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Abstract

Multiply-distorted stereoscopic images are common
in real-world applications. The mixture of multiple dis-
tortions leads to complex binocular visual behavior of
multiply-distorted stereoscopic images, so the existing
blind singly-distorted stereoscopic image quality assess-
ment (IQA) methods cannot obtain satisfactory result-
s on multiply-distorted stereoscopic images. Because
binocular rivalry caused by different distortions in the
left and right views greatly influences the final stereo-
scopic image quality, we present a registration-based
distortion and binocular representation for blind qual-
ity assessment of multiply-distorted stereoscopic image
in this paper. We first use a registration-based distortion
representation to represent the distortion in the stereo-
scopic image. Then we represent the binocular rivalry
by merging the left and right views into a cyclopean im-
age. Considering that the color and intensity of pixels
in the RGB image can better reflect the information of
the distorted image, then a grayscale cyclopean image
is further converted to the color binocular representa-
tion through tone mapping. Finally, a multiply-distorted
stereoscopic IQA method based on a double-stream con-
volutional neural network is proposed. The two sub-
networks are used to extract quality features from the
registration-based distortion representation and color
binocular representation, respectively. Experimental re-
sults demonstrate that the proposed model outperform-
s the state-of-the-art models on the multiply-distorted
stereoscopic image databases.

Keywords: Blind stereoscopic image quality assess-

ment, multiply-distorted stereoscopic image, binocular ri-
valry, registration-based distortion representation, color
binocular representation.

1. Introduction

With the advent of the 5G era, visual information is
changing from two-dimensional to stereoscopic. Users’ de-
mand for stereoscopic content with deep visual perception
has driven the rapid development of stereoscopic display
technology, especially in cinema and television. As an im-
portant part of the stereoscopic acquisition system, stereo-
scopic image quality assessment (SIQA) aims to determine
whether the perceptual quality of stereoscopic images meets
the requirements. Stereoscopic distorted images can be di-
vided into singly-distorted stereoscopic image (SDSI) and
multiply-distorted stereoscopic image (MDSI), where the
quality of SDSI is only related to the perception of a certain
distortion type, while MDSI is affected by the interaction
between different types of distortion.

Although SIQA has attracted a lot of attention, only a s-
mall number of studies focus on MDSI [26, 10, 23, 32]. Ac-
tually, the stereoscopic images will undergo different stages
of acquisition, compression, and transmission, the stereo-
scopic image may be contaminated with multiple types of
distortion, and the left and right views of the stereoscopic
image are also subjected to different degrees and types of
distortion symmetrically or asymmetrically during the pro-
cessing stage. It poses a great challenge to the binocular
combination of stereoscopic vision [33, 36], and binocular
rivalry [6] and other unpredictable visual behaviors [25] oc-
cur during the process. To this end, the mixture of multiple
distortions causes the problem of binocular quality predic-
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tion more complex and challenging.

Because of the scene discrepancy between the left and
right views, in existing works [33, 34, 16, 35], the differ-
ence image between the left and right views of the distort-
ed stereoscopic image is not a good representation of the
distortion. To resolve the negative influence of the inaccu-
rate distortion representation on SIQA, the monocular mod-
el based on the registration-based distortion representation
is built to represent the distortion in the stereoscopic image
more accurately.

Furthermore, the left and right views of an MDSI have
been distorted by different types and degrees of distortion
symmetrically or asymmetrically, it is necessary to consid-
er the influence of image content information and binocular
visual behavior on the stereoscopic image [10]. Since MD-
SI is more complicated than SDSI, the image presented to
the human eye is strongly affected by binocular rivalry dur-
ing the subjective assessment. Therefore, the binocular rep-
resentation of MDSI is calculated to simulate the imaging
of the stereoscopic image in the brain based on binocular ri-
valry, and then represent the image content information and
the effect of binocular rivalry on image quality.

Compared with grayscale images, color images show
the color and intensity of their pixels and can represen-
t the information of distorted images more completely [20].
Hence, the grayscale cyclopean image is converted to the
RGB image by tone mapping. After that, we design a
double-stream convolutional neural network (CNN) model
that learns from the registration-based distortion represen-
tation and color binocular representation, respectively.

In this paper, we proposed a blind/no-reference (NR)
SIQA framework for MDSI, a double-stream CNN mod-
el designed to fuse the monocular and binocular features.
The experimental results on the LIVE 3D [6, 18] and NBU-
MDSID [26, 23] databases demonstrate the effectiveness of
the proposed model for complex multiple distortion cases.
The main contributions of this paper are summarized as fol-
lows.

