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Abstract
We propose a Normalizing flow based on the Wavelet
framework for super-resolution called WDFSR. The
framework learns the conditional distribution mapping
between low-resolution images in the RGB domain and
high-resolution images in the wavelet domain to generate
high-resolution images of different styles simultaneously.
To address the problem that some flow-based models are
sensitive to datasets and weak in generalization, we de-
sign a method that combines T-distribution and QR de-
composition layers to mitigate the problem while main-
taining the performance of the model. We also propose
the Refinement layer combined with attention mechanism
to refine the extracted condition features for performance
improvement. Extensive experiments on many super-
resolution datasets show that WDFSR outperforms most
general CNN models and flow-based models in terms
of PSNR and Perception quality. We also demonstrate
that our framework works well for other low-level vision
tasks, such as low-light enhancement.

Keywords: Normalizing flow, super-resolution,
wavelet domain, attention mechanism, generative model

1 Introduction
Super-resolution(SR) aims at recovering a high-resolution
image from one or many low-resolution input images,
which has a wide range of applications in many domains,
such as film and television, art, and cultural relics protec-

tion, etc. A great deal of excellent research has been done
in this field. Recently, based on traditional vision meth-
ods and machine learning methods, neural networks have
made great progress in solving super-resolution problems.
In particular, a class of generative methods represented by
GAN has achieved good results, such as [28][46]. How-
ever, for its ill-posed properties, super-resolution is still
a challenging computer vision problem, leaving room for
performance and image quality improvement.

Normalizing flow is a reversible probabilistic genera-
tive model that has gained an increasing attention in the
image field due to its powerful generative capabilities.
Unlike GAN, Normalizing flow can explicitly compute
probabilistic likelihoods. Compared to VAE, it can sam-
ple and compute distributions more accurately and has a
faster computational speed than autoregressive models.
In recent years, Normalizing flow has been applied to
many generation tasks and achieved good results, such as
point cloud [25], audio [44], and image generation tasks
[21]. However, some flow-based models have out-of-
distribution (OOD) generalization problems, being sen-
sitive to datasets, and may lead to possible training in-
stability. It is necessary to improve training methods and
alleviate these problems.

For traditional image processing tasks, methods based
on frequency can make weak signals more prominent and
easier to be distinguished and processed. With the devel-
opment of deep neural networks, CNN combined with fre-
quency domain or wavelet domain is often used in image
processing tasks. Some studies have gradually noticed
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Figure 1: An overall framework of WDFSR. T represents
the T-distribution.

that processing image information in the wavelet domain
can achieve more satisfactory results in tasks, such as im-
age classification [24], object detection[53], and instance
segmentation[29]

The above techniques inspire us to combine Normal-
izing flow with the wavelet domain for enhancing super-
resolution task. Our proposed network, namely WDFSR,
transforms the local feature signals in high-resolution im-
ages into the wavelet domain, combining with Normaliz-
ing flow to better deal with image processing tasks. Af-
ter wavelet transformation, the distribution of image data
will become more regular and the details can be more
highlighted than in the RGB domain, so that Normaliz-
ing flow can better learn the features of super-resolution
image. Our contributions are as follows:

• We are the first to propose combining wavelet do-
main with Normalizing flow to deal with image
super-resolution task. Our model is capable of gen-
erating both PSNR-oriented and Perception-oriented
images. Our experiments show that WDFSR per-
forms better than most existing CNN-based models
and flow-based models.

• We propose a solution to combine QR decomposi-
tion layer and T-distribution, helping stabilize the
network training process and enhance their general-
ization ability.

• We adopt the Refinement layer with an attention
mechanism to help refine the extracted conditional
features for performance improvement.

• Our model can handle other related image generation
tasks, e.g. Low-light enhancement applications, and
obtain satisfactory results.

2 Related work

We review representative works from Image Super-
Resolution, Normalizing Flow, and Wavelet-based Meth-
ods as they are closely related works.

2.1 Image Super-Resolution

There are different directions of exploration, such as sin-
gle image SR, referenced-based image SR [35] and blind
SR [27][12]. Our paper mainly focuses on the single im-
age super-resolution (SISR). In recent years, many CNN-
based super-resolution methods have been proposed for
SISR. At first, some works[28][49][15] use either L1 or
L2 as the loss function to train, yet output images were
too smooth. Then, some methods [49] [48] [55] [46] use
GAN to generate a real image stream and introduce per-
ceptual loss to increase the texture of the image, making
the generated images have better visual perception.

While some recent work has taken different ap-
proaches to super-resolution tasks, such as using implicit
functions[22], transformers[36], and Multi-scale[23] net-
works, and other neural networks still employ GAN[38]
or VAE[34] to produce good visuals, they can only pro-
duce high-resolution images from low-resolution images
with deterministic one-to-one mapping, or some results
are disappointing. Recently, researchers realize this prob-
lem, leading to methods, such as PULSE [40] (only for
face), which can generate many different high-resolution
images from one low-resolution image by using GAN.
FxSR-PD [43] can generate different styles, including
PSNR-Oriented and Perception-Oriented, by combining
different train loss functions, yet the combination of
losses is complex. Normalizing flow is also applied to
image super-resolution task. However, such methods still
need further research, including stability and effect im-
provement.



