
Probability-based channel pruning for depthwise separable convolutional
networks

Hanli Zhao
Wenzhou University

Kaijie Shi
Wenzhou University

Xiaogang Jin
Zhejiang University

Mingliang Xu
Zhengzhou University

Hui Huang
Wenzhou University

Wanglong Lu
Wenzhou University

Ying Liu
Wenzhou University

Abstract

Channel pruning can reduce memory consumption
and running time with least performance damage, and
is one of the most important techniques in network com-
pression. However, existing channel pruning methods
mainly focus on the pruning of standard convolutional
networks, and they rely intensively on time-consuming
fine-tuning to achieve the performance improvement. To
this end, we present a novel efficient probability-based
channel pruning method for depthwise separable con-
volutional networks. Our method leverages a new sim-
ple yet effective probability-based channel pruning cri-
terion by taking the scaling and shifting factors of batch
normalization layers into consideration. A novel shift-
ing factor fusion technique is further developed to im-
prove the performance of the pruned networks with-
out requiring extra time-consuming fine-tuning. We
apply the proposed method to five representative deep
learning networks, namely MobileNetV1, MobileNetV2,
ShuffleNetV1, ShuffleNetV2, and GhostNet, to demon-
strate the efficiency of our pruning method. Extensive
experimental results and comparisons on publicly avail-
able CIFAR10, CIFAR100, and ImageNet datasets vali-
date the feasibility of the proposed method.

1. Introduction

With the tremendous development of deep learning, net-
work compression [1] has been becoming a hot research
topic for small memory footprint and low runtime latency
with good performance. As one of commonly used com-
pression techniques, channel pruning [6, 24] compresses the
network model by removing redundant structures and pa-
rameters. It boosts the development of artificial intelligence
applications in our daily life, such as driveless cars, robotics
and augmented reality [34].

Most channel pruning algorithms [6, 26] consist of the
following three phases: pre-training, pruning, and fine-
tuning. The pre-training phase produces the network model
with some regularization items while the pruning phase
prunes the pre-trained model by certain pruning schemes.
Usually, the model after the pruning phase has a smaller
size than the pre-trained model at the cost of accuracy loss.
The last phase is then used to recover the accuracy by itera-
tive parameter fine-tuning. However, the fine-tuning phase
makes the whole pipeline of network pruning very time-
consuming [26]. Some algorithms [23, 24] try to keep the
accuracy performance while removing the time-consuming
fine-tuning phase. However, the reduction of network pa-
rameters and FLOPs is still limited and has room for im-
provement.

Many applications equip with only limited computa-
tional resources and low-power batteries while requiring
instant response. Recent light-weight neural networks
[4, 15, 28, 29, 40] are built on the block of depthwise sep-
arable convolutions to achieve a balance between resource
and accuracy for mobile and embedded vision applications.
The resource consumption of a pruned depthwise separable
convolutional network can be further reduced and thus can
be deployed in more resource-limited devices. However,
most of existing network pruning algorithms are designed
to prune redundant channels for standard neural convolu-
tions [23, 24, 26]. Only a few algorithms [39] focus on
depthwise separable convolutions pruning. However, they
require additional time-consuming fine-tuning or retraining.
We observe that depthwise convolution applies a single fil-
ter to each channel [30] and thus does not change the num-
ber of channels. This motivates us to develop an efficient
channel pruning algorithm for depthwise separable convo-
lutional networks.

To this end, we present a novel efficient probability-
based channel pruning method for depthwise separable con-
volutional networks. Our method takes full advantage of
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the properties of batch normalization (BN) [18] and rec-
tified linear unit (ReLU) [3] which are continuous in the
depthwise separable convolution. If the output of BN is less
than or equal to zero, ReLU will return zero. This observa-
tion gives us the intuition to determine unimportant chan-
nels in which most of BN’s outputs are below zero. Conse-
quently, we can prune these channels by developing a novel
probability-based pruning criterion by considering the scal-
ing and shifting factors of BN layers. If the output of a
BN layer is less than or equal to zero with a high probabil-
ity, the corresponding channel is viewed as an unimportant
channel and can be pruned effectively. Since the channel
number of input to depthwise convolution is identical to that
of output, we propose to consider four cases based on the
proposed pruning criterion to guarantee the channel consis-
tency. In order to avoid large errors introduced in channel
pruning, we further develop a sophisticated channel prun-
ing algorithm by performing a novel shifting factor fusion
technique. We test the efficiency of our new method using
MobileNetV1 [15], MobileNetV2 [29], ShuffleNetV1 [40],
ShuffleNetV2 [28], and GhostNet [4] networks on publicly
available CIFAR10 [20], CIFAR100 [20], and ImageNet [2]
datasets. The experimental results on the above represen-
tative networks show that the proposed method is able to
achieve high accuracy at a low resource consumption.

In summary, our paper makes the following contribu-
tions:

• A simple yet effective probability-based channel prun-
ing criterion by considering the scaling and shifting
factors of BN.

• An efficient probability-based pruning algorithm with-
out requiring extra time-consuming fine-tuning for
depthwise separable convolutional networks by using
a novel shifting factor fusion technique.

• We validate the feasibility of our method through ex-
tensive experiments, and results show that our method
outperforms the state-of-the-art on performance.

2. Related work

A number of network pruning algorithms have been car-
ried out in the past years. In this section, we will review
most related work in this topic.

