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Abstract

Neuron tracing, also known as neuron reconstruc-
tion, is an essential step in investigating the morphol-
ogy of neuronal circuits and mechanisms of the brain.
Since the ultra-high throughput of optical microscopy
(OM) imaging leads to images of multiple gigabytes or
even terabytes, it takes tens of hours for the state-of-the-
art technique to generate a neuron reconstruction from
a whole mouse brain OM image. We present a novel
framework, InstantTrace, that enables parallel neuron
tracing on GPUs, reaching a notable speed boost of more
than 20× against state-of-the-art methods with compa-
rable reconstruction quality on the BigNeuron dataset.
We address two methods to achieve the speed advance.
Firstly, the proposed framework takes advantage of the
sparse feature and tree structure of the neuron image
that serial tracing methods cannot fully utilize. Sec-
ondly, all stages of the neuron tracing pipeline, including
the initial reconstruction stage that have not been par-
allelized in the past, are executed on GPU using care-
fully designed parallel algorithms. Furthermore, to in-
vestigate the applicability and robustness of the Instant-
Trace framework, a test on a whole mouse brain OM
Image is conducted, and a preliminary neuron recon-
struction of the whole brain is finished within 1 hour on
a single GPU. The framework would greatly improve the
efficiency of neuron tracing process and allow neuron
image experts to get a preliminary reconstruction result
instantly before involving manually verification and re-
finement.

Keywords: Neuron tracing, neuron visualization, im-
age processing, GPU acceleration

1. Introduction

The rapid development of optical microscopy (OM)
makes it possible to generate nano-scale neuron images
of the brain nervous system. The study of these im-
ages is important to the research and treatment of cen-
tral nervous system (CNS) diseases such as Parkinsons
and Alzheimers[12]. New techniques and tools for
modeling[23, 7], visualization[3, 22, 15], and analysis[24]
of these images are conducted.

Neuron tracing, also known as neuron reconstruction, is
an essential step in investigating the morphology of neu-
ronal circuits and mechanisms of the brain. Traced neuron
branches save the spatial and topological information of the
OM image, making it easier to investigate the connection
patterns and topology relations of the brain nervous system.
Typically, the reconstruction process consists of (i) an auto-
mated stage to deliver a preliminary tracing result, and (ii)
a manual stage that the neuron imaging experts verify and
correct the tracing result[20, 9, 8, 1].

In recent years, researchers have exerted efforts to de-
velop effective tracing methods. For example, the APP[17]
and APP2[26] methods employ fast marching framework to
find the minimal distance route from the neuron soma (i.e.,
the center of the cell). Rivulet[13] and Rivulet2[14] utilize
the technique of back-tracing from leaf to soma, lowering
the probability of generating over-reconstruction results.
FMST[28] combines the fast marching framework with the
minimum spanning tree algorithm to optimize the topol-
ogy of reconstructed neuron circuits. NeuroGPS-Tree[19]
adapts the constrained principle curve method to get a neu-
ron forest and then breaks them into separate neuron trees.
Tremap[30] utilizes the fast marching method in the 2D pro-
jection space and makes reverse mapping back into the orig-
inal image space to get the final result. SmartTracing[4] in-
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vokes a user-provided existing tracing method to generate
an initial result and uses an SVM classifier to predict the
foreground pixels according to the clue presented by this
initial reconstruction.

Most of these conventional automated neuron tracing
methods can be divided into three stages: preprocessing,
initial reconstruction and refining, as listed in Table 1. First,
some necessary transforms are introduced in the preprocess-
ing stage to enhance the image contrast. Then, initial recon-
structions considering basic features of the image are per-
formed though they are imperfect (i.e., over-reconstruction
or under-reconstruction). Finally, delicate refinements us-
ing more advanced techniques and well-designed handcraft
features are conducted for high-quality tracing results.

