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Abstract

We propose a novel method to untangle and optimize
all-hex meshes. Central to this algorithm is an adap-
tive boundary optimization process that significantly im-
proves practical robustness. Given an all-hex mesh with
many inverted hexahedral elements, we first optimize a
high-quality quad boundary mesh with a small approxi-
mation error to the input boundary. Since the boundary
constraints limit the optimization space to search for the
inversion-free meshes, we then relax the boundary con-
straints to generate an inversion-free all-hex mesh. We
develop an adaptive boundary relaxation algorithm to
implicitly restrict the shape difference between the re-
laxed and input boundaries, thereby facilitating the next
step. Finally, an adaptive boundary difference minimiza-
tion is developed to effectively and efficiently force the
distance difference between the relaxed boundary and
the optimized boundary of the first step to approach zero
while avoiding inverted elements. We demonstrate the
efficacy of our algorithm on a data set containing 1004 all-
hex meshes. Compared to previous methods, our method
achieves higher practical robustness.

1. Introduction

All-hex meshes are widely used in finite element method
to perform physical simulation [2, 33, 24]. Simulation re-
sults rely on both average and minimum hexahedral element
quality [25]. To avoid numerical instability, at least the
elements of all-hex meshes cannot be inverted [8].

The all-hex mesh generation process usually contains two
steps: (1) generate an initial mesh whose connectivity is
optimized to fit the input mesh; and (2) update the positions
of vertices to improve the mesh quality without changing
the connectivity. In this paper, we focus on the second step,
which is still an open and challenging research problem
(Figure 1). In practice, there are two common requirements.
First, the resulting all-hex mesh is of high-quality without
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Figure 1. Comparison with [23]. The hexes are color-coded by
their scaled Jacobian values using the left-most color bar. The
result of [23] generated by the authors’ provided implementation
contains inverted hexes (mustard yellow), whereas our result is
inversion-free. The text below each model indicates the minimum
scaled Jacobian Jyin and the average scaled Jacobian Javg.
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Figure 2. Comparison with [44]. We use the implementation
provided by the authors to generate the result of [44]. Our method
succeeds in removing all inverted hexes, whereas they fail. The text
below each model shows Jmin and Javg.

[44] (-0.930, 0.899)

inverted hexahedral elements. Second, boundary surface
preservation is required to obtain a high degree of similarity
between the input and the optimized shapes.

These two requirements affect each other. In general,
preserving boundary surfaces limits the movement of the
boundary vertices, so that the interior vertices cannot be
updated freely to obtain inversion-free meshes. To miti-
gate these mutual influences, the following pipeline is de-
veloped [44]. First, an inversion-free high-quality mesh is
generated without considering the boundary preservation
constraint. Second, the relaxed boundary is pulled back
to reduce the distance difference from the input boundary
while explicitly keeping high quality and avoiding inverted
elements.

It is challenging to design a practically robust algorithm
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Figure 3. Given input meshes containing inverted elements (upper row), we untangle them to be inversion-free (bottom row). To test the
practical robustness, we place the interior vertices randomly (middle column) and at one position (right column). For one model, we show its
boundary surface, one cross section, the minimum scaled Jacobian Jpin, and the average scaled Jacobian J,.e of the output mesh.

based on this pipeline, especially in the second step. The
second step relies on two factors. First, as the relaxed shape
after the first step is the initial shape of the second step,
the distance between the relaxed and the input boundaries
should be controlled to facilitate the second step. Second, the
optimization methods to effectively generate inversion-free
meshes and decrease the boundary distance are desired. To
the best of our knowledge, only one former method uses this
pipeline [44]; however, it does not carefully and holistically
consider these factors. Then, it fails to generate inversion-
free results for most models (Figures 2, 15, and 16).

In this paper, we propose a novel method to untangle
and optimize all-hex meshes. The algorithm follows the
aforementioned pipeline. For the first factor, our first step
is an adaptive boundary relaxation procedure that gradually
relaxes the boundary constraint to obtain an inversion-free
mesh. Since the used optimization solver [35] can eliminate
most inverted elements by just moving the interior vertices,
only small movements are required for all vertices to obtain
an inversion-free mesh, thereby implicitly constraining the
distance between the relaxed and the input boundaries. For
convenience, we define the distance between boundaries
as the sum of squared distance between the corresponding
vertices. To achieve a high-quality result, the input boundary
quad mesh is optimized to serve as the target of the relaxed
boundary in the second step. For the second factor, we
adaptively reduce the boundary distance to nearly zero while
keeping the mesh always inversion-free based on an elegant
second-order solver.