Many algorithms employ pre-training, pruning, and fine-
tuning phases for effective network pruning [5, 14, 16, 24].
The pre-training phase is used to produce clues for pruning
phase. It trains a network by adding some extra constraints,
such as group-lasso [21, 27], L1 regularization [6, 24, 32]
or Polarization regularizer [41]. The pruning phase usu-
ally prunes weights, filters, channels or layers via various
pruning criteria [33], respectively. Some methods [24, 36]
prune unimportant channels with scaling factors below zero

in the BN layer and other methods prune network chan-
nels by minimizing the least square reconstruction error on
output feature maps [14]. Hu et al. [16] introduce a net-
work trimming method by pruning unimportant channels
with high average percentage of zeros after the ReLU map-
ping and retrain the trimmed network to enhance the per-
formance. Yang et al. [35] choose a sub-network that has
higher accuracy and lower resource consumption by remov-
ing different filters from one layer. Since the performance
of the pruned network model is usually not as good as the
pre-trained one, the fine-tuning phase is further required to
train the pruned model [14, 17, 22, 27]. Zhang et al. [39]
first prune channels of depthwise separable convolution unit
based on information gain and then restore the performance
with fine-tuning. However, these algorithms usually require
an additional time-consuming fine-tuning or retraining step
on the pruned network in order to achieve comparable per-
formance to the unpruned one. Recently, Liu et al. [26]
conduct a number of experiments to indicate that the bene-
fits gained from pruning is attributed to the architecture of
pruned network rather than the fine-tuned weights. More-
over, the pruning criterion based on a single scaling fac-
tor may prune some important channels since both the scal-
ing and shifting factors contribute to the BN layer. Differ-
ent from them, we investigate a new pruning criterion by
considering both the scaling and shifting factors in the BN
layer.

Some researchers focus on efficient network pruning al-
gorithms without fine-tuning or retraining. The NFP algo-
rithm [23] first prunes channels based on the scaling factor
and then compensates the contribution of pruned convolu-
tional channels to the next convolutional filters. The com-
pensation can produce a pruned model whose accuracy is
almost as same as that of the unpruned one. He et al. [11]
dynamically determine whether a certain channel is pruned
or not in a soft manner while He et al. [13] remove fil-
ters via geometric median which minimizes the sum of Eu-
clidean distances. Kang and Han [19] incorporate training
and soft channel pruning by introducing learnable differen-
tiable masks. Our method is different from these methods in
that our pruning criterion considers both scaling and shift-
ing factors of BN, and no mask is required.

Our channel pruning algorithm is also related to neu-
ral architecture search which provides a violence search
method to discover the compressed model structure. A
shared network [38] is trained with switchable batch nor-
malization and can adjust the network’s width on the fly
rather than downloading and offloading different models.
A slimmable network [37] is used to approximate the net-
work’s accuracy of different channels and is then greedily
slimmed for minimal accuracy drop. He et al. [12] get the
model compression policy by reinforcement learning while
Liu et al. [25] search a good-performing pruned network by



evolutionary procedure. However, these methods require
much training time as well as GPU resources to search for
efficient structures.

3. Preliminaries

(b)(a)

1  1

3  3

3  3

...

...

...

...

...

Fig.1. Illustration of (left) standard convolution and (right) depthwise
separable convolution. Data are flowing from top to down.

Depthwise separable convolutions, initially introduced
in [30], are effective to reduce neural network’s computa-
tion. As shown in Fig. 1, a standard convolution filters and
combines input channels into a new set of output channels in
one step while a depthwise separable convolution operation
employs a depthwise convolution for filtering and a point-
wise convolution for combining. The depthwise convolu-
tion uses a lightweight convolutional filter per input chan-
nel and the number of output channels is the same as the
one of input channels. The pointwise convolution applies
a 1 × 1 convolution to combine all channels produced by
the depthwise convolution for building new feature chan-
nels. The depthwise separable convolution has much less
computation than the standard convolution at only a small
reduction in accuracy [15].

MobileNetV1 [15] and MobileNetV2 [29] are represen-
tative networks which use depthwise separable convolutions
as basic convolutional blocks. As illustrated in Fig. 2 (a)
and Fig. 2 (b), MobileNetV1 is a single-branch network
while MobileNetV2 is a multi-branch network. Both Mo-
bileNetV1 and MobileNetV2 make heavy use of BN and
ReLU nonlinearity.

ShuffleNetV1 [40] and ShuffleNetV2 [28] employ the
channel shuffle and depthwise separable convolutions to
reduce computation. As illustrated in Fig. 2 (c), Shuf-
fleNetV1 inserts a channel shuffle operation between point-
wise convolution and depthwise convolution. As illustrated
in Fig. 2 (d), ShuffleNetV2 first splits the input features
into two components, then concatenates them after convo-
lutions, and finally uses the channel shuffle operation to ob-
tain the output.

GhostNet [4] uses a novel Ghost module to generate
more ghost feature maps from cheap operations. As il-
lustrated in Fig. 2 (e), GhostNet is designed by stack-
ing Ghost bottlenecks with Ghost modules as the building
block. Ghost modules make use of depthwise separable
convolutions and the shortcut connection.