Researchers also developed some deep-learning-based
methods for automated neuron reconstruction in recent
years. The UltraNPR [29] method utilizes a progres-
sive learning framework that integrates conventional trac-
ing methods and deep segmentation networks for neuron
population reconstruction. The DeepBranch [21] method
uses multi-scale multi-view convolutional neural networks
to precisely detect the neuron branch points. Another re-
search [11] combines 3D U-Net architecture and atrous con-
volution to tackle the tangled neuron images. The SPE-
DNR [5] method uses a two-headed 2D neuron network for
tracing and foreground classification, to simulate 3D neuron
reconstruction. MP-NRGAN [6] utilizes a generative adver-
sarial network that takes pseudo-labels from conventional
tracing methods to make synthetic data and does iterative
training from these data. SGSNet [27] is a structure-guided
segmentation framework, which is robust when it meets in-
tense background noises.

Due to the rapid development of neuroimaging, the data
size generated by the imaging devices poses severe chal-
lenges for the neuron tracing algorithms. For example, the
data size of a whole mouse brain image will reach multi-
ple gigabytes or even terabytes, whereas the current neuron
tracing methods cannot handle such vast data volume effi-
ciently. To our knowledge, none of the automated neuron
tracing methods can proceed with neuron reconstruction in
the same order of magnitude as data loading time, and the
neuron imaging experts have to wait a long time after load-
ing the block before making precise corrections.

In this paper, we propose an efficient parallel neuron
tracing framework (InstantTrace) on GPU. First, the pro-
posed parallel framework takes advantage of essential fea-
tures of the neuron image that current serial tracing algo-
rithms always overlook, resulting in significant speed ad-
vance. On the one hand, parallel stream compaction is in-
troduced, and the sparsity of neuron image is fully utilized,
while conventional tracing methods take the complete im-
age and suffer from memory limitations. On the other hand,
due to the tree structure of the neuron image, the branches

leading to different directions are independent to a certain
extent. While conventional methods deal with only one neu-
ron segment at a time, the proposed framework conducts
parallel tracing and branch pruning among the group of in-
dependent segments, improving the efficiency of neuron re-
construction without losing quality.

Second, all stages of the conventional neuron tracing
pipeline, i.e., preprocessing, initial reconstruction, and re-
fining, are mapped to GPU using carefully designed paral-
lel algorithms. While the preprocessing and refining stages
have been successfully implemented on GPU in the past,
the initial reconstruction stage in the conventional tracing
methods depend on strictly serial data structures such as
priority queues [17, 26], which are difficult to parallelize.
To tackle this problem, as shown in Figure 1, two more
stages are introduced in the proposed InstantTrace frame-
work compared to the conventional tracers, namely seeds
generating and topology merging, to parallelize the initial
reconstruction stage using a divide-and-conquer strategy. A
bunch of candidate seed points are randomly generated in
the seeds generating stage, and then traced independently
in parallel in the initial reconstruction stage. When the pro-
cessing is finished among the seeds, the algorithm will get a
bundle of disconnected neuron branches, which will finally
be connected in the topological merging stage to yield the
input for the refining stage.

Different baseline methods can be integrated into the In-
stantTrace framework to achieve parallel neuron tracing.
According to the literature [28, 5], the APP2 method is
the fastest among the conventional methods. What’s more,
the current deep-learning-based methods concentrate on the
precision of the reconstruction and will take more than a
minute to process a single image block [27, 5], which are
slower than APP2. Therefore, we use the APP2 method
(InstantTrace-APP2) in our experiments. The performance
and reconstruction quality of InstantTrace-APP2 are veri-
fied on several challenging datasets.

The major contributions of this work are as follows:
1. We propose an efficient parallel neuron tracing frame-

work (InstantTrace) on GPU. The framework utilizes sev-
eral essential features of the neuron image that serial trac-
ing methods overlook, achieving significant speed advance.
Firstly, the proposed InstantTrace framework takes advan-
tage of the sparse feature of the neuron image and conducts
parallel stream compaction, which erases the background
pixels and significantly reduces memory usage. Secondly,
the framework exploits the independency within the tree
structure of the neuron. When a group of segments is lo-
cated on nonadjacent neuron branches, tracing and refin-
ing of these segments are processed in parallel, making the
framework notably more efficient than serial methods.

