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Abstract

Humans can naturally and effectively find
salient regions in complex scenes. Motivated
by this observation, attention mechanisms were
introduced into computer vision with the aim
of imitating this aspect of the human visual
system. Such an attention mechanism can be re-
garded as a dynamic weight adjustment process
based on features of the input image. Attention
mechanisms have achieved great success in many
visual tasks, including image classification, ob-
ject detection, semantic segmentation, video un-
derstanding, image generation, 3D vision, multi-
modal tasks and self-supervised learning. In this
survey, we provide a comprehensive review of
various attention mechanisms in computer vision
and categorize them according to approach, such
as channel attention, spatial attention, temporal
attention and branch attention; a related reposi-
tory will be dedicated to collecting related work.
We also suggest future directions for attention
mechanism research.

1. Introduction

Methods for diverting attention to the most impor-
tant regions of an image and disregarding irrelevant
parts are called attention mechanisms; the human vi-
sual system uses one [69, 54, , 28] to assist in an-
alyzing and understanding complex scenes efficiently
and effectively. This in turn has inspired researchers
to introduce attention mechanisms into computer vi-
sion systems to improve their performance. In a vi-
sion system, an attention mechanism can be treated as
a dynamic selection process that is realized by adap-
tively weighting features according to the importance
of the input. Attention mechanisms have provided
beneficial in very many visual tasks, e.g. image clas-
sification [66, 130], object detection [29, 11], semantic
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Figure 1. Attention mechanisms can be categorised ac-
cording to data domain. These include four fundamental
categories of channel attention, spatial attention, temporal
attention and branch attention, and two hybrid categories,
combining channel & spatial attention, and spatial & tem-
poral attention. @) means such combinations do not (yet)
exist.
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In the past decade, the attention mechanism has
played an increasingly important role in computer vi-
sion; Fig. 3, briefly summarizes the history of attention-
based models in computer vision in the deep learning era.
Progress can be coarsely divided into four phases. The
first phase begins from RAM [97], pioneering work that
combined deep neural networks with attention mecha-
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Figure 2. Channel, spatial and temporal attention can be
regarded as operating on different domains. C represents the
channel domain, H and W represent spatial domains, and
T the temporal domain. Branch attention is complementary
to these. Figure following [132].

nisms. It recurrently predicts the important region and
updates the whole network in an end-to-end manner
through a policy gradient. Later, various works [46, 139)]
adopted a similar strategy for attention in vision. In this
phase, recurrent neural networks(RNNs) were necessary
tools for an attention mechanism. At the start of the sec-
ond phase, Jaderberg et al. [70] proposed the STN which
introduces a sub-network to predict an affine transfor-
mation used to to select important regions in the input.
Explicitly predicting discriminatory input features is the
major characteristic of the second phase; DCNs [29, 178]
are representative works. The third phase began with
SENet [66] which presented a novel channel-attention
network which implicitly and adaptively predicts the po-
tential key features. CBAM [130] and ECANet [125] are
representative works of this phase. The last phase is the

self-attention era. Self-attention was firstly proposed
in [121] and rapidly provided great advances in the field
of natural language processing [121, 34, 119]. Wang et
al. [128] took the lead in introducing self-attention to
computer vision and presented a novel non-local net-
work with great success in video understanding and
object detection. It was followed by a series of works
such as EMANet [381], CCNet [(67], HamNet [14] and
the Stand-Alone Network [106], which improved speed,
quality of results, and generalization capability. Re-
cently, various pure deep self-attention networks (visual
transformers) [36, 153, 127, 92, 131, 48, 154, 31] have
appeared, showing the huge potential of attention-based
models. It is clear that attention-based models have
the potential to replace convolutional neural networks
and become a more powerful and general architecture
in computer vision.

The goal of this paper is to summarize and classify
current attention methods in computer vision. Our
approach is shown in Fig. 1 and further explained in
Fig. 2: it is based around data domain. Some methods
consider the question of when the important data oc-
curs, others where it occurs, etc., and accordingly try
to find key times or locations in the data. We divide
existing attention methods into six categories which
include four basic categories: channel attention (what
to pay attention to [17]), spatial attention (where to
pay attention), temporal attention (when to pay atten-
tion), and branch channel (which to pay attention to),
along with two hybrid combined categories: channel
& spatial attention, and spatial & temporal attention.
These ideas are further briefly summarized together
with related works in Tab. 2.

The main contributions of this paper are:

e a systematic review of visual attention methods,
covering the development of visual attention mech-
anisms as well as current research,

e a categorisation grouping attention methods ac-
cording to their data domain, allowing us to link
visual attention methods independently of their
particular application, and

e suggestions for future research in visual attention.

Sec. 2 considers related surveys, then Sec. 3 is the
main body of our survey. Suggestions for future research
are given in Sec. 4 and finally, we give conclusions in
Sec. 5.

2. Other surveys

In this section, we briefly compare this paper to
various existing surveys which have reviewed atten-
tion methods and visual transformers. Chaudhari et



Figure 3. Brief summary of key developments in attention in computer vision since RAM [97], which have loosely occurred
in four phases. Phase 1 adopted RNNs to construct attention, a representative method being RAM [97]. Phase 2 explicitly
predicted important regions, a representative method being STN [70]. Phase 3 implicitly completed the attention process, a
representative method being SENet [66]. Phase 4 used self-attention methods [128, 121, 30].

Table 1. Key notation in this paper. Other minor notation
is explained where used.

Symbol Description

X input feature map, X € REXHxW
Y output feature map

w learnable kernel weight
FC fully-connected layer
Conv convolution

Jave global average pooling
Gmax global max pooling

[ ] concatenation

5 ReLU activation [98]

o sigmoid activation

tanh tanh activation

Softmax  softmax activation

BN batch normalization [68]
Expand  expan input by repetition

al. [13] provide a survey of attention models in deep
neural networks but concentrates on their application
to natural language processing, while our work focuses
on computer vision. Two more specific surveys [52, 71|
summarize the development of visual transformers while
our paper reviews attention mechanisms in vision more
generally, not just self-attention mechanisms. Wang et
al. [124] present a survey of attention models in com-
puter vision, but it only considers RNN-based attention
models, which form just a part of our survey. In addi-

tion, unlike previous surveys, we provide a classification
which groups various attention methods according to
their data domain, rather than according to their field
of application. Doing so allows us to concentrate on
the attention methods in their own right, rather than
treating them as supplementary to other tasks.

3. Attention methods in computer vision

This section reviews our various categories of atten-
tion models given in Fig. 1, with a subsection dedicated
to each category. In each, we tabularize representative
works for that category. We also examine that cate-
gory of attention strategy more deeply, considering its
development in terms of motivation, formulation and
function.

3.1. Channel Attention

In deep neural networks, different channels in differ-
ent feature maps usually represent different objects [17].
Channel attention adaptively recalibrates the weight of
each channel, and can be viewed as an object selection
process, thus determining what to pay attention to. Hu
et al. [66] first proposed the concept of channel atten-
tion and presented SENet for this purpose. As Fig. 4
shows, and we discuss shortly, three streams of work
continue to improve channel attention in different ways.

We first summarize the representative channel atten-
tion works in Tab. 3 and Fig. 5. Then we discuss various
channel attention methods along with their development
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Figure 4. Developmental context of visual attention, following [176].

process respectively.