BN [18] is a linear transformation layer plugged between
the convolutional layer and the activation function layer. It

whitens and transforms each channel across different sam-
ples. Let x and ŷ be an input and corresponding output of
the BN layer, respectively. The operation of BN is defined
by normalizing x and then performing an affine transforma-
tion as follows:

x̂ =
x− E[x]√
Var[x] + ε

, (1)

ŷ = BN(x) = γ · x̂+ β, (2)

where ε = 10−5 is a parameter avoiding dividing by 0, E[x]
and Var[x] respectively represent the mean and variance of
x, γ and β are learnable scaling factor and shifting factor.
The numbers of γ and β are the same as the number of con-
volutional filters. Notice that the values of E[x] and Var[x]
are calculated across mini-batches during training and are
fixed during inference [18].

ReLU [3] is the rectifier activation function allowing a
network to easily obtain sparse representations. Formally,
ReLU is defined as:

y = ReLU(ŷ) =

{
0, ŷ ≤ 0;

ŷ, ŷ > 0.
(3)

MobileNetV2 uses a variant activation function ReLU6
[29], which has the same property when ŷ ≤ 0. For sim-
plicity, we always use ReLU instead of ReLU6 in the rest
of this paper.

From Eq. 3 we can see that the output value is 0 with
the input ŷ ≤ 0 for ReLU. Therefore, if ŷ ≤ 0 holds for
a certain channel, we can prune this channel. This obser-
vation allows us to develop an effective pruning criterion
for depthwise separable convolutions by taking advantage
of BN and ReLU.

4. The proposed method

4.1. Pre-training

To obtain a pre-trained model for pruning, one more reg-
ularization item is added to the objective function for net-
work pruning [5, 24, 41], which is different from the normal
training of the original network.

We pre-train the depthwise separable convolutional net-
work with Kaiming initialization [7]. In addition, we use L1
regularization on scaling factors in BN as in [24]. Specifi-
cally, our pre-training objective function is defined as:

min
θ

1

N

N∑
i=1

L(f(xi; θ), yi) + λ · L1(γp), (4)

where N denotes the number of train samples, xi and yi
denote train input and target, θ denotes trainable weights,
the first sum term represents the normal training loss, λ is
a hyperparameter, γp denotes the scaling factors in BN, and
L1 represents L1 regularization.
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Figure 2. Illustration of structures of basic blocks in (a) MobileNetV1, (b) MobileNetV2, (c) ShuffleNetV1, (d) ShuffleNetV2, and (e)
GhostNet.

4.2. Probability-based pruning criterion

If the input of the ReLU layer is less than or equal to zero
for a certain channel, the channel will have no impact to the
following convolutions and thus can be pruned. Many deep
depthwise separable convolutional networks [4, 15, 28, 29,
40] employ multiple basic blocks that contain a BN layer
followed by a ReLU layer. Therefore, if we know the output
of a BN layer is below zero, we can prune the corresponding
channel.

We assume that x̂ in Eq. 1 follows a normal distribution
by normalizing the input x from a large number of input
samples [19]. Therefore, the output ŷ of BN in Eq. 2 is
normally distributed with mean β and variance γ2, that is,
ŷ ∼ N(β, γ2). Let z be a predefined z-score of the stan-
dard normal distribution N(0, 1), then the normal distribu-
tion N(β, γ2) has the upper confidence limit:

Z(z) = β + z · |γ|. (5)

Under the assumption, the z-score z corresponds to a
probability of the standard normal distribution:

P (ŷ ≤ Z(z)) = P (
ŷ − β
|γ|

≤ z)

= P (x̂ ≤ z) =
∫ z

−∞

e−
x̂2

2

√
2π

dx̂.

(6)

𝛽 𝛽+𝓏⋅|𝛾| 𝛽 𝛽+𝓏⋅|𝛾|
Fig.3. Illustration of normal distributions. Areas in blue represent the
accumulative probabilities for β + z · |γ|. All values below zero will be
rectified to zero in the ReLU layer.

Given a normal distribution with a high probability P , if
the upper confidence limit for the output of BN is less than
or equal to zero, that is, Z = β + z · |γ| ≤ 0, there is a
high probability to have ŷ ≤ 0 to be true, as illustrated in
Fig. 3 (left). On the other hand, if β + z · |γ| > 0, then it is
probably not true for ŷ ≤ 0, as illustrated in Fig. 3 (right).
If β + z · |γ| ≤ 0 holds, the output of ReLU is likely to be
equal to zero according to the definition of ReLU operation.

Therefore, we propose a novel probability-based pruning
criterion by taking advantage of the z-score: if β+z·|γ| ≤ 0
for a BN layer, the corresponding channel is regarded as an
unimportant channel and can be pruned effectively. The z-
score z can be used to adjust the probability threshold. A
greater z corresponds to a high probability and vice versa.
Actually, this is true even for general distributions other
than normal distributions between x̂ and ŷ. Consequently,
less channels are pruned with a greater z and more chan-
nels are pruned with a smaller z. The performance and the
number of parameters of the pruned model decrease mono-
tonically with the decrease of z. Therefore, the value of z is
selected for a trade-off between accuracy and size.

𝛽
 

𝛽
 

|𝛾| |𝛾| 

Fig.4. Illustration of the difference between (left) γ-based criterion and
the proposed criterion based on both γ and β. Black points represent
pruned channels while green points represent unpruned channels, respec-
tively.