(1) Based on the observation that the scene discrep-
ancy causes the inaccurate distortion representation, a
registration-based distortion representation, is proposed to
better represent the distortion situation of the stereoscopic
image.

(2) The color binocular representation which merges left
and right views into a cyclopean view, is introduced to in-
corporate the influence of the binocular rivalry on stereo-
scopic imaging.

(3) A unified blind SIQA metric is proposed to evaluate
both SDSI and MDSI, using a double-stream CNN architec-
ture, which outperforms the state-of-the-art SIQA metrics.

2. Related Work

Based on the availability of the reference image, SIQA
metrics can be divided into full-reference (FR), reduced-
reference (RR), and blind/NR metrics. Most existing SIQA
metrics for SDSI are of the FR or blind/NR type, while
existing works for MDSI are limited and focus on the
blind/NR type. We present related works on blind SIQA
for SISD and MDSI in Subsection 2.1 and 2.2, respectively.

2.1. Blind SIQA for singly-distorted image

SDSI means that the information of the stereoscopic im-
age is corrupted by a single distortion type, so that its qual-
ity is only related to the perception of the corresponding
single distortion type. Blind SIQA metrics do not use any
information from the original reference image; therefore,
the application prospects of blind IQA are more practical
than those of FR-IQA and RR-IQA metrics. Based on the
information that they use, blind SIQA can be further classi-
fied into three categories: binocular perception-based, depth
perception-based, and difference perception-based metrics.

Many binocular perception-based metrics have been pro-
posed for improving the performance of SIQA metrics by
incorporating binocular perception. Ryu and Sohn [21] pro-
posed a blind SIQA index that measures the extents of blur-
riness and blockiness for the left and right views and then
combines these using a binocular perception model. Shao et
al. [25] developed a phase-tuned quality lookup and a visu-
al codebook from the binocular energy responses to achieve
blind quality prediction by pooling. Zhou et al. [36] p-
resented two binocular combinations of stimuli to extract
quality features, and then adapted the extreme learning ma-
chine to predict image quality. Shao et al. [27] proposed
a domain transfer framework that the information from the
source feature domain is transferred to its target quality do-
main by means of dictionary learning.

Depth perception-based metrics assess the image quality
based on the disparity map or synthesized cyclopean (hu-
man brain) image. Akhter et al. [1] proposed a blind SIQA
index that first extracts image features from a stereoscopic
image and its disparity map, and then uses a logistic regres-
sion model to predict the image quality. Chen et al. [5] pro-
posed combining 2D cues in a cyclopean view and 3D cues
in disparity information to estimate the perceptual quality
of stereoscopic images. Jiang et al. [11] proposed an index
based on a deep non-negativity constrained sparse autoen-
coder with the input of the cyclopean image and the left and
right views. Shen et al. [28] proposed a blind SIQA that
simulates the perception route of human visual system, and
derives features from the fused view and single view. Liu et
al. [15] proposed a two-stream interactive network model
to simulate the process of human stereo visual perception.

Difference perception-based metrics assess the image
quality based on the difference between the left and right



views. The difference image was first used in the FR-SIQA
index presented in [33], which uses it to represent infor-
mation differences between two views. Zhang et al. [34]
proposed a CNN-based blind SIQA index, which consid-
ers the difference image to represent the depth and distor-
tion of the stereoscopic image. Shen et al. [29] proposed
combining the spatial frequency information and statistic
feature extracted from the cyclopean and difference maps
to represent the binocular characteristic and asymmetric in-
formation. Shi et al. [30] computed a registered distortion
representation based on the left and registered right views to
represent the distortion in the stereoscopic image, then de-
signed a three-column model that learns from the registered
distortion representation and the left and right views.

2.2. Blind SIQA for multiply-distorted image

The quality of SDSI is only related to the perception of
the associated distortion type, while the interaction among
different distortion types influences the perceived quality of
MDSI. Due to some unpredictable visual behavior that may
occur during image processing, various distortions are ap-
plied to the left and right views symmetrically or asymmet-
rically. Moreover, stereoscopic images are more likely to
be polluted by multiple distortion types in the acquisition,
processing, and transmission stages, thus bringing a greater
challenge to research work on IQA.