2. We add two more stages, i.e., seed generating and
topology merging, to the proposed framework to make the



Method Preprocessing Initial Reconstruction Refining
APP1/APP2 [17, 26] Greyscale distance transform Fast marching Pruning with cover radius
Rivulet/Rivulet2 [13, 14] Greyscale distance transform Back-tracing from leaf Branch cut
FMST [28] Thresholding Fast marching Pruning with spanning tree
NeuroGPS-Tree [19] Detect soma Constrained principle curve Breaking the trees
TReMap [30] Projection to 2D faces Fast marching Reverse mapping
SmartTracing [4] Together with its base tracer Together with its base tracer Removing background

Table 1. The conventional neuron tracing methods and their three stages.

Figure 1. The working pipeline of the InstantTrace framework.

serial initial reconstruction process parallelized. The seeds
generating stage generates a bunch of candidate seed points,
then tracing is started from different seeds in parallel to gen-
erate neuron segments. When all of the tracing processes
are finished, the topological merging stage will merge these
disconnected neuron segments into a complete neuron tree,
and the total workload of initial reconstruction is handled
in this divide-and-conquer progress. Solving this problem,
all stages of the conventional neuron tracing pipeline, i.e.,
preprocessing, initial reconstruction and refining, are suc-
cessfully mapped to GPU using carefully designed parallel
algorithms.

3. The speed performance and the reconstruction quality
of the proposed parallel tracing framework are verified on
the BigNeuron [16] dataset. Moreover, to demonstrate the
adaptivity of the InstantTrace framework, a whole mouse
brain OM image, split into 25,080 blocks, with a total size
of 4 terabytes is introduced. On the BigNeuron dataset, the
proposed framework reached a speed advance of 20× com-
pared to the APP2 method, with comparable reconstruc-
tion quality. In the whole mouse brain test, the proposed
framework made a preliminary neuron reconstruction of the

whole brain within 1 hour on a single GPU. This framework
significantly enhances the efficiency of automated neuron
reconstruction, and is helpful for neuron imaging experts to
verify and annotate the neuronal circuits.

2. Methods

2.1. Preprocessing

The preprocessing stage takes the original image as in-
put and the enhanced image as output. As for InstantTrace-
APP2, the preprocessing stage is composed of stream com-
paction and grayscale distance transform (GWDT). The
stream compaction process reduces memory usage. The
grayscale distance transform process increases the intensity
in the center of neuron branches and makes the tracing re-
sult closer to the neuron skeleton (i.e., the center of the neu-
ron branch).

Stream Compaction. The parallel stream compaction
process[2] throws the background pixels and rearranges the
foreground pixels according to a specific threshold. In this
process, locations of the foreground pixels are logged, and
these pixels form a new image array. The size of this array



is significantly small compared to the original image, so the
GPU memory usage of the subsequent processes is reduced.
A bijection map is generated between the original location
and the current index of each foreground pixel so that the
spatial relationship of the pixels remains in this compressed
form.

Moreover, due to the integrated thresholding process in
stream compaction, the background noises are erased, and
the global contrast of the image is enhanced. The proposed
method takes the same thresholding configuration as serial
APP2:

t = µ+ 0.5σ (1)

where t denotes the threshold, µ and σ denote the mean
value and standard variance of the original image.

GrayScale Distance Transform. The grayscale dis-
tance transform is an advanced preprocessing technique de-
fined in the APP2 program [26] to increase the intensity in
the center of neuron branches and decrease the intensity
near the boundary. This image enhancement process will
make the tracing algorithm go through the branches’ center
line and make the tracing result more accurate.

The GWDT process is converted into the fast marching
problem in the APP2 method. The edge distance between
consecutive image pixel vertices is defined as

e(x, y) = ||x− y|| · I(y) (2)

where x is the current pixel, y is the neighbor, and
I(y) denotes the intensity value of y. In the fast marching
method, the initial distance value is set as

d(x) =

{
I(x) ifx ∈ background
∞ ifx /∈ background

(3)

The distance values are updated iteratively using the fol-
lowing formula:

d(x) = min{(d(y)+e(y, x)}, y ∈ {neighbors of x} (4)

After the iteration ends, the intensity-weighted distances
to the background are measured for each pixel in the image.
The border pixels of the neuron branches are of a low dis-
tance value, while the center pixels of the branches will get
a relatively high value. Finally, the intensity of the whole
image is normalized, and the contrast of the neuron branch
skeleton will be enhanced.