Many existing algorithms [23, 24, 41] prune channels



corresponding to the scaling factor γ in Eq. 2 below a
threshold. In comparison, not only the scaling factor γ but
also the shifting factor β are considered in our probability-
based pruning criterion. We illustrate the difference be-
tween the widely used the γ-based pruning criterion and the
proposed pruning criterion in Fig. 4. We can find that chan-
nels with small γ but great β are also pruned in the γ-based
pruning criterion. Moreover, the γ-based pruning criterion
cannot prune channels with great |γ| but β + z · |γ| ≤ 0
because the criterion views these channels as important fea-
tures. In comparison, we prune channels based on the com-
bination of both parameters β+z ·|γ| no matter which value
|γ| is. As a result, our criterion can effectively prune chan-
nels with great |γ| but β + z · |γ| ≤ 0.

4.3. Channel pruning with shifting factor fusion

Depthwise separable convolutional networks are built
upon multiple identical basic blocks with depthwise sepa-
rable convolution. In each basic block, a depthwise con-
volution (DWConv) layer is followed by a pointwise con-
volution (PWConv) layer. As illustrated in Fig. 2, the bot-
tleneck is the basic building block for MobileNetV2 [29],
ShuffleNetV1 [40], ShuffleNetV2 [28], and GhostNet [4].
Each bottleneck block consists of two 1× 1 PWConv and a
3× 3 DWConv layers. The 1× 1 layers are responsible for
reducing and then increasing (restoring) dimensions, leav-
ing the 3 × 3 layer a bottleneck with smaller input/output
dimensions [8]. In addition, BN and ReLU layers are used
between two convolutional layers in each basic block. In
our pruning method, channels are pruned based on BN lay-
ers before and after the DWConv layer, as illustrated in
Fig. 5. Therefore, we perform the channel pruning in the
same manner for the simple case of using a PWConv and a
DWConv layers and the bottleneck case of using two PW-
Conv and a DWConv layers.

..
.

..
.

..
.

DWConv PWConvBN, ReLU BN, ReLU BN

0 0
(i-1)th layer ith layer (i+1)th layer

Fig.5. Illustration of pruning process. Each curve represents a channel
where light gray represents zero value output by ReLU. The channel high-
lighted with the red contour should be further processed.

As illustrated in Fig. 5, there are three BN layers (de-
noted as (i− 1)

th, ith, and (i+ 1)
th BN layers) before and

after each DWConv and PWConv. The numbers of channels
in (i− 1)

th and ith BN layers are the same since depthwise
convolution applies a single filter to each channel.

In order to guarantee the channel consistency, we first
introduce a naive channel pruning algorithm by consider-
ing four cases based on the proposed pruning criterion. As
shown in Table 1, there are four cases for a given channel
with the channel index k in DWConv between (i− 1)

th and
ith BN layers:

Table 1. Channel pruning scheme for different cases in DWConv between
(i− 1)th and ith BN layers. We suppose Zi−1 = βi−1

k + z · |γ|i−1
k

and Zi = βi
k + z · |γ|ik for (i− 1)th and ith BN layers, respectively.

#Case (i− 1)th BN ith BN Pruning Fusion
1 Zi−1 > 0 Zi > 0 × ×
2 Zi−1 > 0 Zi ≤ 0 X ×
3 Zi−1 ≤ 0 Zi > 0 X X
4 Zi−1 ≤ 0 Zi ≤ 0 X ×

Case 1: Both (i− 1)
th and ith BN layers do not conform

to the pruning criterion, then both BN layers and cor-
responding ReLU and DWConv layers for kth channel
are unpruned, as illustrated in the topmost channel in
Fig. 5.

Case 2: (i− 1)
th BN layer does not conform to the prun-

ing criterion but ith BN layer does, then both BN lay-
ers and corresponding ReLU and DWConv layers for
kth channel are pruned, as illustrated in the second
channel in Fig. 5.

Case 3: (i− 1)
th BN layer conforms to the pruning crite-

rion but ith BN layer does not, then both BN layers
and corresponding ReLU and DWConv layers for kth

channel are pruned, as illustrated in the third channel
in Fig. 5.

Case 4: Both (i− 1)
th and ith BN layers conform to the

pruning criterion, then both BN layers and correspond-
ing ReLU and DWConv layers for kth channel are
pruned, as illustrated in the fourth channel in Fig. 5.

Although we can prune depthwise separable convolu-
tional networks efficiently by using the proposed pruning
criterion, the naive pruning algorithm will have perfor-
mance penalty for Case 3. Take the channel highlighted
with the red contour in Fig. 5 as an example. For Case 3,
kth channel of (i− 1)

th BN is pruned according to the pro-
posed pruning criterion and the impact of xik on kth channel
of ith BN is also pruned, i.e., xik = 0. The channel num-
bers of input and output for DWConv should be consistent.
Therefore, we should also prune the corresponding chan-
nel for ith BN. For Cases 2∼4, kth channel of ith BN is
pruned and it is equivalent to truncate yik = 0. Based on
the probability-based pruning criterion, it is probably true



for Case 2 and Case 4 but is not true for Case 3. Note that
the truncation error for Case 3 will be accumulated with the
increase of network layers. As a result, the network per-
formance decreases with the naive pruning algorithm. This
motivates us to investigate a sophisticated channel pruning
algorithm to get rid of such issues.

For Case 3, we first calculate the impact tik on ith BN
according to definitions of BN and ReLU:

tik = ReLU(BN(xik))

= ReLU(γik ·
xik − E[xik]√
Var[xik] + ε

+ βik)

= ReLU(γik ·
−E[xik]√
Var[xik] + ε

+ βik),

(7)

where there is no ReLU after DWConv in the basic block of
ShuffleNets, as illustrated in Fig. 2 (c) and Fig. 2 (d).