Although we cannot theoretically guarantee inversion-

free all-hex meshes in every case, our method has succeeded
in producing inversion-free meshes on a data set containing
1004 examples (Figure 3). Compared to existing methods,
our method is more practically robust and efficient (Fig-
ures 1, 2, 15, and 16).

2. Related Work

All-hex mesh untangling and optimization The most
common optimization approach is moving vertices to the
weighted average of their neighbors. Geometric flows are
also applied to improve all-hex mesh quality [48, 27]. How-
ever, there is no guarantee that the result mesh is inversion-
free [24]. Several methods [20, 39] start from an inversion-
free mesh and relocate vertices while avoiding inversions.
In practice, many raw hex-meshing outputs contain inverted
elements, limiting the utility of this approach. In addition,
keeping the intermediate solutions in the inversion-free space
causes that the result is far from the optimal solution.

Many methods first untangle inverted elements, and then
improve mesh quality. To correct inverted hex elements,
Gauss-Seidel style optimizations are used [16, 20, 43, 29,

]. Global non-linear optimization methods have also been
developed [3 1, 42]. Other optimization techniques for spe-
cific types of hex-meshes also exist, such as the quality im-
provement method for octree-based hex-meshes [36]. Edge-
cone rectification is presented to generate inversion-free ele-
ments [23] by minimizing a combined energy, which consid-
ers both the boundary surface preservation and inversion-free
constraints. These two considerations limit the search space
to eliminate the inverted elements (Figure 1). [44] proposes
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Figure 4. Workflow of our method. Given an initial all-hex mesh M containing a lot of inverted elements (mustard yellow) (a), our method
first optimizes the boundary quad surface 3 to generate a high-quality quad surface Boy (b), then relaxes the boundary constraint to obtain
an inversion-free mesh R (c), and finally minimizes the difference between the boundary of R and Boy to achieve the resulting mesh A/ (d).
In (a, c, d), we show the boundary surface, one cross section, the minimum scaled Jacobian Jmin, and the average scaled Jacobian Jayg.

an edge-angle optimization method for untangling. More-
over, this method enables the deformation of the boundary
surface during the untangling process, which provides more
space to gain a valid solution. Our method also allows relax-
ing boundary surface preservation. However, [44] does not
use the relaxation insight carefully and holistically, thereby
leading to failure cases (Figure 2).

In addition to moving vertices while fixing connectivity,
there are some topological optimization methods to untangle
inverted elements and improve mesh quality [40, 41].

Inversion-free  volumetric mappings Computing
inversion-free volumetric mappings is usually formulated
as a non-convex and nonlinear constrained optimization
problem (cf. the survey in [7]). Maintenance-based
methods start from an inversion-free initialization and
minimize mapping distortion while keeping the mapping
always staying in the inversion-free space through barrier
functions [32, 6, 22] or explicit check [19, 28, 15, 49].
Although these methods guarantee inversion-free, it is very
challenging to compute inversion-free initializations in 3D.
We first generate an inversion-free initialization and then use
this method to reduce the boundary difference and improve
mesh quality. Given initializations with inverted elements,
many methods try to eliminate the inverted elements, such
as bounded distortion mappings [I, 17], projection-based
methods [35, 18, 5], area-based methods [3] and penalty-
based methods [37, 4, 45, 10]. To generate an inversion-free
initialization, we use the projection-based method [35]
while relaxing the boundary constraint.

3. Method

3.1. Overview

Input and goal The input is an all-hex mesh M that con-
tains many inverted hexahedral elements. Its boundary sur-
face is a quad mesh B. Our goal is to untangle the input
mesh M to generate an inversion-free mesh A that shares
the same connectivity with M. The approximation error

(e.g., two-sided Hausdorff distance) between the boundaries
of M and N is small. Namely, we should preserve the
boundary surface 3 of M after the mesh optimization.

Methodology The boundary surface preservation require-
ment and the inversion-free constraint are mutually restric-
tive, so it is very challenging to generate the desired mesh .
To decouple the mutual influence, we first relax the boundary
surface preservation constraint to produce an inversion-free
mesh R whose boundary surface B, may have a large dis-
tance from B, same as [44]. Then, we deform R to reduce
the approximation error between B, and B while keeping
inversion-free.