3.1.1 SENet

SENet [66] pioneered channel attention. The core of
SENet is a squeeze-and-excitation (SE) block which is
used to collect global information, capture channel-wise
relationships and improve representation ability.

SE blocks are divided into two parts, a squeeze mod-
ule and an excitation module. Global spatial informa-
tion is collected in the squeeze module by global average
pooling. The excitation module captures channel-wise
relationships and outputs an attention vector by us-

ing fully-connected layers and non-linear layers (ReL.U
and sigmoid). Then, each channel of the input feature
is scaled by multiplying the corresponding element in
the attention vector. Overall, a squeeze-and-excitation
block Fg (with parameter ) which takes X as input
and outputs Y can be formulated as:

s = FSC(X, 0) = O'(WQCS(ngavg(X)))
Y =s5X

(1)
(2)
SE blocks play the role of emphasizing important chan-

nels while suppressing noise. An SE block can be added
after each residual unit [57] due to their low compu-



Table 2. Brief summary of attention categories and key related works.

Attention
gory

cate-

Description

Related work

Channel attention

Generate attention mask across the channel
domain and use it to select important channels.

Spatial attention

Generate attention mask across spatial do-
mains and use it to select important spatial
regions (e.g. [128, 65]) or predict the most rel-
evant spatial position directly (e.g. [97, 29]).

Branch attention

branches.

Generate attention mask across the differ-
ent branches and use it to select important

Temporal attention
select key frames.

Generate attention mask in time and use it to | [140, 162, 15]

Channel & spatial
attention separately (e.g. [130,

rectly (e.g. [148, ,
important features.

Predict channel and spatial attention masks | [130, , , 86, 96, 17, 84], [108, 40,
|) or generate a joint , , , , ], [122, 14, 19, 62,
3-D channel, height, width attention mask di- |

]) and use it to select

Spatial & temporal

attention separately (e.g. [113,

focus on informative regions.

Compute temporal and spatial attention masks | [43, , , 95, 55, 77], [165, , 87]
|), or produce a joint
spatiotemporal attention mask (e.g. |

]), to

tational resource requirements. However, SE blocks
have shortcomings. In the squeeze module, global av-
erage pooling is too simple to capture complex global
information. In the excitation module, fully-connected
layers increase the complexity of the model. As Fig. 4
indicates, later works attempt to improve the outputs
of the squeeze module (e.g. GSoP-Net [181]), reduce
the complexity of the model by improving the exci-
tation module (e.g. ECANet [125]), or improve both
the squeeze module and the excitation module (e.g.
SRM [73]).

3.1.2 GSoP-Net

An SE block captures global information by only using
global average pooling (i.e. first-order statistics), which
limits its modeling capability, in particular the ability
to capture high-order statistics.

To address this issue, Gao et al. [181] proposed to im-
prove the squeeze module by using a global second-order
pooling (GSoP) block to model high-order statistics
while gathering global information.

Like an SE block, a GSoP block also has a squeeze
module and an excitation module. In the squeeze mod-
ule, a GSoP block firstly reduces the number of chan-
nels from ¢ to ¢ (¢’ < ¢) using a 1zl convolution, then
computes a ¢’ x ¢’ covariance matrix for the different
channels to obtain their correlation. Next, row-wise
normalization is performed on the covariance matrix.
Each (7, j) in the normalized covariance matrix explic-
itly relates channel ¢ to channel j.

In the excitation module, a GSoP block performs
row-wise convolution to maintain structural information
and output a vector. Then a fully-connected layer and
a sigmoid function are applied to get a c-dimensional
attention vector. Finally, it multiplies the input features
by the attention vector, as in an SE block. A GSoP
block can be formulated as:

s = Fyeop(X,0) = o(WRC(Cov(Conv(X))))  (3)
Y =sX (4)
Here, Conv(-) reduces the number of channels, Cov(-)

computes the covariance matrix and RC(-) means row-
wise convolution.



By using second-order pooling, GSoP blocks have
improved ability to collect global information over the
SE block. However, this comes at the cost of additional
computation. Thus, a single GSoP block is typically
added after several residual blocks.

3.1.3 SRM

Motivated by successes in style transfer, Lee et al. [73]
proposed the lightweight style-based recalibration module
(SRM). SRM combines style transfer with an attention
mechanism. Its main contribution is style pooling which
utilizes both mean and standard deviation of the input
features to improve its capability to capture global in-
formation. It also adopts a lightweight channel-wise
fully-connected (CFC) layer, in place of the original
fully-connected layer, to reduce the computational re-
quirements.

Given an input feature map X € RE*H*W SRM
first collects global information by using style pool-
ing (SP(-)) which combines global average pooling and
global standard deviation pooling. Then a channel-wise
fully connected (CFC(-)) layer (i.e. fully connected per
channel), batch normalization BN and sigmoid function
o are used to provide the attention vector. Finally, as
in an SE block, the input features are multiplied by the
attention vector. Overall, an SRM can be written as:

Y = sX (6)

The SRM block improves both squeeze and excitation
modules, yet can be added after each residual unit like
an SE block.

3.1.4 GCT

Due to the computational demand and number of pa-
rameters of the fully connected layer in the excitation
module, it is impractical to use an SE block after each
convolution layer. Furthermore, using fully connected
layers to model channel relationships is an implicit
procedure. To overcome the above problems, Yang
et al. [150] propose the gated channel transformation
(GCT) to efficiently collect information while explicitly
modeling channel-wise relationships.

Unlike previous methods, GCT first collects global
information by computing the lo-norm of each chan-
nel. Next, a learnable vector « is applied to scale the
feature. Then a competition mechanism is adopted
by channel normalization to interact between channels.
Like other common normalization methods, a learnable
scale parameter v and bias § are applied to rescale
the normalization. However, unlike previous methods,

GCT adopts tanh activation to control the attention
vector. Finally, it not only multiplies the input by the
attention vector but also adds an identity connection.
GCT can be written as:

s = Fyet (X, 0) = tanh(yCN (aNorm(X)) + 3)  (7)
Y =sX + X, (8)

where «, § and ~ are trainable parameters. Norm(-)
indicates the [2-norm of each channel. C'N is channel
normalization.

A GCT block has fewer parameters than an SE block,
and as it is lightweight, can be added after each convo-
lutional layer of a CNN.

3.1.5 ECANet

To avoid high model complexity, SENet reduces the
number of channels. However, this strategy fails to
directly model correspondence between weight vectors
and inputs, reducing the quality of results. To overcome
this drawback, Wang et al. [125] proposed the efficient
channel attention (ECA) block which instead uses a
1D convolution to determine the interaction between
channels, instead of dimensionality reduction.

An ECA block has similar formulation to an SE
block including a squeeze module for aggregating global
spatial information and an efficient excitation module
for modeling cross-channel interaction. Instead of in-
direct correspondence, an ECA block only considers
direct interaction between each channel and its k£ near-
est neighbors to control model complexity. Overall, the
formulation of an ECA block is:

$ = Feea(X, 0) = 0(ConvlD(gave(X))) (9)
Y =sX (10)

where Conv1D(-) denotes 1D convolution with a kernel
of shape k across the channel domain, to model local
cross-channel interaction. The parameter k decides the
coverage of interaction, and in ECA the kernel size k is
adaptively determined from the channel dimensionality
C instead of by manual tuning, using cross-validation:

Y Y

log,(C) + é

k=u(C) = (11)

odd

where v and b are hyperparameters. |z|oqq indicates
the nearest odd function of z.