Let K1 and K3 be the index sets of channels for Case 1
and Case 3, respectively. Then the output xi+1 of PWConv
layer can be calculated as follows:

xi+1 =
∑
k∈K1

wik · yik +
∑
k∈K3

wik · tik, (8)

where wik denotes the PWConv weight. We can see that the
second sum term is constant, since trainable parameters are
fixed for a pre-trained network model.
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Fusion offset

Fig.6. Visualization of the fusion offset between β values before and after
shifting factor fusion. The horizontal axis represents index of unpruned
channels. The data are sampled from 11th BN layer of the pruned Mo-
bileNetV1 trained on CIFAR100.

The calculation of (i+ 1)
th BN can be derived as fol-

lows:

BN i+1
γi+1,βi+1(x

i+1)

= BN i+1
γi+1,βi+1(

∑
k∈K1

wik · yik +
∑
k∈K3

wik · tik)

= γi+1 ·
∑
k∈K1

wik · yik − E[xi+1]√
Var[xi+1] + ε

+

γi+1 ·
∑
k∈K3

wik · tik√
Var[xi+1] + ε

+ βi+1.

(9)

Now we have a constant βi+1
fusion by defining as follows:

βi+1
fusion = γi+1 ·

∑
k∈K3

wik · tik√
Var[xi+1] + ε

+ βi+1. (10)

Finally, we have the following updated formula by fusing
the truncation error to the i+ 1th BN layer:

BN i+1
γi+1,βi+1(x

i+1) = BN i+1

γi+1,βi+1
fusion

(xi+1). (11)

Therefore, we can fuse the involved learnable parame-
ters of pruned channels into βi+1

fusion for Case 3 using Eq. 10
which we call it as shifting factor fusion. We propose the
sophisticated channel pruning algorithm by replacing the
shifting factor βi+1 with βi+1

fusion in the (i+ 1)
th BN layer

for Case 3. As a consequence, we can prune all correspond-
ing layers robustly for Case 3. We visualize the fusion off-
sets between β values before and after shifting factor fusion
in Fig. 6. We can see that the proposed shifting factor fu-
sion technique effectively applies the calculated offsets to β
for the (i+ 1)

th BN layer. The effectiveness of our pruning
method with fusion offsets is demonstrated in Section 5 and
we can see that the novel shifting factor fusion technique
effectively recovers the network performance.

4.4. Additional processing

Residual learning [8] is widely used to ease the train-
ing of deep networks. Residual blocks with shortcut con-
nections are also used in multi-branch depthwise separable
convolution networks [4, 28, 29, 40], and a residual block is
defined as the elementwise addition [8]. Let x be the input
and F (x) be its residual mapping, the dimensions of x and
F (x) must be equal. If some channels of F (x) are pruned,
the channel number of F (x) is different from that of x.

Similar to [10], a normal elementwise addition is applied
to unpruned channels while channels of x are used directly
for pruned channels:

yk =

{
xk + F (xk), if k ∈ K1;

xk, otherwise.
(12)

The proposed probability-based method prunes channels
efficiently based on BN layers followed by ReLU. For each



Algorithm 1 Our probability-based channel pruning
Input: Pre-trained model M0

1: for each basic block B in M0 do . Traversal
2: Obtain BN i−1, BN i, BN i+1 in B;
3: for each channel k in BN i−1 do . Pruning
4: Zi−1 = BN i−1[k].β + z ·BN i−1[k].|γ|;
5: Zi = BN i[k].β + z ·BN i[k].|γ|;
6: if Zi−1 > 0 and Zi > 0 then . Case 1
7: Mark k as unpruned;
8: else if Zi−1 > 0 and Zi ≤ 0 then . Case 2
9: Mark k as pruned;

10: else if Zi−1 ≤ 0 and Zi > 0 then . Case 3
11: Mark k as pruned;
12: Ki

3.append(k);
13: else if Zi−1 ≤ 0 and Zi ≤ 0 then . Case 4
14: Mark k as pruned;
15: for each basic block B in M0 do . Traversal
16: Obtain BN i−1, BN i, BN i+1 in B;
17: if Ki

3.size() > 0 then
18: for each channel k in BN i+1 do . Fusion
19: Update BN i+1[k].β using Eq. 10;
20: Clone unpruned channels of M0 to M1;
21: return Pruned model M1

BN layer after PWConv layer, if there is no ReLU layer, we
add an associated gate as in [32].

4.5. Pseudocode

We provide the pseudocode of our probability-based
channel pruning for depthwise separable convolution net-
works in Algorithm 1.

The proposed channel pruning algorithm takes the pre-
trained model as input. We first prune unimportant chan-
nels by using the novel probability pruning criterion. Then,
we perform the shifting factor fusion technique for pruned
channels. The channel pruning process is implemented
by creating a new channel pruned model and cloning the
corresponding weights of unpruned channels from the pre-
trained model. The proposed channel pruning algorithm tra-
verses the pre-trained network twice. In the first traversal,
the probability-based pruning criterion is applied to deter-
mine whether a channel should be pruned. In the second
traversal, the shifting factor fusion technique is employed
to recover the network performance.