Workflow According to the methodology above, we pro-
pose a novel algorithm containing three steps:

1. We optimize the vertices of B to produce a new mesh
Bopt that contains high-quality quads and has low ap-
proximation error from B.

2. We initialize the interior vertices of R as those of M
and the boundary vertices of R as B,y. Then we opti-
mize R via an adaptive boundary relaxation procedure
that progressively relaxes the boundary preservation
constraint (Section 3.2).

3. We generate N by deforming R via an adaptive bound-
ary difference minimization process that adaptively en-
hances the penalization of the difference between B,
and B,y until it is close to zero while avoiding intro-
duction of inverted elements (Section 3.3).

Figure 4 shows an example of our workflow. The adap-
tive boundary relaxation is developed to control the differ-
ence between B, and By, thereby reducing the difficulty
in minimizing their difference in the last step. Our adaptive
boundary difference minimization is to quickly reduce the
difference between B, and B to nearly zero.

The optimized quad mesh B, serves as the target bound-
ary of the resulting mesh. Thus, we want to optimize each
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Figure 5. Left: the input mesh, whose interior vertices are at

one position. Middle: the relaxation result (2 inverted elements)
without adaptive boundary relaxation, i.e., A = 0 is fixed. Right:
our relaxation result with adaptive boundary relaxation.

quad to be similar to a square while preserving the sharp
features of B. This goal has been realized by many previous
methods [1 1, 14, 21, 13], and the elegant method of [13] is
applied to compute B, here.

3.2. Adaptive boundary relaxation

Formulation and solver We relax the boundary preser-
vation constraint to generate an inversion-free mesh. The
optimization problem is formulated as follows:

m,]%n Einversion (R) + )\Edistance(Bra Bopt)a (1)

where FEipyersion(R) is used to remove inverted elements,
FEldistance (Br, Bopt) indicates the distance between two bound-
aries, and ) is a positive weight to control the strength of
the boundary relaxation. As B, and B share the same
connectivity, Egistance (Br, Bopt) is defined as the sum of the
squared distance between the corresponding vertices.

A hex is treated as a union of eight overlapping tetrahe-
drons, each of which is formed by one corner vertex and its
three adjacent vertices in this hex. A piecewise linear map
is defined from a trirectangular tetrahedron of a unit cube
to one tetrahedron. To obtain an inversion-free mesh R, we
require that the determinant of the Jacobian matrix of each
piecewise linear map is greater than zero. We follow [35] to
define Einversion (R)

8
Einversion(R) = Z Z ||Jh,i - Ah,i |%‘7 (2)

heH i=1

where h is a hex of the hex set H of R, Jy,; is the Jacobian
matrix of the piecewise linear map of i tetrahedron in h,
Ap ; represents an auxiliary variable for the closest projec-
tion of Jy, ; onto a bounded conformal distortion space, and
|| - || = denotes the Frobenius norm.

Since Egistance (Br, Bopt) is @ quadratic energy term, the
solver of [35] can be directly used to optimize (1) with a A.

(—0.994,0.058)  (—0.090,0.625) (0.517,0.940)
Figure 6. The process of adaptive boundary relaxation. Left: the
input mesh. Middle: the resulting mesh (11 inverted elements) after
optimization by setting A = oo. Right: the optimized result (no
inverted elements) after using A = 0. Below each model, we show
Jmin and Javg.

Adaptive relaxation )\ plays an important role in the
boundary relaxation process. Intuitively, relaxing the bound-
ary indicates A = 0. However, this choice does not impose
any constraints on the boundary, so that the relaxed boundary
B, is far away from B, thereby causing two main issues
(Figure 5):

e The difficulty of the next optimization step is signifi-
cantly increased.

¢ In extreme cases, the inversion-free mesh R cannot be
generated.

Here, we propose an adaptive adjustment of A to re-
solve these two issues. As shown in [35], optimizing
FElistance (B, Bopr) while fixing the boundary can remove
most inverted elements. Therefore, we adjust A as follows:

1. By setting A = o0, i.e., fixing the boundary vertices,
we solve (1) until termination.

2. We allow the boundary to move freely by setting A = 0
until termination.

This simple strategy succeeds in generating inversion-free
meshes without producing large Ejgisiance (B, Bopt) for our
testing date set containing 1004 input meshes. Figure 6
shows an example of our adaptive strategy.