In this study, the parallel implementation of GWDT is
based on the parallel fast marching method, which will be
described in detail in the following section. In this situa-
tion, all of the background pixels on the border of neuron
branches are added to a startup tracing frontier set, and the
frontier will march one pixel towards the neuron center line
in each iteration step, as shown in Figure 2. The iteration

Figure 2. Diagram of the GWDT process. The iteration starts
from the border of the neuron, and the frontier marches one pixel
per step towards the neuron center. After the iteration, the image
is normalized according to the weighted distance from the initial
frontier, thus the intensity of neuron center is enhanced.

process tends to end in a few steps because the width of the
neuron branches is minimal compared to their length.

2.2. Initial Reconstruction

The conventional tracing methods for initial reconstruc-
tion such as the fast marching method and constrained prin-
ciple curve method always have serial nature. For exam-
ple, the fast marching method in APP2 adopts the priority
queue, an extremely-serialized data structure. It is difficult
to parallelize this serial data structure, as the race condition
may mislead the correct item added into the priority queue,
and the degree of parallelism will be low.

In InstantTrace-APP2, other than parallelizing the data
structure, we parallelize the algorithm. First, a bunch of
seeds is randomly generated, and then the fast marching
method is started from every seed in parallel. The optimal
item in the priority queue is turned into an optimal fron-
tier set, which vastly enlarges the parallelism in the initial
reconstruction stage. After tracing, the results generated by
different seeds are merged topologically to make a complete
initial reconstruction.

Seed Generating. We demonstrate two principles to
generate the seeds. First, since increasing the number of
seeds enhances efficiency but brings more memory costs,
the number of seeds should compromise parallelism and re-
source occupancy. Second, the clustered seeds would gen-
erate clustered tracing results, which are hard to tell apart
in topology. Therefore, the seeds should not interfere with
each other.

Simple sampling methods are unable to meet these prin-
ciples. For example, the naı̈ve random sampling method
tends to suffer from the seed cluster problem. Besides, the
uniform sampling method is not optimal because the regu-
lar grid points do not fit the sparse neuron branch well, and
most of the generated points would be invalid, which is a
waste of computation resources. In the proposed method,
we use the adaptive parallel Poisson disk sampling [25] for
generating seeds. The Poisson disk sampling will generate



seeds at a minimum distance r from each other. By setting
the minimum distance, the proposed method could adjust
the number of seeds according to the memory bound and
meet the requirement of parallelism without interference.
What’s more, the adaptive sampling method could take the
greyscale intensity as a guide. More sampling points will
fall on the neuron branches, and fewer points will be dis-
carded.

Fast Marching. In InstantTrace-APP2, the fast march-
ing method is parallelized to generate the initial neuron con-
struction. Our GPU implementation is described in Algo-
rithm 1. The algorithm starts from the seed group S gen-
erated by the previous stage and adapts the fast marching
method iteratively. Within the iteration process, a tracing
frontier set F is maintained, other than a single value with
max priority in the serial fast marching method. In the be-
ginning, the seed group becomes the initial frontier. The
iteration process is composed of two steps, namely, extend
and update. In the extend step, every element f in the fron-
tier set is popped out, and its neighbors are visited. The
algorithm tries to update the minimum distance from the
seeds to the neighbors. Note that a pixel might be updated
by more than one frontier element in a run, so this update
process is done atomically in a temporary distance array,
preventing race conditions. After that, the modified neigh-
bors try to update their minimal distances by comparing
them with the distance in the temporary array. If a pixel re-
freshes its minimal distance, it will be put into the frontier
set for the next iteration. The iteration continues until the
frontier set is empty, implying that the whole image space
is visited.