2.2 Normalizing Flow

Normalizing flow [8] [7] can learn mappings between
arbitrary distributions and is a very powerful generative
model. In recent years, Normalizing flow has not only
been applied to speech generation and point cloud [25]
tasks, but also has gradually been applied to image gener-
ation tasks and achieved good results, such as denoising
and simulating noise [50][11], deblurring [27], SR [37]
[26] and other low-level visual tasks. Glow [21] provides
us with ideas on image generation tasks.

Normalizing flow is a reversible network model, mean-
ing that it may suffer from many constraints that reduce its
expressiveness, so researchers have offered many meth-
ods [16][45][4] to improve its performance. These meth-
ods mainly improve the model structure, or apply data
preprocessing methods and other measures to improve
model expression ability, stability, generalization. We
also propose some measures to further increase the train-
ing stability of the model and enhance the generalization
ability of the model to alleviate the OOD problem.

2.3 Wavelet-based Methods

In traditional image processing tasks, using frequency do-
main augmentation can bring some good results. Com-
pared with Fourier transform and discrete cosine trans-
form, wavelet transform considers both spatial domain in-
formation and frequency domain information. Recently
wavelet-based methods have been explored in several
computer vision tasks, including classification [29] [53]
[41], face aging [33], network compression [9], super-
resolution [31] [52], style transfer [54] and demoire [30].

Gal [10] proposes the SWAGAN which implements
progressive generation in frequency domain. They ver-
ify that content generation in wavelet domain results in
higher quality images with more realistic high frequency
content, and frequency-aware methods also induce low-
level visual quality improvements. Liu [31] proposes
MWCNN for SR, which implements multi-level Wavelet
methods. However, this method is less effective than ex-
isting methods because its network architecture may not
be very expressive. Xiao [52] proposes a method for im-
age rescaling in wavelet domain using a reversible net-
work structure but not a flow-based model.

2.4 Attention mechanisms
Attention mechanism can be understood as having a com-
puter vision system to quickly and effectively focus on
the characteristics of key areas, which simulates human
vision system. For humans, when facing with a complex
scene, we can quickly focus on the key areas and process
them. For deep learning, attention mechanism can make
the model pay more attention to important features.

Attention mechanisms [18][42][51] have recently at-
tracted extensive attention and have been applied in var-
ious fields, such as object classification, object detection
and image restoration. Zhang [57] propose RCAN using
residual channel attention mechanism for SR, which in-
spires us to apply the attention mechanism.

3 Our Method

3.1 Overview
As shown in Figure 1, our WDFSR network comprises
Normalizing Flow with Refinement layer (RNF) module,
Harr Transform, and T-distribution module. It is impor-
tant to note that the three seemingly gray pictures from top
to bottom represent the horizontal details, vertical details
and diagonal details of the original image, respectively.
Their details are significant, yet they are hard to see by
naked eyes unless binarization is applied. Due to the spe-
cial design of the RNF module and its reversibility, the
training process is different from the general CNN-based
model.

For training, we first transform a high-resolution image
from the RGB domain into four different kinds of wavelet
information, which are relatively regular distribution, by
using Harr transform. Each RNF module branch will in-
dependently learn the mapping relationship between the
T-distribution and the four different spectral information,
such as diagonal information distribution, in the wavelet
domain. To better fit the mapping relationship, during our
training, low-resolution images are put into the encoder to
obtain conditional features, feeding into the RNF module.
We combine negative log-maximum likelihood with other
training losses to optimize our model.

For generating a super-resolution image, different from
training, in order to reversibly reconstruct the super-
resolution image, we require to sample from the T-



Figure 2: The structure of our RNF module for 4×super-resolution model, which is applied to all four RNF module
branches of our WDFSR network. The structure of RNF modules for 8×super-resolution task and Low-light
enhancement task are similar. Note that we have omitted the processing of wavelet transform in this figure.

distribution (Note that the sampled data of different
branches of the T-distribution are also independent), and
inject the conditional feature information of the low reso-
lution image into the four trained RNF module branches.
Subsequently, the four trained RNF modules will ob-
tain four kinds of spectral information in the wavelet do-
main, which can be used to restore a high-quality super-
resolution image through the Harr transform. By chang-
ing different sampling conditions (temperate τ ), WDFSR
can generate different styles of images.

We now introduce the technical details of the three
main modules of our WDFSR network.

3.2 RNF Module
The RNF module is used to learn the exact mapping rela-
tionship between the fitting T-distribution and the four dif-
ferent information distributions obtained through wavelet
transform. This module mainly contains a Normalizing
flow module and a Refinement layer, where the Normal-
izing flow module is a multi-level architecture inspired by
RealNVP [8]. The overall structure of the RNF module
is depicted in Figure 2. Note that all four RNF module
branches in our WDFSR network, as shown in Figure 1,
use exactly the same structure.