Compared to SENet, ECANet has an improved exci-
tation module, and provides an efficient and effective

block which can readily be incorporated into various
CNNE.
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Figure 5. Various channel attention mechanisms. GAP=global average pooling, GMP=global max pooling, FC=fully-
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3.1.6 FcalNet

Only using global average pooling in the squeeze module
limits representational ability. To obtain a more pow-
erful representation ability, Qin et al. [105] rethought
global information capture from the viewpoint of com-
pression and analysed global average pooling in the
frequency domain. They proved that global average
pooling is a special case of the discrete cosine transform
(DCT) and used this observation to propose a novel
multi-spectral channel attention.

Given an input feature map X € RE*H>*W mylti-
spectral channel attention first splits X into many parts
zt € RCXHXW  Then it applies a 2D DCT to each
part . Note that a 2D DCT can use pre-processing
results to reduce computation. After processing each
part, all results are concatenated into a vector. Finally,
fully connected layers, ReLU activation and a sigmoid
are used to get the attention vector as in an SE block.
This can be formulated as:

s = Frea(X,0) = U(Wzé(Wl[(DCT(Group(X)))])() |
12
Y =sX (13)

where Group(-) indicates dividing the input into many
groups and DCT(+) is the 2D discrete cosine transform.

This work based on information compression and dis-
crete cosine transforms achieves excellent performance
on the classification task.

3.1.7 EncNet

Inspired by SENet, Zhang et al. [158] proposed the
context encoding module (CEM) incorporating seman-
tic encoding loss (SE-loss) to model the relationship
between scene context and the probabilities of object

categories, thus utilizing global scene contextual infor-
mation for semantic segmentation.

Given an input feature map X € RE*H*xW 5 CEM
first learns K cluster centers D = {di,...,dx} and
a set of smoothing factors S = {s1,...,sx} in the
training phase. Next, it sums the difference between
the local descriptors in the input and the corresponding
cluster centers using soft-assignment weights to obtain
a permutation-invariant descriptor. Then, it applies
aggregation to the descriptors of the K cluster centers
instead of concatenation for computational efficiency.
Formally, CEM can be written as:

e = Zz]il e~ s IXimdull®(X; — dy)
: SR emsillXimdl?

K
e=3"dex) (15)
k=1

s=o0(We) (16)
Y = sX (17)

where dj, € RC and s;, € R are learnable parameters.
¢ denotes batch normalization with ReLU activation.
In addition to channel-wise scaling vectors, the com-
pact contextual descriptor e is also applied to compute
the SE-loss to regularize training, which improves the
segmentation of small objects.

Not only does CEM enhance class-dependent fea-
ture maps, but it also forces the network to consider
big and small objects equally by incorporating SE-loss.
Due to its lightweight architecture, CEM can be ap-
plied to various backbones with only low computational
overhead.



Table 3. Representative channel attention mechanisms ordered by publication date. Their key aims are to emphasize
important channels and capture global information. Application areas include: Cls = classification, Det = detection, SSeg =
semantic segmentation, ISeg = instance segmentation, ST = style transfer, Action = action recognition.

Attention process

Goals

a) use global average pooling to
get a global descriptor b) adopt
MLP and sigmoid to obtain at-
tention vector ¢) multiply input
feature and attention vector to
get the output.

a) emphasize important
channels b) capture global
information

a) use a encoder module to get a
global descriptor b) adopt linear
layer and sigmoid to obtain atten-
tion vector ¢) same as ¢) process

same as SENet

a) use 2nd-order pooling to get a
global descriptor b) adopt convo-
lution, MLP and sigmoid to ob-
tain attention vector c) same as
¢) process in SENet.

same as SENet

a) use style pooling to get a global
descriptor b) adopt convolution
and MLP to obtain attention
vector ¢) same as ¢) process in

same as SENet

a) compute [2-norm to get a
global descriptor b) adopt chan-
nel normalization and tanh to ob-
tain attention vector c¢) multiply
input with attention vector and
add input feature.

same as SENet

a) use global average pooling to
get a global descriptor b) adopt
convld and sigmoid to obtain at-
tention vector ¢) same as c) pro-
cess in SENet.

same as SENet

a) use discrete cosine transform
to get a global descriptor b) same
as b) and ¢) process in SENet .

same as SENet

Bi-attention employs the attention-in-attention

Method Appeared Applications
in
SENet [66] CVPR2018 Cls, Det
EncNet [158] | CVPR2018 SSeg
in SENet.
GSoP- CVPR2019 Cls
Net [181]
SRM [73] arXiv2019 Cls, ST
SENet.
GCT [150] CVPR2020 Cls, Det, Ac-
tion
ECANet [125] | CVPR2020 Cls, Det,
ISeg
FcaNet [105] | ICCV2021 Cls, Det,
ISeg
3.1.8 Bilinear Attention
Following GSoP-Net [181], Fang et al. [38] claimed that

previous attention models only use first-order informa-
tion and disregard higher-order statistical information.
They thus proposed a new bilinear attention block (bi-
attention) to capture local pairwise feature interactions
within each channel, while preserving spatial informa-
tion.

(AiA) mechanism to capture second-order statistical
information: the outer point-wise channel attention
vectors are computed from the output of the inner chan-
nel attention. Formally, given the input feature map
X, bi-attention first uses bilinear pooling to capture
second-order information

# = Bi($(X)) = Vee(UTri(¢(X)o(X)7))  (18)



where ¢ denotes an embedding function used for dimen-
sionality reduction, ¢(x)7 is the transpose of ¢(z) across
the channel domain, Utri(-) extracts the upper trian-
gular elements of a matrix and Vec(+) is vectorization.
Then bi-attention applies the inner channel attention
D) o X W

2

mechanism to the feature map z € R

T = w(Gavs(2))(T) (19)

Here w and ¢ are embedding functions. Finally the
output feature map 7 is used to compute the spatial
channel attention weights of the outer point-wise atten-
tion mechanism:

s=o(Z) (20)
Y =sX (21)

Using bilinear pooling and bi-attention models the local
pairwise feature interactions along each channel. Using
the proposed AiA, the model pays more attention to
higher-order statistical information. Bi-attention can
be incorporated into any CNN backbone to improve its
representational power while suppressing noise.

3.2. Spatial Attention

Spatial attention can be seen as an adaptive spatial
region selection mechanism: where to pay attention. As
Fig. 4 shows, RAM [97], STN [70], GENet [65] and
Non-Local [128] are representative of different kinds
of spatial attention methods. RAM represents RNN-
based methods. STN represents those which use a sub-
network to explicitly predict relevant regions. GENet
represents those which use a sub-network implicitly to
predict a soft mask to select important regions. Non-
Local represents self-attention related methods. In this
subsection, we first summarize representative spatial
attention mechanisms in Tab. 4, then discuss them
according to Fig. 4.

3.2.1 RAM

Convolutional neural networks have huge computational
costs, especially for large inputs. In order to concen-
trate limited computing resources on important regions,
Mnih et al. [97] proposed the recurrent attention model
(RAM) that adopts RNNs [60] and reinforcement learn-
ing (RL) [118] to make the network learn where to pay
attention. RAM pioneered the use of RNNs for visual
attention, and was followed by many other RNN-based
methods [16, 139, 2].