The proposed algorithm is easy to implement on deep
learning frameworks. From Algorithm 1, we can see that
the time complexity of the proposed pruning method is de-
termined by the network complexity and is irrelevant to in-
put images. Note that our pruned model is able to achieve
competitive performance compared to the original network
without extra time-consuming fine-tuning.

5. Experimental results and discussions

5.1. Settings

The proposed pruning method is implemented using Py-
Torch. All experiments were conducted on CIFAR10 [20],
CIFAR100 [20], and ImageNet [2] datasets.

The CIFAR10 and CIFAR100 datasets are with 10 and
100 classes, and consist of a training set and a testing set
containing 50,000 and 10,000 images, respectively. The im-
age size is 32× 32. During training, the stochastic gradient
descent optimizer is adopted for the minimization of objec-
tive function. We train the models for 160 epochs with a
mini-batch size of 64. We set the initial learning rate as 0.1
and drop it by 10× at 50% and 75% of all epochs, respec-
tively. The hyperparameter λ is set as 10−4. As the image
size is small, for MobileNetV1, we reduce the network to 4
down-sampling layers by replacing the first down-sampling
layer with stride = 1; For other networks, we only use
three down-sampling layers as in [37].

The ImageNet dataset is with 1,000 classes and con-
sists of a training set and a validation set containing about
1,200,000 and 50,000 images, respectively. The image size
is randomly resized and cropped to 224 × 224 during data
augmentation. During training, the stochastic gradient de-
scent optimizer is adopted for the minimization of objective
function. We train the models for 150 epochs with a mini-
batch size of 128. We set the initial learning rate as 0.05 and



Table 2. Comparison of the proposed method to state-of-the-art methods for pruning MobileNetV1 and MobileNetV2 models on CI-
FAR100. Note that “w” and “w/o” are short for the words “with” and “without”, respectively.

Method
CIFAR100

MobileNetV1 MobileNetV2
#Params FLOPs Top-1 #Params FLOPs Top-1

Original model [15, 29] 3.31M 46.47M 71.09% 2.32M 88.10M 75.26%
Slimming w/o fine-tuning [24] 1.34M 26.36M 69.49% 1.25M 39.70M 71.69%
Slimming w fine-tuning [24] 1.34M 26.36M 71.25% 1.25M 39.70M 74.83%

NFP [23] 1.34M 26.36M 70.78% 1.25M 39.70M 74.55%
Ours w/o fusion 1.33M 26.30M 69.49% 1.23M 39.66M 71.42%
Ours w fusion 1.33M 26.30M 71.27% 1.23M 39.66M 75.37%

Table 3. Comparison of the proposed method to state-of-the-art methods for pruning MobileNetV1 and MobileNetV2 models on ImageNet.
“N/A” represents the corresponding item is unavailable. For a fair comparison, we include baselines of state-of-the-art methods collected
from their original papers, respectively.

Method
ImageNet

MobileNetV1 MobileNetV2
#Params FLOPs Baseline Top-1 #Params FLOPs Baseline Top-1

Original model [15, 29] 4.2M 569M 70.6% 70.6% 3.5M 300M 71.8% 71.8%
AMC [12] 2.4M 285M 70.6% 70.5% N/A 219M 71.8% 70.8%

MetaPruning [25] N/A 281M 70.6% 70.6% N/A 217M 72.0% 71.2%
NetAdapt [35] N/A 284M 70.6% 69.1% N/A N/A N/A N/A

NLSP [41] N/A N/A N/A N/A N/A 216M 72.0% 71.8%
PFS [32] 4.0M 567M 70.9% 71.6% 3.5M 300M 71.8% 72.1%

Slimming w/o fine-tuning [24] 2.6M 338M 70.6% 70.4% 3.0M 238M 71.8% 71.4%
Slimming w fine-tuning [24] 2.6M 338M 70.6% 70.5% 3.0M 238M 71.8% 71.6%

NFP [23] 2.6M 338M 70.6% 71.2% 3.0M 238M 71.8% 71.8%
Ours w/o fusion 2.5M 338M 70.6% 71.3% 2.9M 210M 71.8% 71.6%
Ours w fusion 2.5M 338M 70.6% 71.6% 2.9M 210M 71.8% 71.8%

use the cosine learning rate decay as in [9]. The hyperpa-
rameter λ is set as 10−5. We also employ label smoothing
[31] for better generalization.

5.2. Comparison with state-of-the-art methods

In this subsection, we compare the proposed method to
state-of-the-art methods by pruning MobileNets [15, 29],
ShuffleNets [28, 40], and GhostNet [4] on CIFAR10, CI-
FAR100, and ImageNet datasets. The compared results of
PFS (Pruning From Scratch) [32], AMC [12], MetaPrun-
ing [25], NetAdapt [35], and NLSP (Neuron-Level Struc-
tured Pruning) [41] are collected from the authors’ papers,
respectively. The results of Slimming [24] and NFP [23]
are obtained with our own implementations as the authors
do not provide related codes or experimental results. For
slimming with fine-tuning, a learning rate of 10−3 and 30
epochs are adopted on CIFAR100 while a learning rate of
10−5 and 30 epochs are adopted on ImageNet.

Table 2 shows the comparison statistics on the CI-
FAR100 dataset of MobileNets. NFP improves the network
slimming with no fine-tuning. Our model with fusion is
much better than network slimming [24] without fine-tuning
in both accuracy and size. Our model with fusion is also bet-
ter than network slimming with fine-tuning and NFP [23].
However, fine-tuning involves additional training of model
weights which is quite time-consuming. Both network slim-
ming and NFP prune channels based on the scaling factor of
BN. In comparison, the proposed method takes into account

both shifting and scaling factors of BN, resulting in a better
performance in terms of accuracy and size.