Specifically, the architecture of Normalizing flow
mainly contains L scales (levels). For each of the dif-

ferent levels of the architecture, it has a reversible same
structure including one Squeeze layer, one split layer, a
Q-Actnorm, and K Q-Affines. In addition, each Q-Affine
contains an Actnorm layer, one QR layer, and two differ-
ent conditional mapping layers, while a Q-Actnorm con-
tains an Actnorm layer and one QR layer.

At the end of each level, the split layer divides half of
the features by dimension to obey T-distribution for calcu-
lating the negative logarithmic maximum likelihood (in-
stead of a Gaussian distribution), allowing half of the fea-
tures to continue flowing in the architecture. It is worth
noting that the first level architecture has no Squeeze
layer, and the last level has no split layer. We will
now elaborate the important details in the following sub-
sections. Other module improvements are presented in
Appendix A.

3.2.1 QR layer

In order to further strengthen the mapping ability of RNF
modules to better fit the relationship between different
distributions, we utilize the QR decomposition character-
istics to build a reversible QR layer for exchanging infor-
mation on channel dimensions. We have done some ex-
periments and found that T-distribution and QR layer can
better improve the generalization ability of the model.

Glow [21] also proposed 1×1 convolution and PLU,



which can exchange information in dimensions. In ac-
tual training, 1×1 convolution will cause training loss to
fluctuate largely and may easily be detrimental to conver-
gence. Although PLU is stable, it is not flexible, which
may lead to damaging the expressiveness of the flow-
based model. QR layer as proved by Hoogeboom [17]
is more stable while maintaining flexibility. In a similar
fashion to the PLU parametrization, we stabilize the de-
composition by choosing W = Q(R + diag(s)), where
Q is orthogonal, R is strictly triangular, and elements in
s are nonzero. Because Q is an orthogonal matrix, Q
can be constructed from at most n Householder reflections
through Q = Q1 ∗ ... ∗Qn to ensure its flexibility.

Qi = I− 2
kik

T
i

kT
i ki

, (1)

where {ki}ni=1 are learnable parameters.

Figure 3: Visually comparison the effects of QR and 1x1
convolution on training loss.

Visual comparison of training loss and quantitative
comparison of two layers is shown in Figure 3 and Ta-
ble 6, respectively. We can see that using QR layer will
make the training more stable. When the temperate τ of
the variable sampled from the target distribution is 0, the
network using QR layers achieves similar results as a net-
work using 1×1 convolutions. However, when the sam-
pled temperate τ is 0.8, using 1×1 convolution achieves
poor results compared to the network using QR layers.
This phenomenon shows that the QR layer can guaran-
tee stable training while maintaining good performance
compared to 1×1 convolution. Therefore, we provide a
training suggestion that combining T-distribution and QR
layer makes the flow-based model more stable and main-
tains a good performance.

3.2.2 Refinement layer

Our model is a Normalizing flow based on conditional
features, i.e. when training and inferring, we are required
to input low resolution images as conditional features to
various Affine layers in the RNF module to enhance the
mapping ability of the model. Therefore, we need a good
encoder to extract image features accurately, so that the
model can focus on important and useful information. We
selected a part of RRDB [49] model as our encoder.

Although RRDB [49] network architecture as an en-
coder for SR task can extract features from images very
well, the output dimension is large and some dimensions
are not very significant for our model. Hence, we propose
the Refinement layer to further focus on the features of
channel dimension and spatial dimension to promote bet-
ter mapping capability. Through experiments, we found
that the Refinement layer can incorporate different atten-
tion mechanism modules[18][42] and they all improve
performance. However, some of their performance im-
provement is not obvious or their solutions use more pa-
rameters or increasing computational complexity.

Consequently, we choose the relatively superior
CAMB [51] as our attention mechanism module, which
is a combination of channel attention mechanism and spa-
tial attention mechanism, to produce better results while
using fewer parameters.

Note that we do not insert the network into the en-
coder but as a separate small module. Meanwhile, we use
independent attention modules in condition affine layers
instead of sharing attention modules to learn for differ-
ent scale layers. Because the features extracted from the
pre-trained RRDB are actually relatively good, we fix the
RRDB when training our model. We only optimize the
independent Refinement layer, without needing to retrain
a modified RRDB model. This approach can both reduce
the GPU memory utilization for training and speeding up
the training process. Also, our model accuracy is even
higher than if we modified the RRDB model.

3.3 Harr Transform

There are many kinds of wavelet transforms such as Mor-
let, Mexican hat, Gaussian, etc. They can transform fea-
ture information in RGB domain into the spectral infor-
mation in the wavelet domain. We use the simplest Harr



transform which has been proved to be simple and effi-
cient in some previous work.

Due to the reversible network structure and spe-
cial training method, we do not use the wavelet trans-
form multiple times in our network, like some methods
[30][31][10]. Similar to Xiao [52], we convert high-
quality images to wavelet domain to learn from the begin-
ning and we only use the wavelet transform once. We be-
lieve that the four different information distributions ob-
tained after a wavelet transform can make the RNF mod-
ule better learn the mapping relationship. We will dis-
cuss the role of the Harr transform in Section 5. What the
wavelet transform does is shown as below.