As shown in Fig. 6, the RAM has three key elements:
(A) a glimpse sensor, (B) a glimpse network and (C)
an RNN model. The glimpse sensor takes a coordinate
l;—1 and an image X;. It outputs multiple resolution

patches p(X;,l;—1) centered on I;_;. The glimpse net-
work fy(6(g)) includes a glimpse sensor and outputs
the feature representation g; for input coordinate [;_;
and image X;. The RNN model considers g; and an
internal state h;_; and outputs the next center coor-
dinate [; and the action a¢, e.g. the softmax result in
an image classification task. Since the whole process
is not differentiable, it applies reinforcement learning
strategies in the update process.

This provides a simple but effective method to focus
the network on key regions, thus reducing the number
of calculations performed by the network, especially
for large inputs, while improving image classification
results.

3.2.2 Glimpse Network

Inspired by how humans perform visual recognition
sequentially, Ba et al. [2] proposed a deep recurrent
network, similar to RAM [97], capable of processing
a multi-resolution crop of the input image, called a
glimpse, for multiple object recognition task. The pro-
posed network updates its hidden state using a glimpse
as input, and then predicts a new object as well as
the next glimpse location at each step. The glimpse
is usually much smaller than the whole image, which
makes the network computationally efficient.

The proposed deep recurrent visual attention model
consists of a context network, glimpse network, re-
current network, emission network, and classification
network. First, the context network takes the down-
sampled whole image as input to provide the initial
state for the recurrent network as well as the location
of the first glimpse. Then, at the current time step
t, given the current glimpse x; and its location tuple
l¢, the goal of the glimpse network is to extract useful
information, expressed as

gt = fimage(X) : floc(lt) (22)

where fimage(X) and fioc(l¢) are non-linear functions
which both output vectors having the same dimension,
and - denotes element-wise product, used for fusing
information from two branches. Then, the recurrent
network, which consists of two stacked recurrent layers,
aggregates information gathered from each individual
glimpse. The outputs of the recurrent layers are:

ri = £ (g i) (23)

rec

r? = J2 ) (24)

rec

Given the current hidden state rt(z) of the recurrent

network, the emission network predicts where to crop



Table 4. Representative spatial attention mechanisms sorted by date. Application areas include: Cls = classification, FGCls
= fine-grained classification, Det = detection, SSeg = semantic segmentation, ISeg = instance segmentation, ST = style

transfer, Action = action recognition, ICap = image captioning.

‘ Method

Publication | Application |

Attention process

| Goals

RAM [07]

NIPS2014

Cls

a) use RNN to recurrently pre-
dict important regions b) use re-
inforcement learning to update
network

a) focus the network on
discriminative regions. b)
avoid excessive computa-
tion for large input images

Hard atten-
tion [139]

ICML2015

ICap

a) compute similarity between vi-
sual features and previous hid-
den state b) interpret weight as
a probability or the relative im-
portance c) training follows the
reinforcement learning approach

a) focus the network focus
on discriminative regions
b) gain interpret the re-
sults of this framework.

STN [70]

NIPS2015

Cls, FGCls

a) use sub-network to predict an
affine transformation b) select rel-
evant features according to the
prediction.

a) focus the network focus
on discriminative regions.
b) provide more transfor-
mation invariance.

DCN [29)]

ICCV2017

Det, SSeg

a) use sub-network to predict off-
set coordinates b) sample rele-
vant features according to the pre-
dicted offset coordinates. c) ag-
gregate the features of the sam-
pling points.

a) focus the network focus
on discriminative regions.
b) provide more transfor-
mation invariance.

Non-
Local [128]

CVPR2018

Action, Det,
ISeg

a) produce attention map by
query vector times key vector and
softmax normalization b) mod-
ulate value vector via attention
map

a) capture long-range de-
pendencies b) denoise in-
put feature map

PSANet [171]

ECCV2018

SSeg

a) predict an attention map using
a sub-network b) collecting global
cues from the attention map

adaptively aggregate
global information.

GENet [65]

NIPS2018

Cls, Det

a) gather spatial information by
average pooling or depth-wise
convolution b) obtain attention
map via interpolation and sig-
moid function c¢) multiply the in-
put and attention map to give the
output

adaptively select impor-
tant spatial features.

SASA [106]

NeurIPS2019

Cls & Det

a) adopt self-attention with po-
sitional embedding to produce a
attention map in a local regionss
b) aggregate neighborhood infor-
mation through attention map.

adaptively aggregate
neighborhood information

ViT [36]

ICLR2021

Cls

a) divide the feature map into
multiple groups across the chan-
nel domain. b) use self-attention
for each group separately.

a) capture long-range de-
pendencies b) reduce in-
ductive bias




the next glimpse. Formally, it can be written as

lt+l - femis(r7£2)) (25)

Finally, the classification network outputs a prediction

for the class label y based on the hidden state rt(l) of
the recurrent network

y = fas(ri?) (26)

Compared to a CNN operating on the entire image,
the computational cost of the proposed model is much
lower, and it can naturally tackle images of different
sizes because it only processes a glimpse in each step.
Robustness is additionally improved by the recurrent
attention mechanism, which also alleviates the problem
of over-fitting. This pipeline can be incorporated into
any state-of-the-art CNN backbones or RNN units.

3.2.3 Hard and soft attention

To visualize where and what an image caption genera-
tion model should focus on, Xu et al. [139] introduced an
attention-based model as well as two variant attention
mechanisms, hard attention and soft attention.

Given a set of feature vectors a = {a1,...,ar},a; €
RP extracted from the input image, the model aims
to produce a caption by generating one word at each
time step. Thus they adopt a long short-term memory
(LSTM) network as a decoder; an attention mechanism
is used to generate a contextual vector z; conditioned
on the feature set @ and the previous hidden state h;_1,
where ¢ denotes the time step. Formally, the weight oy ;
of the feature vector a; at the t-th time step is defined
as

€t,i = fatt(ai> ht—l) (27)
Qg = —Lexp(em)
Zk:1 eXp(et,k)

where f,t¢ is implemented by a multilayer perceptron
conditioned on the previous hidden state h;_i. The
positive weight o4 ; can be interpreted either as the
probability that location ¢ is the right place to focus
on (hard attention), or as the relative importance of
location i to the next word (soft attention). To obtain
the contextual vector z;, the hard attention mechanism
assigns a multinoulli distribution parametrized by {ox ;}
and views z; as a random variable:

(28)

P(sei = lla,he—1) = oy (29)

L
2= St (30)
=1

On the other hand, the soft attention mechanism
directly uses the expectation of the context vector z,

L
2= o (31)
=1

The use of the attention mechanism improves the
interpretability of the image caption generation process
by allowing the user to understand what and where
the model is focusing on. It also helps to improve the
representational capability of the network.

3.2.4 Attention Gate

Previous approaches to MR segmentation usually op-
erate on particular regions of interest (ROI), which
requires excessive and wasteful use of computational
resources and model parameters. To address this issue,
Oktay et al. [99] proposed a simple and yet effective
mechanism, the attention gate (AG), to focus on tar-
geted regions while suppressing feature activations in
irrelevant regions.