Although stereoscopic images are prone to suffer from
multiple distortions, there are few works on quality assess-
ment for MDSI actually. Shao et al. [26] proposed a
multi-modal joint sparse representation framework to learn
a set of modality specific dictionaries, and then evaluates
the quality of the image based on the reconstruction error
to assess the image quality. Jiang et al. [10] presented a
unified blind quality evaluator by learning monocular and
binocular local visual primitives based on a task-driven and
modality-specific sparse reconstruction errors. In the work
[23], a multistage pooling model for asymmetric MDSI was
proposed, which establishes a multimodal sparse represen-
tation framework for the phase and magnitude components
and employs a multistage pooling strategy to simulate the
pooling procedures. Wang et al. [32] proposed a sparse rep-
resentation framework to learn the local and global quality
perception functions and characterized the perceptual fea-
tures of MDSI through five different channels.

3. Proposed method

The scene discrepancy causes the difference image be-
tween the left and right views to be inaccurate for distortion
representation, especially in image regions where the depth
changes. However, the problem of scene discrepancy be-
tween the left and right views of a stereoscopic image can
be solved by image registration. Compared to the differ-
ence image, the registration-based distortion representation

(a) Ref. left view (b) Ref. right view (c) Dis. left view

(d) Dis. right view (e) Dist. in left view (f) Difference image

(g) Registered image (h) Mask map (i) Regist. dist. rep.

Figure 1. Example of proposed registration-based distortion repre-
sentation.

can more accurately represent the distortion in the stereo-
scopic image, and has proven to be effective in the quality
evaluation of SDSI [30].

Nevertheless, MDSI is more complex than SDSI, where
the left and right views of the stereoscopic image are in-
troduced to different types or degrees of distortion, and it is
insufficient to only consider the distortion of the images, the
effects of image content and binocular vision to the stereo-
scopic image also need to be taken into consideration. The
imaging in the mind under the action of binocular vision
can more accurately represent the image content informa-
tion and binocular visual behavior than consider the content
information of left and right views separately. To this end,
the color binocular representation is proposed to simulate
the actual imaging in the human brain based on binocular
rivalry.

Motivated by [31], we design a double-stream CNN
model which uses image patches from registration-based
distortion representation and color binocular representation
to train the monocular model and binocular model respec-
tively, and the two subnetworks are used to extract feature
information separately and then perform feature fusion, and
finally mapping to obtain the image quality score. With the
combination of distortion information and content informa-
tion based on binocular rivalry, the proposed model can ef-
fectively predict the visual quality of MDSI.

3.1. Registration-based distortion representation

Existing works [34, 33, 16, 35, 29] use the difference
image between the left and right views of a distorted stereo-
scopic image to represent the distortion, however, the scene
discrepancy causes inaccurate distortion representation of
it, especially in edge and contour regions with significan-



t depth changes. As indicated in Figure 1, the difference
image (Figure 1(f)) between the left (Figure 1(c)) and right
(Figure 1(d)) views is affected by the scene discrepancy and
displays strong fake cues of distortion around the boundary
of steps and twigs. Compared to the true distortion repre-
sentation of the left view (the difference image between the
reference left (Figure 1(a)) and distorted left (Figure 1(c))
views displayed in Figure 1(e)), there is no severe distor-
tion around the boundary of steps and twigs. Therefore,
we propose to first address scene discrepancy by image reg-
istration, and then compute a registration-based distortion
representation to represent the distortion in the stereoscopic
image more accurately.

In this paper, we first perform the image registration on
the input left and right views by the SIFT flow algorithm
[14]. The SIFT flow is a method of scene registration to its
nearest image in a large image database containing various
scenes according to the input images. Specifically, we reg-
ister the right view Ir to the left view Il of the stereoscopic
image, distinguish the matching and no-matching regions
according to the masking map (Figure 1(h)), and obtain the
registered image, denoted as Im. The proposed metric only
uses the matched regions in the registered image because in-
formation in the no-matching regions is unavailable. As in-
dicated in Figure 1(g), the pixels of the registered image are
derived from the right view (Figure 1(d)) and the structure
of the registered image is the same as that of the left view
(Figure 1(c)). We compute the registration-based distortion
representation as the difference of the registered image Im
and the left view Il as follows,

Id (x, y) = Ig
m
(x, y)− Igl (x, y) , (1)

where (x, y) indicates the position of the pixel, Ig
m

and
Igl are the registered image and left view of the distorted
stereoscopic image in grayscale, and Id is the computed
registration-based distortion representation.

Compared to the difference image displayed in Figure
1(f), the registration-based distortion representation dis-
played in Figure 1(i) is more similar to the distortion in the
left view presented in Figure 1(e), especially in the edge and
contour regions. Moreover, the left and right views of MDSI
are distorted by different types or degrees of distortion sym-
metrically or asymmetrically. Although the registration-
based distortion representation can better represent the dis-
tortion of the image than the difference image, the image
registration cannot guarantee its validity due to the interac-
tion of multiple distortion types, and the registration-based
distortion representation of the MDSI (Figure 1(i)) still has
some inaccurate distortion information around the bound-
ary of steps and twigs compared with the actual distortion
of the left view (Figure 1(e)).