A,H, V,D = Harr(X) (2)

where X , A, H , V , D are high-resolution images, hori-
zontal detail information, vertical detail information, di-
agonal detail information and areas of low-frequency in-
formation, respectively. Harr Transform is invertible,
which means that Harr−1(A,H, V,D) = X and Harr
Transform can restore the super-resolution picture very
well. Their channel dimension is one-fourth of X and
the length and width are one-half of X .

3.4 T-distribution
In theory, the flow-based model can learn a mapping from
a very complex distribution to a very simple distribution
(e.g. Gaussian distribution). The model is optimized by
minimizing the negative log maximum likelihood value
as in Equation 7. However, Maximum Likelihood Estima-
tion (MLE) is very sensitive to test set and train set that do
not meet the model assumptions. Meanwhile, as shown
in Figure 4 and as mentioned by Alexanderson [2], dif-
ferent distributions have some different features (Figure
4(a)(b)), which will influence the generalization ability of
the model and training process. For abnormal data points,
the corresponding Gaussian probability will be very low,
which will cause problems such as log(0) resulting in a
loss of null or huge loss volatility, which makes the train-
ing process unstable.

The general solution is to modify the learning rate or
use gradient clipping. However, choosing an appropriate
learning rate is very difficult. Furthermore, as proposed in
[2], using gradient clipping may pull it to a different op-
timal solution, and the accuracy of the model may not be

very good. Replacing the multivariate Gaussian distribu-
tion with the T-distribution, we can increase the general-
ization and training stability of the network without modi-
fying the learning rate or using gradient clipping. For data
that does not meet the model assumptions (i.e. both ends
of the curve as shown in Figure 4(c)), T-distribution is less
affected and less punished by outliers than the Gaussian
distribution. In general, our flow-based model is more
stable and can generalize better than other flow models
using T-distribution. We have depicted a generalization
comparison of flow-based Super-Resolution models and
ablation experiments about it in Section 5. The probabil-
ity density function of T-distribution for computing loss
in D dimensions is:

pt(x;µ,Σ, v) =Γ

(
v +D

2

)(
Γ
(v
2

))−1

|vπΣ|− 1
2

·
(
1 +

1

v
(x− µ)TΣ−1(x− µ)

)− v+D
2

,

(3)
where the scalar v > 0 is called the degrees of freedom,
and Γ (z) =

∫∞
0

tz−1e−tdt. Meanwhile, µ, Σ and D rep-
resent the mean, covariance, and the number of channel
dimensions of sample data x, respectively. When v > 0
tends to infinity, T-distribution becomes Normal distribu-
tion. We set it to 20 in our flow-based model.

3.5 Training Objectives

3.5.1 Preliminaries

Normalizing flow is an invertible model, which can learn
the mapping between an observed distribution and simple
distributions (e.g. a multivariate Gaussian z): z = f−1(x),
where f represents the flow-based model and x represents
the observed distribution. Since the network needs to be
able to compute the Jacobian matrix, each layer of it has to
be carefully designed, making Jacobian matrix very eas-
ily be computed. In addition, the performance of single
flow model is limited due to the reversible reason. In or-
der to ensure good network performance, multi-layer flow
stacking is required, leading to f = f1 ∗ f2 · · · ∗ fN .

x
f1←→ h1

f2←→ h2←→· · ·←→hN−1
fN←→ z, (4)



(a) Probability density (b) Penalty functions (c) Influence functions

Figure 4: The analysis of different distributions.

where hi represents the intermediate results produced by
the flow model and their process is reversible. Here z can
be any simple distribution. However, through extensive
experiments, we found that fitting T-distribution, called
Student-distribution, could get better results, which we
will discuss later in Section 5. According to the change
of variable formula and the chain rule, for a sample x, the
log-likelihood can be calculated as:

log p(x;θ) = log pz(z) +

N∑
i=1

log

∣∣∣∣det ∂fi
∂fi−1

∣∣∣∣ (5)

In general, we train flow-based models by optimizing the
negative log-maximum likelihood value − log p(x). For
the conditional flow model, the initial formula will be-
come the following.

px|e(x | e,θ) = pz
(
f−1
θ (x; e)

) ∣∣∣∣det ∂fθ∂x
(x; e)

∣∣∣∣ , (6)

where e represents the latent feature of low resolution pic-
ture and z = f−1

θ (x; e).
Finally, we optimize the flow-based model by taking

the negative log maximum likelihood. For our flow-based
model WDFSR, the formula will look like this:

L(θ;x, e) = − log px|e(x | e,θ)

= −
4∑

i=1

log pz
(
f−1
θ (yi; e)

)
−

4∑
i=1

log

∣∣∣∣det ∂fθ∂yi
(yi; e)

∣∣∣∣
(7)

where zi = f−1
θ (yi; e) corresponds to the mapped T-

distribution of the four branches and yi represents the
spectral information of x in wavelet domain.

3.5.2 Loss function

Flow-based models can be trained by optimizing only a
single negative log-likelihood loss, like this,

Lnll = −
4∑

i=1

log p(yi | e,θi). (8)

where yi represents the spectral information of x in
wavelet domain.