3.3. Adaptive boundary difference reduction

Formulation As R is inversion-free after the adaptive
boundary relaxation, we want to keep inversion-free when
reducing the boundary difference. We formulate the opti-
mization problem as follows:

m%n Eistortion (R) + >\2Edistance(B7"7 BOpt)7 3)

where Egisorion (R ) is an inversion-preventing term that goes
to infinity when a hex flips or degenerates and A5 is a positive
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Figure 7. Adaptive boundary difference reduction process, the
initialization of which is shown in Figure 6 - Right. (a) The mesh
(Edistance = 3204.220) after the first iteration with Ao = 0.002.
(b) The mesh (Fqistance = 35.521) after the second iteration with
A2 = 0.203. (c) The mesh (Fgistince = 0.009) after the third
iteration with Ao = 775.721. (d) The mesh after post-optimization.
The text below each model indicates Jmin and Javg.

weight. At the same time, Flgigorion(R) is also a term to
measure the quality of hexes. We use the symmetric Dirichlet
energy to define Egisortion(R):

8
Bisiorion(R) = > > D(Jni), )

heH i=1

where jh,i is the Jacobian of the mapping from a trirectan-
gular tetrahedron of a cuboid to one tetrahedron, and

D) = & Wil + 1l if det( i) > 0.
" 0, otherwise.

We compute the length, width and height of the reference
cuboid as the average lengths of the four edges on the corre-
sponding directions.

Adaptive reduction To make Elgisiance (B, Bopt) approach
zero, the following optimization process is developed:

1. Set the iteration number k = 1.

2. Adaptively update A, as follows [47]:

Edistortion (R(k))

A2 min(Apin - max(100x ®
Edistance(B'r‘ >Bopt)

)
where R(*) is the hex mesh at k™ iteration, ng) is the
boundary surface of R), A\in = 1072, and Apay =
10'® in our experiments.

3. The second-order solver of [34] is used to com-
pute a descent direction d®) of Egigorion(R*)) +

>\2 Edistance (ng) ) Bopt) .

4. Along d®) | a standard Armijo backtracking algorithm

is performed to determine the step size and compute
R(k+1)

(5 (0702,0814) (©) (0.178, 0.897)
Figure 8. Left: the input mesh. Middle: the resulting mesh (26

inverted elements) by setting A\ = 1000 without adaptive boundary
relaxation. Right: our result (no inverted elements) with adaptive
boundary relaxation. Below each model, Jmin and Jayg are shown.
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(a) (0.637,0.969) (b) (0.652,0.971) (¢) (0.669, 0.963)
Figure 9. Various initializations. (a) The input mesh with 16862
hexahedral elements. (b) The mesh generated by random place-
ment of vertices. (c) The mesh generated by relocating all interior
vertices to one position. The number in the first row indicates the
number of input inverted elements. We show Jmin and Javg below
each result model.

(a) (-0.999,0.044)  (b) (0.254,0.984) (c) (-0.753,0.887) (d) (0.471,0.976)
Figure 10. Feature preservation. Given the input mesh with sharp
features(a)(c), our algorithm succeeds in generating high-quality
meshes while preserving sharp features(b)(d).

5.k «— k + 1. We terminate the iteration if
Edistame(Bg«k),Bopt) < 10715 or k£ > 10; otherwise,
we go to Step 2.

We show an example in Figure 7. In the aforementioned op-

), Amax ) timization process, Ao will increase after Fyigiance decreases,
) )

thereby making the solver focus on penalizing FEgisance tO
approach zero. This adaptive optimization process works
very well in practice, and it takes at most 5 iterations to
converge in all our tested examples. To further improve our
mesh quality, we use the method in [9] to optimize the ver-
tex position without modification of the mesh connectivity
(Figure 7 (d)).

4. Experiments

We have tested our algorithm on various all-hex meshes
to evaluate its performance. Our method is implemented in
C++, and all the experiments are performed on a desktop PC
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Figure 11. Gallery. Our method succeeds in generating inversion-free hex-meshes.

with a 4.00 GHz Intel Core 17-4790K and 16 GB of RAM.
The linear systems are solved using the Intel® Math Ker-
nel Library. Statistics and timings for all the demonstrated
examples are reported in Table 1.