3.2. Color binocular representation

The registration-based distortion representation can ef-
fectively represent the distortion between the left and right
views on the SDSI, due to the interaction among differen-
t distortion types on MDSI, especially on asymmetrically
stereoscopic distorted images, where the visual stimuli of
the left and right views are prone to large differences. The
registration-based distortion representation cannot ensure
high accuracy for MDSI when only considering distortion
information may have a negative impact on SIQA.

To address the effect of binocular rivalry on stereoscopic
imaging, the left and right views are merged into a cyclo-
pean view to simulate the actual imaging of the stereoscopic
image in the brain. We calculate the cyclopean image based
on the linear summation model [13] and Gabor filter [7], the
obtained grayscale cyclopean image is then converted to an
RGB image by tone mapping to further extract color and
content information.

3.2.1 Cyclopean image synthesis

Binocular rivalry has a significant impact on the final imag-
ing of MDSI, in which two distinct views compete for dom-
inance, so that only one monocular input is visible and its
contralateral input is suppressed. Specifically, the left and
right views can be merged into a single cyclopean view to
represent the results of binocular rivalry [6]. Since binocu-
lar perception has a tremendous impact on the visual per-
ception of the stereoscopic image, synthesizing left and
right views to simulate stereoscopic scene perception is the
key to a successful SIQA model.

Inspired by the discovery of biological vision, the linear
summation model [13] was proposed to explain the binocu-
lar combination process of visual information from left and
right views. Although this model cannot fully characterize
the complex binocular vision mechanism, it is regarded as
a basic model for binocular vision because of its simplicity
and reasonableness, and the model is as follows,

C = ωlEl + ωrEr, (2)
where El and Er denote the visual signals of the left and
right views, respectively, ωl and ωr represent the corre-
sponding weights of the two views, wl and wr satisfy
ωl + ωr = 1. Eq. 2 can explain the experience of binocular
rivalry in the perceiving cyclopean image when stereoscop-
ic stimuli are presented. Since binocular rivalry is locally
independent [8], the local linear model for synthesizing cy-
clopean image according to [6] is as follows,

Igc (x, y) =ωl (x, y) I
g
l (x, y)

+ ωr ((x+ d) , y) Igr ((x+ d) , y) ,
(3)

where Igc is the synthetic grayscale cyclopean image, Igl and
Igr are the lefe and right views in grayscale, and d is the



(a) Distorted left view 1 (b) Distorted right view 1 (c) Cyclopean image 1 (d) Color binocular representation 1

(e) Distorted left view 2 (f) Distorted right view 2 (g) Cyclopean image 2 (h) Color binocular representation 2

(i) Distorted left view 3 (j) Distorted right view 3 (k) Cyclopean image 3 (l) Color binocular representation 3

Figure 2. Examples of proposed color binocular representation. (Distortion degree for (a)-(d) is 131 in the left view and 131 in the right
view; for (e)-(h) is 121 in the left view and 321 in the right view; for (i)-(l) is 132 in the left view and 111 in the right view. Corresponding
distortion types are Gaussian blur, JPEG and Gaussian noise.)

disparity of the left view corresponding to the relevant pixel
on the right view, ωl and ωr represent the corresponding
weights of the two views, respectively.

Since the experience of binocular rivalry is independent
of the absolute stimulus intensity of each view and is relat-
ed to the relative stimulus intensity of two views, the local
energy of the Gabor filter response is used to weight the left
and right views stimuli [7]. The ωl and ωr can be obtained
as follows,

ωl (x, y) =
Gl (x, y)

Gl (x+ y) +Gr ((x+ d) , y)
, (4)

ωr ((x+ d) , y) =
Gr ((x+ d) , y)

Gl (x+ y) +Gr ((x+ d) , y)
, (5)

where Gl and Gr represent the Gabor filter responses for
the left and right views, respectively.

As mentioned in [4], when the left eye sees an undis-
torted image and the right eye sees a distorted image with
blur, the eye that sees the undistorted image will dominate
because blur reduces visual stimulation. Conversely, when
the undistorted image is presented on the retina of one eye
and the JPEG distorted image is presented on another eye,
the eye that sees the JPEG distorted image will dominate
because JPEG increases visual stimulation.