Given the input feature map X and the gating signal
G € RO*HEXW which is collected at a coarse scale and
contains contextual information, the attention gate uses
additive attention to obtain the gating coefficient. Both
the input X and the gating signal are first linearly
mapped to an RF*HXW dimensional space, and then
the output is squeezed in the channel domain to produce
a spatial attention weight map S € R*H>XW_  The
overall process can be written as

S =0(p(d(¢a(X) + 84(G)))) (32)
Y =SX (33)

where ¢, ¢, and ¢, are linear transformations imple-
mented as 1 X 1 convolutions.

The attention gate guides the model’s attention to im-
portant regions while suppressing feature activation in
unrelated areas. It substantially enhances the represen-
tational power of the model without adding significantly
to computing cost or number of model parameters due
to its lightweight design. It is general and modular,
making it simple to use in various CNN models.

3.2.5 STN

The property of translation equivariance makes CNNs
suitable for processing image data. However, CNNs
lack other transformation invariance such as rotational
invariance, scaling invariance and warping invariance.
To achieve these attributes while making CNNs focus
on important regions, Jaderberg et al. [70]| proposed
spatial transformer networks (STN) that use an explicit
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procedure to learn invariance to translation, scaling,
rotation and other more general warps, making the
network pay attention to the most relevant regions.
STN was the first attention mechanism to explicitly
predict important regions and provide a deep neural
network with transformation invariance. Various fol-
lowing works [29, 178] have had even greater success.

Taking a 2D image as an example, a 2D affine trans-
formation can be formulated as:

011 012 013
= Jloc U 34
|:921 922 923:| fl ( ) ( )

t

x; 011 01 O3] [
L) = 2 35
(yf) {921 B2 923} bi (35)

Here, U is the input feature map, and fi,c can be
any differentiable function, such as a lightweight fully-
connected network or convolutional neural network. x
and y; are coordinates in the output feature map, while
x! and y! are corresponding coordinates in the input
feature map and the # matrix is the learnable affine ma-
trix. After obtaining the correspondence, the network
can sample relevant input regions using the correspon-
dence. To ensure that the whole process is differentiable
and can be updated in an end-to-end manner, bilinear
sampling is used to sample the input features

STNs focus on discriminative regions automatically
and learn invariance to some geometric transformations.

].

3.2.6 Deformable Convolutional Networks

With similar purpose to STNs, Dai et al. [29] proposed
deformable convolutional networks (deformable Con-
vNets) to be invariant to geometric transformations,
but they pay attention to the important regions in a
different manner.

Specifically, deformable ConvNets do not learn an
affine transformation. They divide convolution into
two steps, firstly sampling features on a regular grid R
from the input feature map, then aggregating sampled
features by weighted summation using a convolution
kernel. The process can be written as:

Y(po) = D w(pi) X (po + pi) (36)
Pi€ER

R:{(71771%(7170%"'3(171)} (37)

The deformable convolution augments the sampling
process by introducing a group of learnable offsets Ap;
which can be generated by a lightweight CNN. Using
the offsets Ap;, the deformable convolution can be
formulated as:

Y(po) = Z w(pi) X (po + pi + Ap;). (38)
PiER

Through the above method, adaptive sampling is
achieved. However, Ap; is a floating point value un-
suited to grid sampling. To address this problem, bi-
linear interpolation is used. Deformable Rol pooling is
also used, which greatly improves object detection.



Deformable ConvNets adaptively select the impor-
tant regions and enlarge the valid receptive field of
convolutional neural networks; this is important in ob-
ject detection and semantic segmentation tasks.

3.2.7 Self-attention and variants

Self-attention was proposed and has had great success
in the field of natural language processing (NLP) [4,

, 83, 34, , 32, 26]. Recently, it has also shown
the potential to become a dominant tool in computer
vision [128, 36, 11, 18, |. Typically, self-attention is
used as a spatial attention mechanism to capture global
information. We now summarize the self-attention
mechanism and its common variants in computer vision.

Due to the localisation of the convolutional operation,
CNNs have inherently narrow receptive fields [90, 1,
which limits the ability of CNNs to understand scenes
globally. To increase the receptive field, Wang et
al. [128] introduced self-attention into computer vision.

Taking a 2D image as an example, given a feature
map F € REXHXW “gelf-attention first computes the
queries, keys and values @, K,V € RC,XN, N=HxW
by linear projection and reshaping operations. Then
self-attention can be formulated as:

A = (a);; = Softmax(QK™), (39)
Y = AV, (40)

where A € RV*¥ s the attention matrix and «; ; is the

relationship between the i-th and j-th elements. The

whole process is shown in Fig. 7(left). Self-attention

is a powerful tool to model global information and is

useful in many visual tasks [156, , , 63, , ,
) ) ]'

However, the self-attention mechanism has several
shortcomings, particularly its quadratic complexity,
which limit its applicability. Several variants have been
introduced to alleviate these problems. The disentan-
gled non-local approach [151] improves self-attention’s
accuracy and effectiveness, but most variants focus on
reducing its computational complexity.

CCNet [67] regards the self-attention operation as a
graph convolution and replaces the densely-connected
graph processed by self-attention with several sparsely-
connected graphs. To do so, it proposes criss-cross
attention which considers row attention and column
attention recurrently to obtain global information. CC-
Net reduces the complexity of self-attention from O(N?)
to O(N VN ).

EMANet [81] views self-attention in terms of expec-
tation maximization (EM). It proposes EM attention
which adopts the EM algorithm to get a set of compact
bases instead of using all points as reconstruction bases.

This reduces the complexity from O(N?) to O(NK),
where K is the number of compact bases.

ANN [180] suggests that using all positional features
as key and vectors is redundant and adopts spatial
pyramid pooling [170, 56] to obtain a few representa-
tive key and value features to use instead, to reduce
computation.

GCNet [10] analyses the attention map used in self-
attention and finds that the global contexts obtained by
self-attention are similar for different query positions
in the same image. Thus, it first proposes to predict
a single attention map shared by all query points, and
then gets global information from a weighted sum of
input features according to this attention map. This is
like average pooling, but is a more general process for
collecting global information.

A2Net |23] is motivated by SENet to divide atten-
tion into feature gathering and feature distribution
processes, using two different kinds of attention. The
first aggregates global information via second-order at-
tention pooling and the second distributes the global
descriptors by soft selection attention.

GloRe [24] understands self-attention from a graph
learning perspective. It first collects N input features
into M < N nodes and then learns an adjacency ma-
trix of global interactions between nodes. Finally, the
nodes distribute global information to input features.
A similar idea can be found in LatentGNN [163], MLP-
Mixer [119] and ResMLP [120)].

OCRNet [155] proposes the concept of object-
contextual representation which is a weighted aggre-
gation of all object regions’ representations in the same
category, such as a weighted average of all car region
representations. It replaces the key and vector with this
object-contextual representation leading to successful
improvements in both speed and effectiveness.

The disentangled non-local approach was motivated
by [10, 128]. Yin et al [151] deeply analyzed the self-
attention mechanism resulting in the core idea of decou-
pling self-attention into a pairwise term and a unary
term. The pairwise term focuses on modeling relation-
ships while the unary term focuses on salient boundaries.
This decomposition prevents unwanted interactions be-
tween the two terms, greatly improving semantic seg-
mentation, object detection and action recognition.

HamNet [44] models capturing global relationships
as a low-rank completion problem and designs a se-
ries of white-box methods to capture global context
using matrix decomposition. This not only reduces
the complexity, but increases the interpretability of
self-attention.