Without boundary relaxation We test the necessity of
the boundary relaxation process. A large A in (4) can be
applied to preserve the boundary surface. Then, we solve (4)
with A = 1000 to consider both the boundary preservation
constraint and inversion-free constraint. We compare this
setting in Figure 8. Although boundary preservation is a
soft constraint, it still limits the valid space for searching the
inversion-free meshes. Then, the movements of vertices near
the boundary are restricted to a large extent. Thereby, some
inverted elements near the boundary can not be removed. In
short, the boundary relaxation is necessary.

Various initializations We test three types of initializa-
tions for one model: (1) original mesh, (2) randomly placing
the vertices, (3) relocating all interior vertices to one posi-
tion. Our algorithm succeeds for every type, as shown in
Figure 9. The computational times are (4.6, 70.3 for Fig-
ure 9 (a)), (6.0, 48.1 for Figure 9 (b)), and (9.3, 66.5 for
Figure 9 (¢)) in seconds, respectively. We observed that the
convergence speed is not seriously affected by the initializa-
tion. Besides, the resulting scaled Jacobian values are very
similar, demonstrating that our algorithm is not sensitive to

the initialization.

Feature preservation Preserving features are important
for all-hex mesh generation [26, 12]. Our optimization
method can be modified for feature preservation. First, the
boundary edges whose dihedral angle is smaller than 140°
are detected as sharp features. Secondly, we classify all the
boundary vertices into three types, i.e., corner vertices, fea-
ture line vertices, and regular vertices, as introduced in [23].
During the optimization of the boundary quad-mesh, the
corner vertice is fixed, the feature line vertex can move along
the feature line, and the regular vertex is projected to its
tangent plane. After pulling the boundary back to appraoch
the optimized quad boundary, the features are preserved. We
test our algorithm on models with sharp features provided
by [12], as shown in Figure 10. High-quality meshes are
obtained while preserving sharp features.

Testing on a data set To verify the effectiveness and ro-
bustness of our method, we test our algorithm on a data
set containing 1004 models. The data set contains three
parts. The first part is provided by [46]. Then, we artificially
corrupt the models in the first part by random vertex dis-
placement to have a high ratio of inverted elements. Finally,
we place all interior vertices of each model in the first part at
one position to generate the third part. Our method succeeds
in generating inversion-free and high-quality hex-meshes for



Figure 12. Results on artificially corrupted inputs. Our method succeeds in generating inversion-free results.
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Figure 13. We plot the computation time (in minutes) vs. the

number of hexes (/Viex) (upper), and the running time (in minutes)
vs. the number of inverted elements (N, ) (bottom).

Adaptive boundary relaxation{ Adaptive boundary difference reduction
1800 rNiv N =00 A=0 dgq 0.5
1600
1400 104
1200 {4 : L] 03
1000 Q ‘ '
oo | 7 )10
600 Niny \ i ( /
400 ) <] o
200 L Output

0 L L 0
0 50 100 150 200 250 300 350

Figure 14. Timings. The graph plots the number of inverted
elements (Njyy) vs. time (in seconds) and the two-sided Hausdorff
distance (dg) (w.r.t. the diagonal length of the bounding box of the
input mesh ) vs. time (in seconds) for the Stool model.

all models (Figures 11, 12, and 15). Results on our data set
demonstrate the practical robustness of our method.
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Figure 15. The success rates of three methods.

Ours
Figure 16. Comparisons with [23] (second column) and [44] (third
column) on four models.



Complexity of our algorithm The complexity of our al-
gorithm is affected by both the size and quality of input
models, i.e., the number of hexes and the number of inverted
hexes. We plot the running time with respect to the number
of hexes in Figure 13 - upper and the computational time
with respect to the number of inverted hexes in Figure 13 -
bottom. When one of the two numbers increases, the com-
putation time becomes longer. The longest computational
time in our experiment is 283.8 minutes, where the model
contains 269786 hexes and 9090 inverted hexes. What’s
worse, almost all inverted elements of this model are near
the boundary, increasing difficulty to remove the inversions.
In practice, our algorithm is efficient for most models.

Timings We plot the number of inverted elements and the
two-sided Hausdorff distance with respect to time in Fig-
ure 14. The number of inverted hexes tends to decrease over
time in the adaptive boundary relaxation, and it is fixed to
zero during the adaptive boundary difference reduction step.
The Hausdorff distance becomes larger in adaptive bound-
ary relaxation step and decreases in the adaptive boundary
difference reduction step.