As shown in Figure 2, the left and right views are sym-
metrically distorted in the MDSI 1, the distortion in the

grayscale cyclopean image 1 (Figure 2(c)) is also balanced,
but the distorted details of the JPEG on the wall are less ob-
vious. In the MDSI 2, the distortion degree of blur in the left
view is lower than that of the right view. Therefore, the blur
distortion in the grayscale cyclopean image 2 (Figure 2(g))
is less pronounced than in the right view, which is consistent
with the principle that blur reduces visual stimulation. The
JPEG distortion degree of the left view is higher than that
of the right view in the MDSI 3. However, because JPEG
distortion involves color mode conversion, the human eye is
relatively insensitive to the JPEG distortion of the generated
grayscale cyclopean image 3 (Figure 2(k)).

3.2.2 Tone mapping

Information such as distortion, brightness, and contrast
can be more easily extracted from RGB images than from
grayscale images, and the color and intensity of pixels in
RGB images can reflect the original information of distort-
ed images well. In order to further simulate the final imag-
ing of the brain for the cyclopean image, we converted the
grayscale cyclopean image to the RGB image. Movitated
by the tone mapping method in [19, 2], assuming that the
three channels of the color image are R, G, and B, and the
grayscale map is Gs, the left and right views of the stereo-
scopic image are first converted into grayscale maps to ob-



Figure 3. The architecture of proposed double-stream CNN model.

tain the three-dimensional scale coefficients of the left and
right views, and then the RGB and grayscale scale coeffi-
cients are averaged as follows,

rl =
(Rl, Gl, Bl)

(Gsl, Gsl, Gsl)
, rr =

(Rr, Gr, Br)

(Gsr, Gsr, Gsr)
, (6)

The grayscale channel (Gsc, Gsc, Gsc) of the grayscale
cyclopean image is synthesized with the scale coefficients
r = (rl + rr) /2 to obtain the color binocular representa-
tion Ic as follows,

Ic = (Gsc, Gsc, Gsc) ∗ r, (7)

As shown in Figure 2, compared to the grayscale cyclo-
pean image 1 (Figure 2(c)), the JPEG distortion detail on the
wall of the color binocular representation 1 (Figure 2(d)) is
more pronounced. Consistent with the grayscale cyclopean
image 2 (Figure 2(g)), the blur distortion remains less ob-
vious in the color binocular representation 2 (Figure 2(h))
than in the distorted right view 2 (Figure 2(f)). In the MDSI
3, the JPEG distortion degree is higher in the left view than
in the right view, and the JPEG distortion is more visible
in the color binocular representation 3 (Figure 2(l)) than in
the distorted right view 3 (Figure 2(j)), in line with JPEG
distortion increases the visual stimulus. In summary, color
binocular representation can improve the sensitivity of dis-
torted information and make stereoscopic imaging based on
binocular competition more accurate.

3.3. Double-stream convolutional neural network model

Figure 3 illustrates a double-stream CNN architecture,
which learns from registration-based distortion representa-
tion and color binocular representation. The double-stream
CNN model uses five cascaded convolutional layers (con-
sisting of 16 convolutional layers and 5 pooling layers) for
feature extraction and two fully connected layers for regres-

sion. The two sub-networks extract the feature information
respectively and fuse them as the input of the fully connect-
ed layer to achieve the final image quality evaluation.

The registration-based distortion representation and col-
or binocular representation are both divided into a number
of k×k image patches with overlaps to increase the scale
of training data; the patches that have overlaps with no-
matching regions are discarded. Meanwhile, two image
patches from the same position with the same size of the
registration-based distortion representation and color binoc-
ular representation are used as the inputs of the double-
stream CNN model.

The proposed architecture of the double-stream CNN
model has five cascaded convolutional layers and two ful-
ly connected layers. Each of the first two cascaded convo-
lutional layers consists of the repeated application of two
3×3 convolutional layers, followed by a 2×2 max pooling
operation with stride “1”. Then, each of the following three
cascaded convolutional layers consists of the repeated ap-
plication of four 3×3 convolutional layers, followed by a
2×2 max pooling operation with stride “2” for downsam-
pling. All the convolutional layers are applied with zero
padding and stride “1”to obtain an output of equal size to
the input. ReLU is used in all convolutional layers and the
first two fully connected layers because ReLU can effec-
tively reduce the likelihood of the gradient vanishing and
accelerate the convergence of optimization [9].

During the training stage, we use the Euclidean distance
as a loss function. The optimal weights of the proposed
double-stream CNN model can be learned via adaptive mo-
ment estimation (Adam) [12] and back-propagation. The
initial learning rate is set to be 10−4 and we reduce it ev-
ery 20000 iterations by a gamma of 0.7. During the testing
stage, the global image score is obtained by calculating the



average score of the patches belonging to the same image.