Training with this single Lnll can make the network
eventually convergent, but in the actual training process,
we found that the network converges very slowly and may
not reach the optimal value because of unsupervised rea-
sons. Because our network is capable of generating both
PSNR-oriented and Perception-oriented images, we can
improve some aspects of performance again according to
the loss design, such as the PSNR value. If we add L1
or L2 pixel losses to the original negative log-maximum
-likelihood Lnll, we can obtain a model that produces im-
ages with higher PSNR values. In our experiments, we
have found that using L1 pixel loss is more stable and can
achieve better results than using L2 pixel loss training.
Therefore, the training loss function can become:

LPSNR = λ1Lnll + λ2Lpixel (x,xτ=0) , (9)

where x represents the ground-truth super-resolution im-
age and xτ=0 is the super-resolution image generated by
the model by sampling the latent variable with temperate
τ=0 from T-distribution.

Similarly, if we want to get a model, which can gen-
erate better Perception-oriented images with better visual
quality, we add perceptual loss to its loss. Then, the for-



Table 1: Comparison with state-of-the-art SR methods on DIV2K test sets in 4× and 8× SR tasks, and Urban
datasets in 4× SR task. The 1st and the 2nd best performances are highlighted in red and blue, respectively. ↑ (↓)

denotes that, larger (smaller) values lead to better quality.

Datasets DIV2K Urban
4× 8× 4×

Type Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Bicubic 26.81 0.772 0.412 23.83 0.632 0.584 21.80 0.662 0.473

PSNR-oritened

EDSR[28] 28.98 0.833 0.269 - - - 25.32 0.803 0.208
DBPN[15] 29.18 0.838 0.266 - - - 24.86 0.789 0.223
RRDB[49] 29.44 0.844 0.254 25.50 0.695 0.419 25.48 0.809 0.196

RDN-LTE[22] 29.33 0.841 0.256 - - - 25.27 0.801 0.204
ESRT[36] 28.85 0.830 0.285 - - - 24.46 0.776 0.238

Perception-oriented

ESRGAN[49] 26.63 0.764 0.124 22.18 0.583 0.277 22.78 0.721 0.123
RankSRGAN[55] 26.55 0.750 0.128 - - - 23.05 0.721 0.135

SFT-GAN[48] 26.50 0.757 0.133 - - - 22.74 0.710 0.134
NatSR[46] 27.82 0.793 0.152 - - - 23.94 0.753 0.150
SPSR[38] 26.70 0.761 0.109 - - - 23.24 0.737 0.119

PSNR-Perception

SRFlow,τ = 0[37] 29.05 0.829 0.251 25.09 0.659 0.403 25.03 0.792 0.203
SRFlow,τ = 0.9[37] 27.09 0.756 0.120 23.04 0.573 0.272 23.65 0.732 0.133
HCFlow+,τ = 0[26] 29.25 0.83 0.212 - - - 25.03 0.780 0.210

HCFlow++,τ = 0.9[26] 26.61 0.743 0.111 - - - 23.03 0.711 0.124
(Ours)WDFSR,τ = 0 29.22 0.838 0.243 25.31 0.686 0.389 25.16 0.799 0.196

(Ours)WDFSR,τ = 0.8 28.36 0.809 0.134 24.76 0.647 0.380 24.43 0.769 0.136
(Ours)WDFSR+,τ = 0 29.39 0.846 0.254 25.52 0.697 0.419 25.36 0.813 0.199

(Ours)WDFSR++,τ = 0.9 27.72 0.789 0.110 24.13 0.642 0.268 24.19 0.769 0.117

mula will become:

LV isual = λ1Lnll+λ2Lpixel (x,xτ=0)+

λ3Lperceptual (x,xτ=τ0)
(10)

where xτ=τ0 represents the image biased towards visual
perception produced by sampling the latent variable with
temperate τ=τ0 from the T-distribution. We set τ0 to 0.9,
which can produce better Perception-oriented pictures.

4 Experiments

4.1 Settings
While our model can handle super-resolution tasks, it can
also support other image processing tasks, such as low-
light enhancement. We conduct extensive experiments
on the general image SR dataset, as well as some experi-
ments on the low-light enhancement dataset. For the SR
task, our model has three combinations of model losses:
Lnll ,Lnll + Lpixel and Lnll + Lpixel + Lpercep . They
are used for WDFSR, WDFSR+, and WDFSR++, respec-
tively. However, we only use Lnll for low-light enhance-
ment task. Because the main purpose of the low light en-

hancement task is to improve the overall brightness while
maintaining good image quality, it is sufficient to use Lnll
only.

For 4× super-resolution task, we set L and K to 3 and
7, respectively. Similarly, for 8× super-resolution, we set
L and K to 4 and 6, respectively. For the 8× SR task,
we need 3 times of down-sampling, i.e. L=4. But at the
same time, K is reduced to 6 in order to improve training
efficiency. As L becomes larger, the mapping ability of
the model does not decrease with K.

We use the part of the pretrained RRDB network as
an encoder to extract features, but fix it to not being up-
dated. For most image super-resolution models, they use
Flickr2K and DIV2K [1] as training sets and test sets to
compare model performance. Therefore, for fair compar-
ison, we also use these two datasets for training for 150k
iterators and testing. In order to prove that we still per-
form well on other datasets, we also tested on the Urban
[19] dataset.