Comparisons We compare with the two previous meth-
ods: [23] and [44]. We use authors’ provided implemen-
tations to generate their results. Our method successfully
computes inversion-free results for all models while their
success rates are both below 30%, as shown in Figure 15.
Figure 16 shows comparisons on four examples. Our method
is able to eliminate all the inverted elements and generate
high-quality meshes while they both fail. Besides, our ap-
proach is faster than theirs. We observed that [23] does not
generate inversion-free results for some examples even if
it runs for a long time. For example, the result of [23]in
Figure 1 still contains 109 inverted elements after running
for more than 6.5 hours. For Figure 2, it takes over 4 minutes
to get the result containing 18 inverted elements using the
method of [44], while our method succeeds in generating an
inversion-free result within 1 minute. Besides, the method
of [44] is very sensitive to the selection of the algorithm
parameters. Our method is more robust and general due to
the adaptive boundary optimization strategy.

5. Conclusion

In this paper, we present a novel framework to geomet-
rically optimize hexahedral meshes. Given an input all-hex
mesh with inversions, we firstly generate a quad mesh with
high quality and small difference to the input boundary mesh.
Then we relex the boundary preservation constraint and opti-
mize for an inversion-free hex mesh. At last, we minimize
the difference between the boundary of inversion-free mesh
and the optimized quad mesh of the first step without bring-
ing in inverted elements. We have tested our algorithm on a

large data set with different initializations. The results show
that our algorithm outperforms the previous methods.

Theoretical guarantee Although we successfully com-
pute high-quality inversion-free results with small Hausdorff
distances for 1004 hexahedral meshes, our success is not
theoretically guaranteed. Since mesh connectivity constrains
the valid space of inversion-free volumetric mappings, adap-
tively changing the connectivity during the optimization may
be a way to guarantee our success. Developing a theoretically
guaranteed method by employing connectivity modifications
is still an interesting direction for future research.