4. Experiment

In this section, we present the experimental results of
the proposed model and the performance comparisons with
some state-of-the-art SIQA metrics on four widely used 3D
IQA databases.

4.1. Databases and performance indicators

In the experiments, we used four 3D IQA databases.

LIVE 3D IQA Database Phase-I [18] consists of 20
reference stereoscopic images and 365 distorted stereoscop-
ic images, including 80 images for JPEG, JP2K, FF, and
WN, and 45 images for BLUR. Each image in the database
is symmetrically distorted on its left and right views.

LIVE 3D IQA Database Phase-II [6] consists of 8 ref-
erence images and 360 symmetrically or asymmetrically
distorted stereoscopic images. The distortion types include
BLUR, JPEG, JP2K, FF, and WN. For each distortion type,
a reference image pair generates three symmetrically dis-
torted images and six asymmetrically distorted images.

NBU-MDSID Phase-I [26] consists of 10 reference
stereoscopic images, 270 MDSIs, and 90 SDSIs. MD-
SI is corrupted by JPEG, WN, and BLUR. Each image in
the database is symmetrically distorted on its left and right
views.

NBU-MDSID Phase-II [23] consists of 10 reference im-
ages and 300 asymmetrically MDSIs distorted by JPEG,
WN, and BLUR. For each distorted image in the database,
one or two types of distortion are applied asymmetrically
on the left and right views.

In this paper, three widely used performance indicators
are used to evaluate the performance of SIQA: 1) Spear-
mans Rank Order Correlation Coefficient (SRCC); 2) Pear-
sons Linear Correlation Coefficient (PLCC); 3) Root Mean
Squared Error (RMSE). Greater PLCC and SROCC values
indicate a closer relation with the human subjective eval-
uation, smaller RMSE values indicate superior correlation
with human perception.

We report the median results obtained from train-test it-
erations of 20. Specifically, distorted images correspond-
ing to 80% of the reference images were used as the train-
ing set and distorted images corresponding to the remain-
ing 20% of the reference images were used as the testing
set, such that there was no overlap between the training and
testing sets. In the tables in this section, we use a symbol
“-” to indicate that the performance value was not provid-
ed in the corresponding paper and we could not obtain the
corresponding source code.

Table 1. Experimental results on NBU-MDSID Phase-I and NBU-
MDSID Phase-II. Best performance values on each database are
indicated in boldface.

Type Metric NBU-MDSID Phase-I NBU-MDSID Phase-II
SRCC PLCC RMSE SRCC PLCC RMSE

FR Chen 0.877 0.885 4.385 0.749 0.763 7.560
Bensalma 0.834 0.856 4.943 0.780 0.819 7.110
Shao 0.905 0.919 3.687 0.862 0.802 7.212

NR BLIINDS-II 0.919 0.921 3.543 0.746 0.763 7.763
BRISQUE 0.889 0.910 3.967 0.750 0.766 7.723
MUMBLIM 0.882 0.878 4.570 0.627 0.606 9.586
MUSF 0.922 0.916 3.836 0.765 0.785 7.442
Wang 0.936 0.940 3.804 0.819 0.845 7.020
Shi 0.921 0.910 3.279 0.831 0.836 3.749
Shen - - - - - -
Proposed 0.939 0.944 2.835 0.861 0.869 3.565

4.2. Performance on multiply-distorted stereoscopic im-
age databases

To validate the performance of the proposed model on
MDSI, the proposed model was first performed on the
NBU-MDSID Phase-I and NBU-MDSID Phase-II, which
were compared with ten existing IQA metrics. Among the
comparison IQA metrics, Chen [6], Bensalma [3] and Shao
[24] are FR-IQA metrics; BLIINDS-II [22] and BRISQUE
[17] were initially presented for 2D images. For these 2D
IQA metrics, we first used them to compute the quality s-
cores of the left and right views individually, and then av-
eraged them as the 3D quality score of the stereoscopic im-
age; MUMBLIM [26], MUSF [23], and Wang [32] are blind
IQA metrics designed for MDSI; Shi [30] and Shen [28] are
blind IQA metric designed for SDSI.

As indicated in Table 1, the proposed model achieved
better performance than all comparison metrics in terms
of all performance indicators except SRCC on the NBU-
MDSID Phase-II, which ranked the proposed model inferi-
or to the FR-IQA metrics presented by Shao [24]. From the
results, there are following observations: 1) on symmetri-
cally MDSI (NBU-MDSID Phase-I), Shao [24], BLIINDS-
II [22], MUSF [23], Wang [32], Shi [30], and the proposed
model achieved the competitive performance; 2) on asym-
metrically MDSI (NBU-MDSID Phase-II), the performance
of other metrics is significantly decreased except for Shao
[24] and the proposed model. In summary, the proposed
model outperformed most existing IQA metrics.