We set the size of the crop block and the number of
mini-batches to 160×160 and 12, respectively. β1, β2

in Adam optimizer are set to 0.9, 0.99. For WDFSR,
our initial learning rate lr is 1×10−4 and is decayed by
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Figure 5: Visual results of general image SR (4×) on the DIV2K test set. The values of temperate τ of HCFlow++,
SRFlow, and WDFSR++ are all 0.9.

half at [0.4, 0.6, 0.70, 0.75, 0.8, 0.85, 0.9, 0.95], respec-
tively. On the basis of the pretrained WDFSR, we fine-
tune WDFSR+ using Lnll + Lpixel for about 30K itera-
tions and decay by half at [0.3, 0.4, 0.60, 0.75, 0.8, 0.85,
0.9, 0.95]. We set the initial learning rate lr= 1×10−5,
λ1 = 3 × 10−4 and λ2=25, respectively. For WDFSR++
using Lnll +Lpixel +Lpercep , we also fine-tune for 20k it-
erators based on WDFSR and set λ1 = 3× 10−4, λ2=15,
λ3=25 for 4× SR, respectively, but λ2=25, λ3=50 for 8×
SR. All SR images are evaluated with PSNR, SSIM and
Lpips in RGB space. LoL dataset [5] is often used for
training and testing performance in Low-light enhance-
ment tasks. Therefore, we also use it as our dataset for
comparison in Low-light enhancement tasks.

4.2 Results on Image SR

For the DIV2K dataset, we test on 4× and 8× models
and compare with CNN-based and flow-based models in-
cluding EDSR, ESRGAN, RDN-LTE, ESRT, SPSR, SFT-
GAN, NatSR, RRDB, RankSRGAN, HCFlow, and SR-

Flow. These quantitative results are shown in Table 1
and some visual results are compared in Figure 5. There
are three different types of models. One is the PSNR-
based model that can only produce images with high
PSNR values. One is the Perception-based model that can
only produce more biased texture images. They are one-
to-one deterministic mapping models that can generate
high-resolution images from low-resolution images. The
last one is an one-to-many mapping PSNR-Perception-
based model that can generate both PSNR-oriented and
Perception-oriented images.

WDFSR outperforms most PSNR-based models. Com-
pared to the best results of the PSNR-based model, i.e.
RRDB network, our model can achieve similar results to
the PSNR value but our visual quality is better than theirs.
Since RRDB is not a lightweight model, we decide to use
only a small part of it as our encoder to enhance our train-
ing speed, yet the features extracted from our model is
not as good as those from the complete RRDB model.
Although the results from our model is slightly lower in
PSNR than that of RRDB in a few cases, our results are



far superior to RRDB in terms of perception.

Table 2: Quantitative results comparison on the LOL
dataset in terms of PSNR, SSIM, and LPIPS. ↑ (↓)

denotes that, larger (smaller) values lead to better quality.
We take an average of 5 tests.

methods PSNR↑ SSIM↑ LPIPS↓

Zero-DCE[13] 14.86 0.56 0.335
LIME[14] 16.76 0.56 0.353

RetinexNet[6] 17.61 0.64 0.386
RUAS[32] 16.40 0.50 0.270
KinD[58] 20.87 0.83 0.159

KinD++[56] 21.80 0.83 0.164
(Ours)WDFSRτ = 0.65 22.01 0.84 0.156

We also achieve good results compared with
Perception-based models and performs better than
other PSNR-Perception-based models. In the visual
comparison, we found that our model could better repro-
duce the detailed textures more realistically. As shown
in Table 1, our results are better than other flow-based
models on the Urban dataset and also outperform most
super-resolution methods, which shows that the model
can obtain better results by learning Normalizing flow in
the wavelet domain. There are more detailed discussions
about generating different styles of an image by sam-
pling different latent variate from target distribution in
Appendix A.

4.3 Results on Low-light enhancement
Low-light enhancement task is to process images with
insufficient lighting to improve visual quality. Our
model is trained on LoL dataset and quantitatively
and visually compare with some current methods
[13][14][20][6][32][58][56]. As shown in Figure 6, our
model achieves a good visual effect in Low-light enhance-
ment application task. From Table 2, it can be analyzed
that our model is the best in all quantitative comparisons,
meaning that we have outperformed most low-light en-
hanced methods, proving that our model can handle such
low-light enhanced image generation tasks. Due to space
reasons, there will be more comparison of visual results
and application of changing the light intensity of pictures

by different sampling conditions in Appendix C.

5 Ablation Study
Before we get into the discussion, it is worth mentioning
that we average the results of five tests for each model
during comparisons of ablation experiments.

5.1 Wavelet domain vs RGB domain
Since Harr transform can generate 4 different information
in the frequency domain, we design 4 branches that can
correspond one-to-one. To prove that using the wavelet
domain can indeed improve the effect, we compare the
model in the wavelet domain with the model in the RGB
domain. We directly use the Squeeze layer, similar to
wavelet transform, to obtain 4 spectral information in the
RGB domain. As shown in Table 3, in PSNR, SSIM, and
LPIPS, the result of processing in the wavelet domain ex-
ceeds that in the RGB domain.