EANet [19] proposes that self-attention should only
consider correlation in a single sample and should ig-



nore potential relationships between different samples.
To explore the correlation between different samples
and reduce computation, it makes use of an external
attention that adopts learnable, lightweight and shared
key and value vectors. It further reveals that using soft-
max to normalize the attention map is not optimal and
presents double normalization as a better alternative.

In addition to being a complementary approach to
CNNs, self-attention also can be used to replace con-
volution operations for aggregating neighborhood in-
formation. Convolution operations can be formulated
as dot products between the input feature X and a
convolution kernel W:

me)CXA B (41)

)

where

a=i+a—|k/2], b=j+b—|k/2], (42)
k is the kernel size and c indicates the channel. The
above formulation can be viewed as a process of aggre-
gating neighborhood information by using a weighted
sum through a convolution kernel. The process of aggre-
gating neighborhood information can be defined more
generally as:

Y= Z

a,be{0,....k—1}

Rel(ia j7 da E)f(X&,B) (43)

where Rel(4, j, @, f)) is the relation between position (i,j)

and position (a, b). With this definition, local self-

attention is a special case.
For example, SASA |

Yig= Y

a,beN (i,5)

| writes this as
Softmaxap (¢ kab + GijTa—ib—j)Vab
(44)

where ¢, k and v are linear projections of input feature
x, and rq—;p—; is the relative positional embedding of
(i,7) and (a,b).

We now consider several specific works using local
self-attention as basic neural network blocks

SASA [106] suggests that using self-attention to col-
lect global information is too computationally intensive
and instead adopts local self-attention to replace all
spatial convolution in a CNN. The authors show that
doing so improves speed, number of parameters and
quality of results. They also explores the behavior of
positional embedding and show that relative positional
embeddings [110] are suitable. Their work also studies
how to combinie local self-attention with convolution.
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Figure 7. Vision transformer [36]. Left: architecture. Vision
transformer first splits the image into different patches and
projects them into feature space where a standard trans-
former processes them to produce the final result. Right:
basic vision transformer block with multi-head attention
core. Figure is taken from [30].

LR-Net [64] appeared concurrently with SASA. Tt
also studies how to model local relationships by using
local self-attention. A comprehensive study probed the
effects of positional embedding, kernel size, appearance
composability and adversarial attacks.

SAN [168] explored two modes, pairwise and patch-
wise, of utilizing attention for local feature aggregation.
It proposed a novel vector attention adaptive both in
content and channel, and assessed its effectiveness both
theoretically and practically. In addition to providing
significant improvements in the image domain, it has
also proven useful in 3D point cloud processing [169].

3.2.8 Vision Transformers

Transformers have had great success in natural language
processing [4, , 83, 34, 26, 7]. Recently, iGPT [1§]
and DETR [11] demonstrated the huge potential for
transformer-based models in computer vision. Moti-
vated by this, Dosovitskiy et al [36] proposed the vision
transformer (ViT) which is the first pure transformer
architecture for image processing. It is capable of achiev-
ing comparable results to modern convolutional neural
networks.

As Fig 7 shows, the main part of ViT is the multi-
head attention (MHA) module. MHA takes a sequence
as input. It first concatenates a class token with the
input feature F € RY*C, where N is the number of
pixels. Then it gets Q, K € RNXC and V e RN*C
by linear projection. Next, ), K and V are divided
into H heads in the channel domain and self-attention
separately applied to them. The MHA approach is
shown in Fig. 8. ViT stacks a number of MHA layers
with fully connected layers, layer normalization [3] and
the GELU [59] activation function.
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ViT demonstrates that a pure attention-based net-
work can achieve better results than a convolutional
neural network especially for large datasets such as

JFT-300 [117] and ImageNet-21K [33].

Following ViT, many transformer-based architec-
tures such as PCT [48], IPT [16], PT [169],T2T-
ViT [153], SETR [171], PVT [127], TNT [53], Swin-
transformer [92], Query2Label [89], MoCoV3 [21],
BEiT [5], SegFormer [134] and FuseFormer [88] have

appeared, with excellent results for many kind of visual
tasks including image classification, object detection,
semantic segmentation, point cloud processing, action
recognition and self-supervised learning.

A detailed survey of vision transformers is omitted
here as other recent surveys [52, 71, 50| comprehensively
review the use of transformer methods for visual tasks.

3.2.9 GENet

Inspired by SENet, Hu et al. [65] designed GENet to
capture long-range spatial contextual information by
providing a recalibration function in the spatial domain.

GENet is combines part gathering and excitation op-
erations. In the first step, it aggregates input features
over large neighborhoods and models the relationship
between different spatial locations. In the second step,
it first generates an attention map of the same size as
the input feature map, using interpolation. Then each
position in the input feature map is scaled by multiply-
ing by the corresponding element in the attention map.
This process can be described by:

9 = feather(X), (45)
8 = foxcite(9) = o(Interp(g)), (46)
Y =sX. (47)

Here, fgather can take any form which captures spa-
tial correlations, such as global average pooling or a

sequence of depth-wise convolutions; Interp(-) denotes
interpolation.

The gather-excite module is lightweight and can be
inserted into each residual unit like an SE block. It
emphasizes important features while suppressing noise.

3.2.10 PSANet

Motivated by success in capturing long-range dependen-
cies in convolutional neural networks, Zhao et al. [171]
presented the novel PSANet framework to aggregate
global information. It models information aggregation
as an information flow and proposes a bidirectional in-
formation propagation mechanism to make information
flow globally.
PSANet formulates information aggregation as:

Zy = Z F(Z‘i, Zj, Aij)l‘j (48)
JEQ(T)

where A;; indicates the positional relationship between
tand j. F(x;,xj,A;) is a function that takes z;, x;
and A;; into consideration to controls information flow
from j to i. €); represents the aggregation neighborhood
of position ¢; if we wish to capture global information,
Q; should include all spatial positions.

Due to the complexity of calculating function
F(x;,2;,A;;), it is decomposed into an approximation:

F(mi7mJ7Aij) ~ FAij(‘ri)+FAij(xj) (49>

whereupon Eq. 48 can be simplified to:

2 = Z FAij(iEi)IjJr Z FA”(xj)mj. (50)

JEQ(3) JEQ(7)

The first term can be viewed as collecting information at
position ¢ while the second term distributes information
at position j. Functions Fa,;(2;) and Fa,,(x;) can be
seen as adaptive attention weights.

The above process aggregates global information
while emphasizing the relevant features. It can be
added to the end of a convolutional neural network as
an effective complement to greatly improve semantic
segmentation.

3.3. Temporal Attention

Temporal attention can be seen as a dynamic time
selection mechanism determining when to pay attention,
and is thus usually used for video processing. Previous
works [75, 93] often emphasise how to capture both
short-term and long-term cross-frame feature dependen-
cies. Here, we first summarize representative temporal
attention mechanisms in Tab. 5, and then discuss vari-
ous such mechanisms according to the order in Fig. 4.
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Table 5. Representative temporal attention mechanisms sorted by date. ReID = re-identification, Action = action recognition.