Algorithm 1 Parallel Fast Marching of InstantTrace-APP2
Require: The seed array, S

1: Build the sweep frontier F , F = S
2: Build the distance array D, D[i] = 0 if i ∈ S, otherwise

D[i] = ∞
3: Build the temporary frontier and distance array F ′, D′

4: WHILE F is not empty
5: FOR Fi ∈ F Parallel
6: Invoke CUDA EXTEND KERNEL(F, F ′, D,D′)
7: FOR F ′

j ∈ F ′ Parallel
8: Invoke CUDA UPDATE KERNEL(F ′, D,D′)
9: F = F ′

10: END WHILE

Topology Merging. Saving complete neuron informa-
tion is vital in neuroscience. However, the parallel fast
marching process is started from multiple seeds, and the
tracing result tends to be topologically disconnected. To
solve the challenge, the InstantTrace framework introduces
the topology merging stage, which detects the intersections
between the branches extended from different seeds and

Algorithm 2 CUDA EXTEND KERNEL(F, F ′, D,D′)

Require: The sweep frontier F , the distance array D, the
temporary sweep frontier F ′, and the temporary dis-
tance array D′

1: tid = thread index
2: index = F [tid]
3: FOR direction ∈ (0, 26)
4: neighbor = getNeighbor(index, direction)
5: delta = getLength(index, neighbor)
6: temp = D[index] + delta
7: BEGIN ATOMIC
8: IF (temp < D′[neighbor])
9: D′[neighbor] = temp

10: Put neighbor into F ′

11: END IF
12: END ATOMIC
13: END FOR

Algorithm 3 CUDA UPDATE KERNEL(F ′, D,D′)

Require: The temporary sweep frontier F ′, the distance ar-
ray D, and the temporary distance array D′

1: tid = thread index
2: index = F ′[tid]
3: D[index] = D′[index]

merges the disconnected parts into a complete neuron, as
shown in Figure 3. The intersections are detected from the
update information in the parallel fast marching process.
For each pixel, if its minimal distance has been updated by
more than one seed during the iteration process, it is likely
to be located on the border of two different branches and
marked as candidates of intersects. If the last and the sec-
ond last updater of this pixel come from different seeds, it
is considered a real intersect.

After the intersect detection, we keep a disjoint set to
merge the branches. In the beginning, each branch segment
is regarded as an individual cluster, and the radius of seed
points is calculated for the merging process. The radius is
calculated as:

ri = maxr(
Bi,r

Ai,r
< 0.001) (5)

Ai,r =
4

3
πr3 (6)

Bi,r = Σjδ(I(j) = 0),∀j ∈ Ωr(i) (7)

where Ai,r denotes the spherical coverage area of the ra-
dius, Bi,r denotes the number of background pixels in this
area, δ denotes the sign function, and Ωr denotes the spher-
ical neighborhood of radius r. The larger radius means the



Figure 3. Diagram of neuron segments before and after topology
merging. The red branch is generated from the neuron center (seed
1), and the green and blue branches are generated from seeds 2
and 3. The arrowheads mark the tracing direction of the branches.
After merging, a complete neuron is traced.

seed has more foreground pixels in the neighborhood and
more importance in reconstruction.

When two individual intersected branches are merged,
they will be regarded as a merged cluster, and the one with
a larger seed radius becomes the leader of the cluster. In this
cluster, the seed of the leader is considered the new tracing
root, and the tracing directions will be reset from this root.
When merging two intersected clusters, the algorithm finds
the leaders of them, and the leader with a larger seed radius
becomes the new leader of the merged cluster. In this stage,
the neuron center has the largest seed radius and tends to be
the final root of the complete neuron tree.

2.3. Refining

In the refining stage of InstantTrace-APP2, branch prun-
ing is conducted in parallel. While the serial APP2 program
checks branches once a time, a topological sort is intro-
duced in InstantTrace-APP2. In this sorting process, a de-
pendency table is built according to the tree structure in the
tracing results, and each child branch depends on the par-
ent branch. In one iteration, the algorithm solves all of the
current independent branches in parallel and updates the de-
pendency table (i.e., removing the dependency of checked
branches) before the next iteration starts.