Table 3 shows the comparison statistics on the ImageNet
dataset of MobileNets. Our model with fusion reduces 40%
of parameters and 40% of FLOPs compared to the Mo-
bileNetV1 baseline [15] but still achieves a better top-1 ac-
curacy. Our pruned model prunes 17.1% of parameters and
30.0% of FLOPs compared to the MobileNetV2 baseline
[29]. Although our pruned model has greater FLOPs than
models of AMC [12], MetaPruning [25], and NetAdapt [35]
for pruning MobileNetV1 [15], the top-1 accuracy is signif-
icantly higher than theirs. The accuracy of our method is
comparable with that of NLSP [41] but the FLOPs value of
our method is better. PFS [32] is the only one method that
has a higher accuracy than our method. Unfortunately, the
reduction of number of parameters and FLOPs is rather lim-
ited with PFS. Moreover, our pruned model with fusion has
the least number of parameters and FLOPs even compared
to state-of-the-art methods.

In addition, for a fair comparison, we include baselines
of state-of-the-art methods collected from the original pa-
pers, respectively, as shown in Table 3. We can see that
AMC [12], MetaPruning [25], NetAdapt [35], NLSP [41],
and Slimming [24] drop the performance in the top-1 accu-
racy as compared to their respective baseline. In compari-
son, our method achieves an even higher accuracy for Mo-
bileNetV1. Moreover, the pruned models using our method
contains less parameters and FLOPs than the ones using



Table 4. Comparison of the proposed method to state-of-the-art methods for pruning ShuffleNetV1, ShuffleNetV2, and GhostNet models
on CIFAR10, CIFAR100, and ImageNet, respectively.

Method CIFAR10 CIFAR100 ImageNet
#Params FLOPs Top-1 #Params FLOPs Top-1 #Params FLOPs Top-1

Sh
uf

fle
N

et
V

1 Original model [40] 3.50M 166.49M 93.17% 3.67M 166.68M 75.32% 5.4M 524M 73.7%
Slimming [24] 0.53M 40.31M 93.15% 0.86M 49.01M 75.28% 4.1M 391M 72.5%

NFP [23] 0.53M 40.31M 93.17% 0.86M 49.01M 75.32% 4.1M 391M 72.8%
Ours w/o fusion 0.47M 36.11M 93.13% 0.86M 48.59M 75.31% 4.0M 387M 72.6%
Ours w fusion 0.47M 36.11M 93.17% 0.86M 48.59M 75.32% 4.0M 387M 72.8%

Sh
uf

fle
N

et
V

2 Original model [28] 2.47M 95.17M 92.55% 2.56M 95.27M 74.59% 3.5M 299M 72.6%
Slimming [24] 1.28M 43.73M 92.24% 1.65M 52.49M 74.58% 3.4M 284M 72.6%

NFP [23] 1.28M 43.73M 92.55% 1.65M 52.49M 74.59% 3.4M 284M 72.6%
Ours w/o fusion 1.14M 37.68M 92.52% 1.57M 51.02M 74.36% 3.3M 280M 72.5%
Ours w fusion 1.14M 37.68M 92.55% 1.57M 51.02M 74.59% 3.3M 280M 72.6%

G
ho

st
N

et

Original model [4] 3.63M 56.87M 91.18% 3.99M 57.18M 74.95% 5.2M 141M 73.9%
Slimming [24] 2.79M 25.76M 91.05% 3.36M 31.23M 74.94% 5.0M 122M 73.4%

NFP [23] 2.79M 25.76M 91.18% 3.36M 31.23M 74.95% 5.0M 122M 73.5%
Ours w/o fusion 2.75M 22.48M 89.92% 3.23M 26.61M 74.88% 4.9M 120M 73.4%
Ours w fusion 2.75M 22.48M 91.18% 3.23M 26.61M 74.95% 4.9M 120M 73.5%
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Figure 7. Statistics of numbers of channels of BN layers after each DWConv in MobileNetV1, MobileNetV2, ShuffleNetV1, ShuffleNetV2,
and GhostNet, respectively.

PFS [32] and NFP [23] with similar top-1 accuracies. It
is noted that PFS [32] increases the top-1 accuracy while
reducing few parameters and FLOPs.

Table 4 shows results of ShuffleNetV1, ShuffleNetV2,
and GhostNet on CIFAR10, CIFAR100, and ImageNet,

respectively. On CIFAR10 and CIFAR100, the pruned
ShuffleNetV1 uses less parameters than the pruned Shuf-
fleNetV2 and GhostNet, while the pruned GhostNet has less
FLOPs than the pruned ShuffleNetV1 and ShuffleNetV2.
The pruned ShuffleNetV2 takes a balance between parame-
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Figure 8. Performance comparison of our pruned models between fine-tuning from unpruned weights and from scratch.

ters and FLOPs compared to our pruned ShuffleNetV1 and
GhostNet. The results show that our method without fine-
tuning is able to achieve better performance than Slimming
[24] and NFP [23].