‘ Method ‘ Publication ‘ Application ‘ Attention process ‘ Goals ‘
GLTR [75] ICCV2019 RelID a) perform dilated convolution | a) exploit multi-scale
with various dilatation ratesb) | short-term temporal
use self-attention mechanism in | contextual informationb)
the temporal domain capture long-term tempo-
ral feature dependencies
TAM [93] Arxiv2020 Action a) produce frame-wise attention | a) capture local temporal
weights by stacking 1D convolu- | contexts b) leverage global
tionsb) perform convolution using | temporal information to
a channel-wise adaptive kernel enhance per-frame features

3.3.1 Self-attention and variants

RNN and temporal pooling or weight learning have been
widely used in work on video representation learning to
capture interaction between frames, but these methods
have limitations in terms of either efficiency or temporal
relation modeling.

To overcome them, Li et al. [75] proposed a global-
local temporal representation (GLTR) to exploit multi-
scale temporal cues in a video sequence. GLTR consists
of a dilated temporal pyramid (DTP) for local temporal
context learning and a temporal self attention module
for capturing global temporal interaction. DTP adopts
dilated convolution with dilatation rates increasing pro-
gressively to cover various temporal ranges, and then
concatenates the various outputs to aggregate multi-
scale information. Given input frame-wise features

F ={f1,... fr}, DTP can be written as:
(7 A = DConv (F) (51)

A=U0 f270E) (s2)

where DConv™(-) denotes dilated convolution with
dilation rate r. The self-attention mechanism adopts
convolution layers followed by batch normalization and
ReLU activation to generate the query @ € R¥*7| the
key K € R¥™T and the value V € R**T based on
the input feature map F' = {f{,... f;-}, which can be
written as

Fout = g(VSoftmax(QT K)) 4+ F’ (53)

where g denotes a linear mapping implemented by a
convolution.

The short-term temporal contextual information
from neighboring frames helps to distinguish visually
similar regions while the long-term temporal informa-
tion serves to overcome occlusions and noise. GLTR



combines the advantages of both modules, enhancing
representation capability and suppressing noise. It can
be incorporated into any state-of-the-art CNN back-
bone to learn a global descriptor for a whole video.
However, the self-attention mechanism has quadratic
time complexity, limiting its application.

3.3.2 TAM

To capture complex temporal relationships both effi-
ciently and flexibly, Liu et al. [93] proposed a temporal
adaptive module (TAM). Tt adopts an adaptive kernel
instead of self-attention to capture global contextual in-
formation, with lower time complexity than GLTR [75].

TAM has two branches, a local branch and a global
branch. Given the input feature map X € REXTXHxW
global average pooling gavg is first applied to the fea-
ture map to ensure TAM has a low computational cost.
Then the local branch in TAM employs several 1D con-
volutions with ReL'U nonlinearity across the temporal
domain to produce location-sensitive importance maps
for enhancing frame-wise features. The local branch
can be written as

s = 0(ConvlD(§(ConvlD(gavg(X))))) (54)
X' =sX. (55)

Unlike the local branch, the global branch is location
invariant and focuses on generating a channel-wise adap-
tive kernel based on global temporal information in each
channel. For the c-th channel, the kernel can be written
as

0. = Softmax(FCy(8(FCy (gavg(X)o))))  (56)

where ©, € RX and K is the adaptive kernel size.
Finally, TAM convolves the adaptive kernel ©® with
Xc}ut:

Y =02X! (57)

With the help of the local branch and global branch,
TAM can capture the complex temporal structures in
video and enhance per-frame features at low computa-
tional cost. Due to its flexibility and lightweight design,
TAM can be added to any existing 2D CNNs.

3.4. Branch Attention

Branch attention can be seen as a dynamic branch
selection mechanism: which to pay attention to, used
with a multi-branch structure. We first summarize
representative branch attention mechanisms in Tab. 6,
then discuss various ones in detail.
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Figure 10. CondConv [144]. (a) CondConv first combines
different convolution kernels and then uses the combined
kernel for convolution. (b) Mixture of experts first uses
multiple convolution kernels for convolution and then merges
the results. While (a) and (b) are equivalent, (a) has much
lower computational cost. Figure is taken from [144].

3.4.1 Highway networks

Inspired by the long short term memory network, Srivas-
tava et al. [1 15] proposed highway networks that employ
adaptive gating mechanisms to enable information flows
across layers to address the problem of training very
deep networks.

Supposing a plain neural network consists of L layers,
and H;(X) denotes a non-linear transformation on the
l-th layer, a highway network can be expressed as

Y, = H(X)Ti(X1) + Xi(1 - Ti(X1)) (58)
T(X) = o(W/' X +br) (59)

where T;(X) denotes the transform gate regulating the
information flow for the I-th layer. X; and Y; are the
inputs and outputs of the [-th layer.

The gating mechanism and skip-connection structure
make it possible to directly train very deep highway
networks using simple gradient descent methods. Unlike
fixed skip-connections, the gating mechanism adapts
to the input, which helps to route information across
layers. A highway network can be incorporated in any
CNN.

3.4.2 SKNet

Research in the neuroscience community suggests that
visual cortical neurons adaptively adjust the sizes of
their receptive fields (RFs) according to the input stim-
ulus [114]. This inspired Li et al. [79] to propose an
automatic selection operation called selective kernel
(SK) convolution.

SK convolution is implemented using three opera-
tions: split, fuse and select. During split, transfor-
mations with different kernel sizes are applied to the
feature map to obtain different sized RFs. Information
from all branches is then fused together via element-
wise summation to compute the gate vector. This is



Table 6. Representative branch attention mechanisms sorted by date. Cls = classification, Det=Detection.

Attention process

Goals

a) predict gate weight using linear
layer and sigmoid function b) use
a gating mechanism to combine
the input and the output feature

a) overcome the problem
of vanishing gradient b) en-
able training of a deep net-
work using a simple gradi-
ent descent algorithm. c)
dynamically fuse different
branches

a) predict a group of weight
combine different
branches according to the pre-
dicted factors

a) adaptively select a suit-
able receptive field b) dy-
namically fuse different
branches

a) predict a group of attention
weights b) use them to weight dif-
ferent convolution kernels to ob-
tain mixed convolution kernels. ¢)
use the latter to perform convo-

a) improve the efficiency
of standard convolution b)
dynamically fuse different
convolution kernels.

‘ Method ‘ Publication ‘ Applications‘
Highway Net- | ICML2015W | Cls
work [115]
map.
SKNet [79] CVPR2019 Cls
factors b)
CondConv [144] NeurIPS2019 | Cls & Det
lution

used to control information flows from the multiple
branches. Finally, the output feature map is obtained
by aggregating feature maps for all branches, guided by
the gate vector. This can be expressed as:

Up=Fu(X) k=1,....K (60)
K

U= Z Uk, (61)
=1

z2=20 BN(Wgavg(U))) (62)

EN Zszleny)z 1,....K, ¢=1,...,C
(63)
K
Y =Y sl (64)
k=1

Here, each transformation Fj has a unique kernel size to
provide different scales of information for each branch.
For efficiency, F} is implemented by grouped or depth-
wise convolutions followed by dilated convolution, batch
normalization and ReLU activation in sequence. t(¢)
denotes the c-th element of vector ¢, or the c-th row of
matrix t.

SK convolutions enable the network to adaptively
adjust neurons’ RF sizes according to the input, giving
a notable improvement in results at little computational
cost. The gate mechanism in SK convolutions is used
to fuse information from multiple branches. Due to
its lightweight design, SK convolution can be applied
to any CNN backbone by replacing all large kernel

convolutions. ResNeSt [160] also adopts this attention
mechanism to improve the CNN backbone in a more
general way, giving excellent results on ResNet [57] and
ResNeXt [1306].