The proposed method calculates the overall cover ratio
when considering whether to keep or prune a branch seg-
ment. Every point i in segment S has a radius ri. Within
the spherical coverage area of the radius, the numbers of
deleted pixels di are calculated. Then, the overall volume
of the radius spheres R and the total number of deleted pix-
els D are calculated as follows:

D = Σidi,∀i ∈ S (8)

R = Σi(
4

3
πr3i ),∀i ∈ S (9)

Figure 4. The different choices of parallelism in covering the seg-
ment. (a) The different cover radius of points in a segment. (b)
Using the large block size in the thread block causes a waste of
computation. (c) Using the small block size in the thread block
dramatically increases the number of iterations. (d) Using the dy-
namic parallelism feature, the block size in small and large areas
are changed adaptively.

The cover ratio RT is calculated by RT = D/R. When
RT is larger than a specific threshold (for example, 0.5),
this branch segment is regarded as covered by other seg-
ments and pruned. Otherwise, this segment is kept, and the
coverage area of the segment is deleted in the image.

In the parallel refining process, both coarse-grained and
fine-grained parallelism is conducted. Firstly, due to the
topological sort, segments on different neuron branches are
independent and can be processed concurrently. Secondly,
when dealing with one segment, the coverage area of the
pixels in the segment is summed up, as shown in Figure 4
(a), and the total workload is divided into parallel thread
blocks. As shown in Figure 4 (b, c), using a fixed large
block size in the thread block causes waste of computation,
while using a fixed small block size will dramatically in-
crease the number of iterations. The proposed method uti-
lizes the CUDA dynamic parallelism feature [10] to make
each point in the segment start threads according to its ra-
dius adaptively other than using a fixed thread block size, as
shown in Figure 4 (d). Therefore, the load balance is kept,
and there is no waste of computation. After pruning, the
final result of the neuron tracing is reached.

3. Results and discussion

3.1. Reconstruction on the BigNeuron dataset

The BigNeuron dataset includes many neuron images
under the optical lens, together with the ground truth of
the reconstructions. To validate the working efficiency and
quality of the InstantTrace framework, considering the gen-
eralization of different species, we pick 50 out of 166 neu-
ron constructions, consisting of chick, frog, zebrafish, fly,
mouse, fruitfly, and human neurons. The main objective is



Figure 5. The speed up of the proposed InstantTrace framework
against the serial APP2 program on the BigNeuron dataset.

extracting the central neuron cell in sight and erasing the
cluttering background. The APP2 and the InstantTrace-
APP2 methods are tested in the experiment, and the effi-
ciency and reconstruction quality are measured. The Vaa3d
software (https://github.com/Vaa3D) carries the APP2 al-
gorithm implementation, and the proposed method is im-
plemented with the Nvidia CUDA toolkit. The source
code of the proposed neuron tracing framework and the ex-
ample image blocks are available under the repository of
(https://github.com/jifaley/InstantTrace).

Speed and Quality Results. We have implemented and
tested the InstantTrace framework on an Intel(R) Core(TM)
i9-10900KF CPU @ 3.70GHz processor with 64GB RAM,
and an NVIDIA GeForce RTX 3090 (24GB) graphics card.

As shown in Figure 5, the proposed method delivers the
reconstruction result immediately, while APP2 uses more
than 5 seconds to reconstruct the neuron. The InstantTrace-
APP2 method gets a speed up of 5-50× and an average
speed up of more than 20× in the testing data.

What’s more, the reconstruction quality is measured us-
ing five indicators defined by the APP2 work: ESA12,
ESA21, ESA MEAN, DSA, and PDS, as listed in Table
2. These indicators are also measured by the neuron dis-
tance plugin in the Vaa3d software. As shown in Table
3, the measurement shows the InstantTrace-APP2 method
reaches comparable reconstruction quality with the serial
APP2 method.

