and the third row show the registration results of different methods and their log-scale color
coding. As observed, our proposed method achieves the most reliable registration under low overlapping rate.

Figure 12. Registration results of different methods on ETH dataset. Our method and FR-ICP have the best performance, whereas our
method consumes twofold less runtime as FR-ICP.

and FR-ICP enable high registration accuracy, meanwhile
ours is faster than FR-ICP, the others lead to relatively large
deviations.

For the KITTI dataset, we align the point clouds in the

sequence whose index intervals are 1, 4 and 8. Larger index
interval indicates lower overlapping rate. The experimen-
tal results with interval equal to 8 are reported in Fig. 13,
of which circles indicate the zoom-in registration. As ob-



Figure 13. Registration results of the KITTI dataset with the index interval equal to 8. Red boxes indicate methods that have relatively
large deviations and circles are the zoom-in results.

served, with the decrease of overlapping part between two
point clouds, most methods produce significant registration
error. However, our proposed algorithm still achieves accu-
rate results. More registration results are reported in Sup-
plemental Material.

5. Conclusions and Future Research

We presented a novel and robust method for accurate reg-
istration of low overlapping point clouds. We integrate geo-
metric features with the probabilistic model hidden Markov
random field to effectively infer overlapping regions be-
tween two point clouds and depress outlier contamination.
We prove a necessary and sufficient condition when the
preliminary symmetric function equals to zero, analyze its
shortcomings, and introduce a curvature-aware symmetric
function, which enables the pairwise point correspondence
more discriminative, thereby ensuring more accurate reg-
istration. Additionally, we adopt linear approximation to
the proposed objective function and then involve it into the
geometrically stable sampling framework to achieve more
stable transformations.

We assess the proposed method and compare it with
representative state-of-the-art approaches on noisy, outlier-
contaminated, different initialization, and low-overlapping
settings, where results demonstrate that the proposed
method outperforms competitors with higher accuracy and
robustness along with reasonable time consumption, espe-

cially on low overlapping scenarios.
The currently proposed registration framework is limited

to pairwise low overlapping point clouds, in the future, we
plan to generalize it to multi-view low overlapping cases.
For such challenging assignment, to avoid error accumula-
tion between multiple transformations, we can theoretically
formalize the task as a clustering problem and then explore
solutions by probabilistic graph models.
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