4.3. Performance on singly-distorted stereoscopic im-
age databases

To verify the scalability of the proposed model and fur-
ther evaluate the performance on SDSI, comparative exper-
iments were conducted on two SDSI databases(LIVE 3D
Phase-I database and LIVE 3D Phase-II database) with ten
existing IQA metrics. The experimental results on the two
databases are presented in Table 2 and Table 3, which in-
clude the experimental results of SRCC and PLCC values



Table 2. Experimental results on LIVE 3D Phase-I. Best perfor-
mance values are indicated in boldface.

Type Metric JPEG WN BLUR LIVE 3D Phase-I
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC RMSE

FR Chen 0.530 0.603 0.948 0.942 0.925 0.942 0.916 0.917 6.533
Bensalma 0.328 0.380 0.906 0.915 0.916 0.937 0.875 0.887 7.559
Shao 0.615 0.656 0.943 0.941 0.938 0.951 - - -

NR BLIINDS-II 0.496 0.525 0.726 0.835 0.786 0.871 0.910 0.917 6.553
BRISQUE 0.490 0.529 0.479 0.446 0.764 0.774 0.901 0.910 6.793
MUMBLIM 0.693 0.703 0.899 0.896 0.853 0.862 0.885 0.8914 -
MUSF 0.696 - 0.914 - 0.875 - 0.896 - -
Wang 0.633 0.762 0.920 0.951 0.903 0.958 0.868 0.938 -
Shi 0.681 0.780 0.938 0.970 0.910 0.974 0.936 0.963 4.161
Shen 0.879 0.906 0.921 0.947 0.945 0.988 0.962 0.972 -
Proposed 0.755 0.874 0.943 0.972 0.908 0.985 0.938 0.962 3.872

Table 3. Experimental results on LIVE 3D Phase-II. Best perfor-
mance values are indicated in boldface.

Type Metric JPEG WN BLUR LIVE 3D Phase-I
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC RMSE

FR Chen 0.843 0.862 0.940 0.957 0.908 0.963 0.889 0.900 4.987
Bensalma 0.846 0.858 0.939 0.944 0.884 0.908 0.751 0.770 7.204
Shao 0.720 0.750 0.846 0.850 0.801 0.827 - - -

NR BLIINDS-II 0.516 0.576 0.904 0.900 0.677 0.708 0.910 0.917 6.553
BRISQUE 0.736 0.760 0.831 0.758 0.743 0.823 0.901 0.910 6.793
MUMBLIM 0.622 0.583 0.803 0.824 0.713 0.755 0.805 0.784 -
MUSF 0.653 - 0.836 - 0.733 - 0.875 - -
Wang 0.788 0.846 0.929 0.957 0.909 0.984 0.831 0.851 -
Shi 0.945 0.967 0.967 0.972 0.933 0.991 0.948 0.961 2.675
Shen 0.816 0.825 0.923 0.954 0.951 0.988 0.951 0.953 -
Proposed 0.947 0.975 0.952 0.978 0.933 0.993 0.941 0.954 2.492

on individual distortion type (JPEG, WN, and BLYR) and
SRCC, PLCC, and RMSE values for all SISDs. In Table
2 and Table 3, the metrics with the best performance are
indicated in bold. From the experimental results, we can
conclude that proposed model still has high performance on
most individual distortion types and also performs well on
all distorted stereoscopic images.

Compared with Shi [30] and Shen [28] designed for SD-
SI, the proposed model achieved comparative performance
on SDSI and better performance on MDSI. In terms of com-
putational complexity, the proposed model is more complex
and time-consuming to train because it needs to generate
color binocular representation as input. The frameworks in
Shi [30] and Shen [28] are more efficient than the proposed
model in terms of input image generation and model train-
ing efficiency. Therefore, for SDSI, the frameworks in Shi
[30] and Shen [28] can maintain the best balance between
training efficiency and performance. For MDSI, although
the proposed model has a higher computational and train-
ing complexity, its performance is greatly improved com-
pared with them. In summary, the proposed model is more
suitable for quality evaluation task of MDSI.