Figure 6 presents 7 examples from the 50 samples to il-
lustrate the reconstruction quality of the two methods. In
column (a) and column (b), the InstantTrace-APP2 method
tends to trace all of the neuron branches due to the seed gen-
erating stage, while the serial APP2 algorithm only traces
the neuron in the central location. Note that the ground
truth of the BigNeuron dataset only consists of a single neu-
ron, so only the largest tree in the reconstruction forest of
InstantTrace-APP2 is used for quality comparison in this
test. As for column (c), APP2 and InstantTrace-APP2 fail
to erase the high-intensity noise around the soma. For col-
umn (d), both methods fail to pick out the neighboring neu-
ron cell. In columns (e) to (g), both methods succeed in

making a good reconstruction. In summary, the APP2 and
the InstantTrace-APP2 methods show visually comparable
results among the whole dataset.

Performance Breakdown. Figure 7 shows the running
time composition of each tracing stage on the BigNeuron
dataset. Note that the seed generating and topology merg-
ing stages are not case sensitive. Firstly, the computational
cost of seed generating is only relevant to the density of
the sampling grid, which is a fixed parameter. Secondly,
since the topology merging stage always ends in less than
20 microseconds, its contribution to the total time cost can
be neglected. In contrast, preprocessing, initial reconstruc-
tion, and refining stages account for a large portion of the
reconstruction time in our framework, and their time cost
is positively associated with the complexity of neuron im-
age. What’s more, though the GPU warmup cost is around
140ms despite the kind of the neuron, it can be hidden by
handling image blocks continually when processing data
streams and vast datasets.

Ablation Study. To investigate the importance of the
two added steps, seed generating and topology merging,
an ablation study is conducted on the BigNeuron dataset,
as shown in Table 4. When the seed generating process
is not activated, the parallel initial reconstruction stage is
degraded into the single seed reconstruction, and the par-
allelism will get down. Under this situation, the recon-
struction branches are grown from the very same seed, and
there will be no need for topology merging. When the seed
generating is activated, but the merging process is not con-
ducted, the final reconstruction result will be topologically
disconnected, which is difficult for neuron imaging experts
to utilize. At the same time, the average length of the traced
branch will be decreased significantly. In the refining stage,
long branches have larger coverage area and more probabil-
ity of being kept in the final result. Therefore, without the
topology merging process, the main branches of the neuron
will have fewer advantages over minor neurites to be kept,
and the total reconstruction quality will go down. Moreover,
due to less dependency between branches, fewer minor neu-
rites will be dropped when a useless branch is pruned, and
the pruning efficiency will also degrade.

3.2. Reconstruction of the whole mouse brain

To investigate the applicability and robustness of the par-
allel InstantTrace framework, another test in a whole mouse
brain OM Image is conducted. The image size is 25000 ×
15000 × 5000, and a total size of 4 terabytes. The sampling
ratio in the x, y and z axis is 1:1:0.16.

To handle the whole brain reconstruction, the image is
sliced into 25,080 blocks, each with a block size of 512
× 512 × 512, and a padding of 2 in x, y and z axis. The
proposed processing pipeline handles the blocks in stream.
When a block is being processed and reconstructed, the next



Metric Description Range
ESA12 Entire Structure Average distance from neuron 1 to 2 [0,+∞)
ESA21 Entire Structure Average distance from neuron 2 to 1 [0,+∞)
ESA mean Average of ESA12 and ESA21 [0,+∞)
DSA Different Structure Average distance [0,+∞)
PDS Percent of Different Structure [0, 1]

Table 2. The metric of the tracing quality of neuron reconstruction.

ESA12 ESA21 ESA mean DSA PDS
APP2 4.18 7.54 5.86 10.08 0.45
InstantTrace-APP2 4.50 6.78 5.64 9.21 0.52

Table 3. The average reconstruction quality of the BigNeuron dataset. The bold font represents the method perform better.

Figure 6. The visual comparison of reconstruction quality of APP2 and InstantTrace-APP2 on the BigNeuron dataset. The three rows are
the tracing result made by APP2, InstantTrace-APP2, and the reconstruction ground truth. Column (a) and column (b) show the difference
between the two methods brought by the seed generation. The rest of the columns show the similarity in the tracing results of the two
methods (c-d: both fail, e-g: both succeed).