From the above experimental results provided in Ta-
bles 2∼4, the proposed criterion can reduce more param-
eters and FLOPs than the γ-based criterion [23, 24] when
similar top-1 accuracies are obtained. On the other hand,
the proposed criterion using both γ and β achieves a higher
accuracy than the γ-based criterion when similar numbers
of parameters are pruned. The γ-based pruning criterion
cannot prune channels with great |γ| but β + z · |γ| ≤ 0
because the criterion views these channels as important fea-
tures. On the contrary, the proposed criterion can effectively
prune these channels by taking advantage of both values of
γ and β. Therefore, the proposed criterion using both γ and
β can effectively improve the pruning performance.

From the experimental results, we can conclude that our
novel probability-based pruning method using the shifting
factor fusion technique can achieve a satisfactory perfor-
mance bonus compared to our method without fusion. It
should be noted that the proposed novel shifting factor fu-
sion allows a high accuracy without requiring extra time-
consuming fine-tuning. The experimental results show that
our novel probability-based pruning method outperforms
the state-of-the-art methods in terms of both accuracy and
size.

5.3. Visualization of pruned channels

The number of channels in the pruned model closely re-
lates to the accuracy as well as the speed. In order to demon-

strate the performance of proposed pruning method in prun-
ing channels, we visualize the statistics of numbers of chan-
nels of BN layers after each DWConv in Fig. 7.

There are four pruning cases for different BN channels
in our pruning method. As shown in Fig. 7, four cases are
visualized with different colors. In order to preserve the
channel consistency, adjacent two BN layers between each
DWConv layer share the same pruning scheme in our prun-
ing method. If one BN layer does not conform to the crite-
rion but another BN layer does, both BN layers and corre-
sponding ReLU and DWConv layers are effectively pruned
with our pruning method. Therefore, every pair of adja-
cent BN layers between each DWConv have the same num-
ber of channels for each case. An impressive percent of
channels conform to Case 3 that can take advantage of the
proposed shifting factor fusion technique. As illustrated in
Fig. 2 (c) and Fig. 2 (d), there is no ReLU after DWConv
in ShuffleNetV1 and ShuffleNetV2. Therefore, as shown in
Fig. 7, all pruned channels are classified as Case 3, which
means that shifting factor fusion should be applied to all
pruned channels in ShuffleNetV1 and ShuffleNetV2. Chan-
nels conforming to Case 1 are unpruned and thus used for
the pruned model. As a result, the proposed pruning method
is capable of pruning channels efficiently.

5.4. Ablation study on fine-tuning

Here we perform the ablation study on fine-tuning to fur-
ther validate the effectiveness of the proposed shifting factor
fusion technique.

We experiment to fine-tune our pruned model from un-
pruned weights [24] which are trained in the pre-training
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Figure 9. Statistics of the top-1 accuracy, FLOPs and number of parameters of the pruned MobileNetV1 and MobileNetV2 by varying the
value of z-score parameter z.

phase. We also experiment to fine-tune our pruned model
from scratch [26]. The performance comparison of our
pruned models between fine-tuning from unpruned weights
and from scratch is illustrated in Fig. 8. Please zoom in
for better visualization. We can see that the top-1 accu-
racy of fine-tuning from unpruned weights fluctuates over
a very small range around the top-1 accuracy without any
fine-tuning (i.e., result with zero epoch). Fine-tuning from
scratch trains learnable weights as same as the pre-training
phase except L1 regularization. Although the top-1 accu-
racy increases with the increase of fine-tuning epoch, the
top-1 accuracy is still slightly lower than that of our pruned
model without fine-tuning in 150 epochs.

As a consequence, our pruned model without any fine-
tuning has competitive performance compared to the pruned
model with unpruned weights and the pruned model from
scratch. The experimental results demonstrate that our
pruned model with the proposed shifting factor fusion tech-
nique does not require additional fine-tuning.

5.5. Ablation study on the z-score parameter z

Now we perform the ablation study on the z-score pa-
rameter z to study the sensitivity of the proposed pruning
method with respect to z.

We show statistics of the top-1 accuracy, FLOPs, and
number of parameters of the pruned models by varying the

value of z in Fig. 9. The proposed probability-based prun-
ing criterion is based on the z-score parameter z as defined
in Eq. 5. A greater z-score corresponds to a high probabil-
ity and vice versa. We can see that all of the top-1 accuracy,
FLOPs, and number of parameters monotonically increase
with the increase of z. The curves of these quantities rise
significantly when z < 2, rise slowly when z ∈ [2, 4], and
become stable when z > 4.

Both the accuracy and speed are important quantities
for a pruned model. Therefore, we empirically choose
z ∈ [2, 4] for a trade-off between accuracy and size.

6. Conclusions

In this paper, we have presented a novel efficient
probability-based channel pruning method for depthwise
separable convolutional networks. By leveraging the scal-
ing and shifting factors of BN, a simple yet effective
probability-based channel pruning criterion is proposed.
A novel shifting factor fusion technique is developed
to further improve the pruning performance. We have
validated the efficiency of the proposed channel prun-
ing method on representative depthwise separable convo-
lutional networks including MobileNetV1, MobileNetV2,
ShuffleNetV1, ShuffleNetV2, and GhostNet. Promising ex-
perimental results and comparisons have shown the feasi-



bility of the proposed method.
In the future, we would like to apply the proposed prun-

ing method to more depthwise separable convolutional net-
works. Moreover, we plan to use our pruned model as the
backbone for other computer vision tasks, such as object
detection and image segmentation.
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