Inversion check We verify the inversion of a hexahedron
by checking whether one of the eight corresponding tetra-
hedrons is inverse. However, [38] empirically studied this
metric and found it insufficient. We would like to extend our
method to support a more reliable metric for inversion check
of hexahedrons.
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Fig. 3 (b) 16720 | -1.000 | -0.037 | 7964 0.440 | 0.971 0 0.00502 53 126.5
Fig. 3 (¢) 7083 | -0.981 | 0.187 187 0.502 | 0.951 0 0.00501 3.1 24.3
Fig. 4 (d) 33232 | -1.000 | -0.064 | 17141 | 0.413 | 0.936 0 0.00981 11.2 193.1
Fig. 7 (d) 10600 | -0.994 | -0.058 | 5690 0.545 | 0.958 0 0.00657 40.3 34.1
Fig. 8 (¢) 69523 | 0.756 | -0.988 | 2103 0.178 | 0.897 0 0.00554 28.7 672.0
Fig. 9 (a) 16862 | -0.999 | -0.068 40 0.637 | 0.969 0 0.00569 4.6 70.3
Fig. 9 (b) 16862 | -0.999 | -0.068 | 8921 0.652 | 0.971 0 0.00604 6.0 48.1
Fig. 9 (c) 16862 | -0.999 | -0.068 | 2662 0.669 | 0.963 0 0.00632 9.3 66.5
Fig. 10 (b) 85719 | -0.999 | 0.044 | 36600 | 0.254 | 0.984 0 0.00204 16.3 719.1
Fig. 10 (d) 40488 | -0.753 | 0.887 822 0.471 | 0.976 0 0.00717 12.0 41.2
Fig. 1 row l,col 1 | 17964 | -0.908 | 0.795 663 0.392 | 0.953 0 0.00859 20.6 70.3
Fig. Il row 1,col 2 | 13716 | -0.717 | 0.817 271 0.414 | 0.875 0 0.00315 2.2 48.1
Fig. 11 row 1,col 3 | 22817 | -0.920 | 0.817 643 0.264 | 0915 0 0.00596 493 152.4
Fig. 11 row 1,col 4 | 65646 | -0.992 | 0.836 1423 0.338 | 0.970 0 0.00972 90.7 318.3
Fig. 11 row 2,col 1 | 40724 | -0.955 | 0.827 1188 0.379 | 0.967 0 0.00996 7.1 2354
Fig. 11 row 2,col 2 | 14130 | -0.958 | 0.753 380 0.241 | 0.868 0 0.00427 3.7 60.1
Fig. 11 row 2,col 3 | 36240 | -0.414 | 0.824 32 0.423 | 0.936 0 0.00443 14.3 122.2
Fig. 11 row 3,col 1 | 50063 | -0.576 | 0.925 139 0.447 | 0.982 0 0.00863 10.3 318.4
Fig. 11 row 3,col 2 | 65322 | 0.998 | 0.905 893 0.381 | 0.982 0 0.00976 89.6 769.2
Fig. 11 row 3,col 3 | 29935 | -0.755 | 0.686 323 0.283 | 0.879 0 0.01030 6.3 78.0
Fig. 12row l,col 1 | 11174 | -0.999 | -0.274 | 8854 0.387 | 0.960 0 0.00751 12.2 86.5
Fig. 12row 1,col 2 | 4972 | -1.000 | -0.270 | 3510 0.521 | 0.895 0 0.00496 2.7 21.3
Fig. 12 row l,col 3 | 4539 | -0.999 | -0.482 | 4116 0.744 | 0.980 0 0.00551 19.6 20.5
Fig. 12 row 1,col 4 | 18679 | -0.999 | -0.073 | 9739 0.580 | 0.963 0 0.00451 9.2 137.3
Fig. 12 row 2,col 1 | 35293 | -0.998 | 0.075 4168 0.417 | 0.958 0 0.00667 14.5 86.3
Fig. 12 row 2,col 2 | 37119 | -0.925 | -0.011 1303 0.258 | 0911 0 0.00255 13.9 269.1
Fig. 12 row 2,col 3 | 33880 | -1.000 | -0.108 | 4947 0.307 | 0.960 0 0.00976 14.6 157.8
Fig. 14 69278 | -0.999 | 0.801 2461 0.314 | 0.971 0 0.00762 156.5 | 203.7
Fig. 16 row 1,col 2 | 57196 | -0.924 | 0.823 1119 | -0.949 | 0.945 81 0.00972 1719.6 \
Fig. 16 row 1,col 3 | 57196 | -0.924 | 0.823 1119 | -0.981 | 0.858 54 0.02023 2221.7 \
Fig. 16 row 1,col 4 | 57196 | -0.924 | 0.823 1119 0.250 | 0.907 0 0.00683 13.3 409.5
Fig. 16 row 2,col 2 | 55769 | -0.924 | 0.891 250 -0.173 | 0.971 7 0.00821 840.8 \
Fig. 16 row 2,col 3 | 55769 | -0.924 | 0.891 250 -0.531 | 0.900 11 0.00779 1323.6 \
Fig. 16 row 2,col 4 | 55769 | -0.924 | 0.891 250 0.426 | 0.982 0 0.00734 8.7 511.3
Fig. 16 row 3,col 2 | 20288 | -0.997 | 0.819 375 -0.401 | 0912 8 0.00818 353.4 \
Fig. 16 row 3,col 3 | 20288 | -0.997 | 0.819 375 -0.987 | 0.856 | 44 0.01318 245.2 \
Fig. 16 row 3,col 4 | 20288 | -0.997 | 0.819 375 0.297 | 0.936 0 0.00791 33.0 102.4
Fig. 16 row 4,col 2 | 23744 | -0.997 | 0.719 1297 | -0.796 | 0.834 | 497 0.00961 817.0 \
Fig. 16 row 4,col 3 | 23744 | -0.997 | 0.719 1297 | -0.971 | 0.794 94 0.00942 663.2 \
Fig. 16 row 4,col 4 | 23744 | -0.997 | 0.719 1297 0.322 | 0.935 0 0.00945 39.1 139.5

Table 1. Statistics and timings. For each model, we report the number of the input hexahedra elements (/Viex), the minimum scaled
Jacobian (Jmin), the average scaled Jacobian (Javg), the number of inverted elements (/Viy) before and after optimization, and the Hausdorff
distance(d ) between the output boundary mesh and the input boundary mesh. We show the computational time in seconds required for the
first step (¢1) and the second step (¢2) for our method. We also include the statistics and timing results for competitors. For each competitor,
t1 means its total computational time and ¢ is not used.
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