As shown in Figure 7, using the information in the
RGB domain cannot give full play to the power genera-
tion capability of the flow model. There is little difference
between the two generated results for images with sim-
ple textures (e.g. Figure 7(c)). But for complex texture
modules, the images they produce will have uneven color
patches (e.g. Figure 7(a)(b)(d)). We reason that Normal-
izing flow cannot adequately learn its distribution. How-
ever, four different signal information in pictures in the
wavelet domain can be highlighted, Normalizing flow can
better learn relatively regular distributions. It is proved
that in some cases, processing task in the wavelet domain
is better than directly processing them in the RGB do-
main.

Table 3: Quantitative results comparison between
Wavelet domain and RGB domain in DIV2K test set

(4×).

WDFSRτ domain PSNR↑ SSIM↑ LPIPS↓

0 Wavelet 29.22 0.838 0.243
0.8 Wavelet 28.36 0.809 0.134
0 RGB 29.21 0.838 0.257

0.8 RGB 28.14 0.801 0.206
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Figure 6: Visual results comparison with state-of-the-art low-light image enhancement methods on LOL dataset. The
normally exposed image generated by our method has less noise and artifact, and better colorfulness.

(a) (b) (c) (d)

Figure 7: Visual results comparison of wavelet domain
and RGB domain with τ=0.8. The first, second, and third
rows are the original image, the important detail of part

of images based on RGB domain and those based on
wavelet domain, respectively.

5.2 Refinement layer
The Refinement layer can automatically learn to
strengthen useful features and weaken useless features to
improve the performance of our method. We take CBAM
as the main attention module in the Refinement layer,
which can improve the performance compared to not us-
ing CBAM. The results are shown in Table 4.

It is obvious that our model works better when the Re-
finement layer is included. Specifically, when we sample
variate with temperate τ = 0 from T-distribution, we ob-
tain better results in terms of PSNR and SSIM than using
our model without the Refinement layer. Similarly, when
the temperate τ = 0.8, our results obtain a better LPIPS
than using our model without the Refinement layer.

Table 4: Quantitative comparison between with
Refinement layer and without Refinement layer in

DIV2K test set (4×).

WDFSR,τ Refinement layer PSNR↑ SSIM↑ LPIPS↓

0 ✓ 29.22 0.838 0.243
0.8 ✓ 28.36 0.809 0.134
0 29.10 0.819 0.248

0.8 28.24 0.789 0.144

5.3 T-distribution vs Gaussian distribution
We demonstrate through ablation experiments that when
the model uses both T-distribution and QR layers, the re-



Table 5: Quantitative results comparison of test generalization of flow models on other datasets (4×). Evaluation
indicators are PSNR, SSIM, and LPIPS in order. Red represents the best result.

- HCFlow+,τ = 0 SRFlow,τ = 0 WDFSR+,τ = 0(ours)

BSDS100 26.39/0.718/0.369 26.23/0.734/0.363 26.50/0.743/0.358
Set5 30.56/0.871/0.175 30.20/0.874/0.174 30.59/0.883/0.169

Set14 26.99/0.751/0.281 26.61/0.762/0.272 26.85/0.773/0.273
T91 29.36/0.824/0.210 29.11/0.843/0.204 29.35/0.845/0.194

General100 30.03/0.850/0.173 29.80/0.863/0.173 30.16/0.867/0.166

sults become better and the training process is more sta-
ble. As shown in Figure 8, when the Gaussian distribution
is used as the target distribution without gradient clipping,
the training loss fluctuates greatly and gets NULL values
leading to stop training at about 58k iterators. To avoid
this, we use gradient clipping.

Although their training loss is relatively stable after
clipping whether using QR layer or 1×1 convolution, they
cannot reach the training loss value of the model with T-
distribution, which indicates that the model does not reach
the optimal point. As shown in Table 6, the model with
T-distribution and QR layer can achieve the best results at
τ=0 and τ=0.8. Although the model using the Gaussian
distribution performs slightly worse than the model com-
bining T distribution at τ=0, the model using the Gaussian
distribution performs extremely poorly at τ=0.8, which
shows that the model using the Gaussian distribution is
unstable and has poor generalization.

Despite Gaussian distribution used as the target distri-
bution is unstable, as mentioned earlier in section 3, rela-
tively good results can be obtained using a QR layer that
is more stable than a model using a 1×1 convolution.
As shown in Table 5, we quantitatively compare different
flow-based models’ capabilities in Set14 [19], Set5 [3],
BSD100 [39], General100 [47], and T91 [47] datasets,
respectively. Our model with T-distribution generalizes
better than other flow-based models with Gaussian distri-
bution.

6 Conclusion

Combining Normalizing flow with wavelet domain is a
promising solution to improve image generation tasks.

Figure 8: Visual results comparison of Gaussian
distribution and T-distribution about training loss

stability.