4.4. Validation on color binocular representation

In this subsection, we evaluate the effectiveness of the
proposed color binocular representation. As described Sub-
section 3.2, the obtained color binocular representation is
initially in grayscale, and we convert the grayscale cyclo-
pean image into a RGB image by the tone mapping. To
validate the effectiveness of the color binocular representa-
tion, We replaced the patch from the color binocular repre-
sentation with a patch from the grayscale cyclopean image
and obtained a variation of the double-stream CNN mod-

Table 4. Experimental results on different binocular representa-
tions on four databases. Best performance values across all models
are indicated in boldface.

SRCC PLCC RMSE
LIVE 3D IQA Phase-I Gray-cy 0.928 0.955 4.195

Left-right 0.929 0.956 4.285
Proposed 0.938 0.962 3.872

LIVE 3D IQA Phase-II Gray-cy 0.933 0.951 2.768
Left-rightk 0.930 0.953 2.754
Proposed 0.941 0.954 2.492

NBU-MDSID Phase-I Gray-cy 0.932 0.939 2.899
Left-right 0.921 0.910 3.279
Proposed 0.938 0.944 2.835

NBU-MDSID Phase-II Gray-cy 0.852 0.850 3.867
Left-right 0.831 0.836 3.749
Proposed 0.861 0.869 3.565

el, denoted by Gray-cy. The experimental results on four
databases are presented in Table 4. The performance of the
double-stream CNN model with color binocular represen-
tation is better than that of the variation with the grayscale
cyclopean image. We can conclude that the proposed color
binocular representation can better represent the results of
binocular rivalry and the content information of stereoscop-
ic image than the grayscale cyclopean image.

As described Subsection 3.3, the proposed model us-
es three image patches from the same position of the
registration-based distortion representation and color binoc-
ular representation as inputs. The reason for using color
binocular representation is that it can synthesize the stereo-
scopic image in the mind more accurately by considering
binocular rivalry, however, the left and right views of the
stereoscopic image also represent the content information.
To verify the effectiveness of color binocular representation,
we extended the double-stream CNN into a three-channel
structure, useing three image patches from the same posi-
tion of the registration-based distortion representation, and
the left and right views as inputs, denoted as Left-right. As
shown in Table 4, the performance of the proposed double-
stream CNN network is better than that of the three-channel
structure, especially on MDSI. The proposed double-stream
CNN model that uses the color binocular representation as
input indicates significant superiority. Therefore, it can be
concluded that MDSI is more affected by binocular rivalry
than SDSI, and the color binocular representation considers
the influence of binocular rivalry on imaging, which effec-
tively represents the actual imaging of the stereoscopic im-
age in the brain and also represents the content information
of the image.

4.5. Effects of patch size

In this subsection, we investigate e the extent to which
the patch size affects the performance of the proposed
double-stream CNN model. As indicated in Table 5, three
different patch sizes (32×32, 48×48, and 64×64) were



Table 5. SRCC, PLCC, RMSE, and parameters for different patch
sizes on NBU-MDSID Phase-I. Best performance values across all
sizes are indicated in boldface.

SIZE 32×32 48×48 64×64
SRCC 0.939 0.934 0.938
PLCC 0.944 0.932 0.937
RMSE 2.835 3.107 3.088

Params.(×105) 97.5 221.9 375.6

compared using the NBU-MDSID Phase-I to observe the
performance change of the proposed model. As the patch
size increased from 32×32 to 48×48, the performance de-
creased slightly. Then the performance increased gradually
with the patch size increased from 48×48 to 64×64. The
differences in terms of SRCC, PLCC, and RMSE are less
than 0.005, 0.012, and 0.272, respectively, the patch size
of 32×32 achieved the best performance. Because an im-
age patch of 32×32 not only includes local information but
also retains global structures for quality assessment and the
training parameters are only 26% of those of 64×64. Above
all, based on the consideration of training complexity and
performance, the patch size of 32×32 was selected as the
default patch size in all the experiments for the proposed
double-stream CNN model.

5. Conclusion

In this paper, we presented a registration-based distortion
and binocular representation for blind quality assessment of
MDSI. Since the left and right views of MDSI are sym-
metrically or asymmetrically imposed with different types
and degrees of distortion, the imaging inside human eye is
influenced by binocular rivalry. The registration-based dis-
tortion representation was computed to represent the distor-
tion in the stereoscopic image. Then we merged the left and
right views into a cyclopean image to present the binocular
rivalry, and further converted it to the color binocular rep-
resentation through tone mapping. Finally, a double-stream
CNN model was used to predict image quality of MDSI,
and two subnetworks extracted quality features from the
registration-based distortion representation and color binoc-
ular representation, respectively. The experimental results
demonstrate the superiority of the proposed model over the
state-of-the-art SIQA metrics.
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