Time(ms) ESA12 ESA21 ESA mean DSA PDS
APP2 10049.88 4.18 7.54 5.86 10.08 0.45
None 399.25 6.25 8.50 7.41 11.97 0.47
Seed 381.50 3.21 9.78 6.18 9.72 0.48
Seed + Merge 377.98 4.50 6.78 5.64 9.21 0.52

Table 4. The ablation study result on the BigNeuron dataset. The Seed + Merge row denotes the complete InstantTrace-APP2 pipeline. The
None row denotes the process without both seed generating and topology merging. The Seed row denotes the process with seed generating
but without topology merging. The APP2 row is the serial APP2 method as the control group. Note that there is no Merge group because
the topology merging process is dependent on multi seeds.

block can be pre-loaded to save the scheduling cost, and the
GPU warmup proceeds only once in the whole reconstruc-
tion progress. Note that neurons may exist across multi-
ple blocks under the whole brain reconstruction situation.
Therefore, we follow the solution of UltraTracer [18] to
fuse the neurites in adjacent blocks. When the tracing in one

block is finished, the intersecting points of the reconstructed
neuron and the border of the image block are logged. When
handling the next block, the intersecting points of its pro-
cessed neighbors are set as extra tracing seeds so that the
neurons can be traced across the image blocks continually.

The overview of the whole mouse brain reconstruction of



Figure 7. Breakdown of the reconstruction time on the BigNeuron
dataset. Each row corresponds to a single kind of neuron image
in the dataset. The S, M, and L markers denote small (< 50 MB),
medium (50-150 MB), and large (> 150 MB) image sizes among
the dataset.

InstantTrace-APP2 and two detailed views of areas with dif-
ferent reconstruction difficulties are shown in figure 8. Each
detailed view is a combination of 24 image blocks. As the
figure shows, the neurons long enough to cross many blocks
are also correctly traced, which is essential in the whole
brain level neuron reconstruction. The tracing result is of
no significant defect and can become a preliminary tracing
result before manual intervention from neuron imaging ex-
perts.

What’s more, the proposed parallel InstantTrace frame-
work runs very fast, as shown in Table 5. In this mouse brain
data, during the processing of the 25,080 blocks, 8,725
blocks include foreground pixels, and the rest blocks only
consist of background pixels. Despite the cost of loading
blocks, the average process time of non-empty blocks is 263
ms, and the empty blocks cost 67 ms per block. The total
time cost of whole-brain construction is 3389 seconds, and
the processing speed is 1.20 GB/s, drastically reducing the
preliminary reconstruction time cost. In contrast, if we di-
rectly apply the APP2 method, the process cost is 11.2s per
non-empty block, and the processing speed is 38.84 MB/s,
which will cost more than 30 hours to finish the whole brain
reconstruction.

4. Conclusion

This paper introduced InstantTrace, a parallel neuron
tracing framework on GPU. The proposed framework uti-
lizes the sparse feature of the OM neuron images and the
independent nature of the neuron branches, making the par-
allel upgrade onto the conventional neuron tracing pipeline.
While the initial reconstruction stage in the conventional
neuron tracing methods is difficult to parallelize due to
its serial nature, the proposed framework adds two more
stages, namely seed generating and topological merging, to
form a multi-seed parallel tracing process.

This framework can be applied to the conventional meth-
ods of automated neuron tracing and reach comparable trac-

ing quality with a remarkable speed up. In experiments,
the APP2 method is applied to the InstantTrace framework
(InstantTrace-APP2) due to its effectiveness and stability.
Experiments on the BigNeuron dataset show that the com-
bined InstantTrace-APP2 method gets comparable recon-
struction quality and a speed advance of more than 20×
against the serial APP2 method. Moreover, a challenging
task of whole mouse brain neuron tracing is conducted, and
the proposed method generates the whole brain neuron re-
construction within 1 hour of processing time using a single
GPU. In conclusion, the proposed framework has the po-
tential to become a base tracer of whole-brain construction
processes, generate a preliminary reconstruction of good
quality instantly, and promote neuron circuit research in the
future.
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