We propose a super-resolution model based on Normal-
izing flow with the wavelet domain, which can generate
different styles according to different sampling conditions
and achieve better results than most previous networks.
We are the first to propose combining the flow model with
the wavelet domain for image generation tasks (e.g. im-
age super-resolution and image Low-light enhancement).
In addition, we propose a training proposal to help some
flow-based models stabilize training and increase gener-
alization. We also propose a Refinement layer to help to
refine features to aid training. Compared with the PSNR-
based models and the Perception-based models, we can
produce a variety of styles and better quality images than
them. Compared with other flow-based super-resolution
models, our model training is more stable, with stronger
performance and better generalization. Meanwhile, we
also demonstrate through experiments that our model can
also achieve satisfactory performance compared to state-



Table 6: Quantitative results comparison between T-distribution and Gaussian distribution in DIV2K test set (4×).
N-distribution represents the Normal Distribution and uses the gradient clipping to avoid the NULL problem.

WDFSR,τ T-distribution N-distribution 1×1 convolution QR PSNR↑ SSIM↑ LPIPS↓

0 ✓ ✓ 29.22 0.838 0.243
0.8 ✓ ✓ 28.36 0.809 0.134
0 ✓ ✓ 29.21 0.836 0.246

0.8 ✓ ✓ 27.92 0.781 0.149
0 ✓ ✓ 29.14 0.836 0.251

0.8 ✓ ✓ 20.93 0.548 0.410
0 ✓ ✓ 29.13 0.836 0.258

0.8 ✓ ✓ 17.64 0.435 0.539

of-the-art Low-light enhancement models.
The disadvantage of our method is that WDFSR is not

lightweight compared to other models due to its four inde-
pendent RNF modules. However, this design can indeed
improve the expression ability of the model, yet we will
still try to address the insufficient lightweight problem. In
future work, we will explore applications of our network
to other generative tasks such as rain removal, noise re-
moval, and moiré removal.

A Some details about architectural
design

Here we only introduce some important small modules,
ignoring some similar modules in the flow-based model,
such as Affine layer [7], Squeeze [21], Actnorm [37], etc.

A.1 Split layer
In our model, the split layer mainly deals with the chan-
nel dimension of features, allowing half of the feature di-
mensions to continue, allowing the model to learn and
making the other half of the feature dimensions obey T-
distribution, which cannot only reduce the training time
but also increase the model performance to a certain ex-
tent.

Xhalf ,M = SPLIT (X),M ∼ T (ν) (11)

where Xhalf represents the features left behind and M
represents the features that the other half needs to obey a
T-distribution with degrees of freedom ν.

A.2 Condition affine layers
Through experiments, we found that the attention mecha-
nism can improve the network ability very well. There-
fore our condition layer is similar to SRFlow but fine-
tunes the obtained features by taking advantage of the Re-
finement layer.

hn
A, h

n
B = S(hn)

hn+1
A = hn

A

hn+1
B = exp(Refined(fθ,s(h

n
A))) · hn

B

+Refined(fθ,b(h
n
A))

hn+1 = Concat(hn+1
A , hn+1

B )

S represents a method for dividing the feature into even
halves according to the channel dimension. Refined
stands for the Refinement layer and f represents a sim-
ple neural network. Concat represents combining two
features by channel dimension. hn+1 can be obtained
through the same flow module from hn described in Sec-
tion 3.

B Different styles of super-
resolution images

Since our model is flow-based, it can accurately learn
from complex distributions (image data) to simple dis-
tributions (T-distribution). When we want to get super-
resolution images, we need to randomly sample variate
with temperate τ from T-distribution, which means that
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Figure 9: Visual results comparison with state-of-the-art low-light image enhancement methods on LOL dataset. The
normally exposed image generated by our method has less noise and artifact, and better colorfulness.

GT τ=0 τ=0.3 τ=0.6 τ=0.9

Figure 10: Changes in the result of WDFSR 4× SR by sampling latent variate t with different Temperate on DIV2K
validation datasets.



our model has given one-to-many mappings from low-
resolution images to super-resolution images. Although
T-distribution is our target, in practice, we find that sam-
pling from the normal distribution is slightly more effec-
tive than sampling from the T-distribution.

As shown in Figure 10, we can sample latent variables
with different temperate τ called standard deviation to ob-
tain different styles of images. When the standard devia-
tion τ is close to 0, the image tends to be PSNR-oriented,
having a similar blurring effect. When the standard de-
viation τ is close to 1, the image tends to be Perception-
oriented in that the texture is clearer and the edges are
sharper.

C Low-light Enhancement

For the training setting of our model, we set L, K, and
batch size to 3, 8, and 10, respectively. We train for
100k iterators.Since the resolutions of our low-light pic-
tures and high-light pictures are consistent, we modify the
up-sampling module in the encoder to a down-sampling
module, and other most settings are consistent with the
Super-Resolution task. Here we show more visual results
with other augmented models. Meanwhile, our model
can modify the light intensity of images by modifying la-
tent variables Z by sampling from T-distribution: Z=Z+v,
where v is in the range of [-0.2,-0.1,0,0.1,0.2].

As shown in Figure 9, our model can produce better en-
hancement effects than other models in visual perception.
Also, as shown in Figure 11, we demonstrate applying our
model to modify the light intensity of three different im-
ages. It is obvious that our model can gradually increase
image brightness by reducing the v value, while maintain-
ing image visual quality.
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