3.4.3 CondConv

A basic assumption in CNNs is that all convolution
kernels are the same. Given this, the typical way to
enhance the representational power of a network is to
increase its depth or width, which introduces significant
extra computational cost. In order to more efficiently
increase the capacity of convolutional neural networks,
Yang et al. [1414] proposed a novel multi-branch operator
called CondConv.
An ordinary convolution can be written
Y=W=xX (65)
where * denotes convolution. The learnable parameter
W is the same for all samples. CondConv adaptively
combines multiple convolution kernels and can be writ-
ten as:

Y:(a1W1+~'+aan)*X (66)

Here, o is a learnable weight vector computed by
o = o(Wr(gave(X))) (67)

This process is equivalent to an ensemble of multiple
experts, as shown in Fig. 10.



CondConv makes full use of the advantages of the
multi-branch structure using a branch attention method
with little computing cost. It presents a novel manner
to efficiently increase the capability of networks.

3.4.4 Dynamic Convolution

The extremely low computational cost of lightweight
CNNs constrains the depth and width of the networks,
further decreasing their representational power. To
address the above problem, Chen et al. [22] proposed
dynamic convolution, a novel operator design that in-
creases representational power with negligible additional
computational cost and does not change the width or
depth of the network in parallel with CondConv [144].

Dynamic convolution uses K parallel convolution
kernels of the same size and input/output dimensions
instead of one kernel per layer. Like SE blocks, it
adopts a squeeze-and-excitation mechanism to generate
the attention weights for the different convolution ker-
nels. These kernels are then aggregated dynamically by
weighted summation and applied to the input feature
map X:

s = softmax(Wad(W1gaveg(X)))  (68)

K

DyConv = Z 51, Convy, (69)
i=1

Y = DyConv(X) (70)

Here the convolutions are combined by summation of
weights and biases of convolutional kernels.

Compared to applying convolution to the feature
map, the computational cost of squeeze-and-excitation
and weighted summation is extremely low. Dynamic
convolution thus provides an efficient operation to im-
prove representational power and can be easily used as
a replacement for any convolution.

3.5. Channel & Spatial Attention

Channel & spatial attention combines the advantages
of channel attention and spatial attention. It adaptively
selects both important objects and regions [17]. The
residual attention network [123] pioneered the field of
channel & spatial attention, emphasizing the impor-
tance of informative features in both spatial and channel
dimensions. It adopts a bottom-up structure consist-
ing of several convolutions to produce a 3D (height,
width, channel) attention map. However, it has high
computational cost and limited receptive fields.

To leverage global spatial information later
works [130, 101] enhance discrimination of features by
introducing global average pooling, as well as decou-
pling channel attention and spatial channel attention

for computational efficiency. Other works [10, |
apply self-attention mechanisms for channel & spatial
attention to explore pairwise interaction. Yet further
works [86, 61] adopt the spatial-channel attention mech-
anism to enlarge the receptive field.

Representative channel & spatial attention mecha-
nisms are in given Tab. 7; we next discuss various ones
in detail.

3.5.1 Residual Attention Network

Inspired by the success of ResNet [57], Wang et al. [123]
proposed the very deep convolutional residual attention
network (RAN) by combining an attention mechanism
with residual connections.

Each attention module stacked in a residual atten-
tion network can be divided into a mask branch and
a trunk branch. The trunk branch processes features,
and can be implemented by any state-of-the-art struc-
ture including a pre-activation residual unit and an
inception block. The mask branch uses a bottom-up
top-down structure to learn a mask of the same size that
softly weights output features from the trunk branch.
A sigmoid layer normalizes the output to [0, 1] after two
1 x 1 convolution layers. Overall the residual attention
mechanism can be written as

5= O'(COHV%Xl(COHV%X1(hup(hdown(X))))) (71)
Xout - 8f<X> + f(X) (72)

where hyp, is a bottom-up structure, using max-pooling
several times after residual units to increase the recep-
tive field, while hqown is the top-down part using linear
interpolation to keep the output size the same as the
input feature map. There are also skip-connections
between the two parts, which are omitted from the
formulation. f represents the trunk branch which can
be any state-of-the-art structure.

Inside each attention module, a bottom-up top-down
feedforward structure models both spatial and cross-
channel dependencies, leading to a consistent perfor-
mance improvement. Residual attention can be incorpo-
rated into any deep network structure in an end-to-end
training fashion. However, the proposed bottom-up
top-down structure fails to leverage global spatial infor-
mation. Furthermore, directly predicting a 3D attention
map has high computational cost.

3.5.2 CBAM

To enhance informative channels as well as important
regions, Woo et al. [130] proposed the convolutional
block attention module (CBAM) which stacks channel
attention and spatial attention in series. It decouples



Table 7. Representative channel & spatial attention mechanisms sorted by date. Cls = classification, ICap = image captioning,

Det = detection, Seg = segmentation, ISeg = instance segmentation, RelD = re-identification.

‘ Method ‘ Publication ‘ Applications‘ Attention process ‘ Goals
Residual At- | CVPR2017 Cls a) use a bottom-up top-down | a) focus the network on
tention [123] fully convolutional structure to | the discriminative region
compute 3D attention map b) emphasize important
channels
SCA- CVPR2017 ICap a)compute channel attention map | a) focus the network on
CNN [17] and spatial attention map using | discriminative regions b)
visual features and previous hid- | emphasize important chan-
den state b) stack channel atten- | nels ¢) capture global infor-
tion and spatial attention in serial | mation d) avoid high com-
putational cost
CBAM [130] | ECCV2018 Cls & Det a) stack channel attention and | same as SCA-CNN
spatial attention in series b) use
3 x 3 convolution to compute spa-
tial attention
BAM [130] BMVC2018 | Cls & Det a) compute channel attention and | same as SCA-CNN
spatial attention in parallel b) use
bottleneck structure and dilated
convolution to compute spatial
attention
scSE [108] TMI2018 Seg a) compute channel attention and | same as SCA-CNN
spatial attention in parallel b)
adopt pixel-wise convolution to
compute spatial attention
Dual Atten- | CVPR2019 Seg a) use self-attention to capture | a) capture long-range con-
tion [40] spatial and cross-channel relation- | textual information b) em-
ships b) fuse the outputs from dif- | phasize important chan-
ferent branches by summation nels
RGA [166] CVPR2020 RelD a) use self-attention to capture | same as SCA-CNN
pairwise relations b) compute at-
tention maps with the input and
relation vectors
SCNet [36] CVPR2020 Cls&Det&ISeg| a) split the input in the channel | a) enlarge the receptive
domainb) conduct feature trans- | field b) capture inter-
formation at two different scalesc) | channel dependencies
concatenate paired outputs in the
channel domain
Strip  Pool- | CVPR2020 Seg a) separately use horizontal | a) focus the network on in-
ing [61] global pooling and vertical global | formative regions b) em-
pooling b) generate attention vec- | phasize important chan-
tors and fuse them by point-wise | nelsc) capture long-range
summation c¢) use convolution | dependencies
and sigmoid activation to obtain
an attention map
Triplet At- | WACV2021 Cls & Det a) compute attention maps for | a) capture cross-domain in-
tention [96] pairs of domains b) average the | teraction between any two
outputs from different branches | domains b) focus the net-
work on the discriminative
region




the channel attention map and spatial attention map for
computational efficiency, and leverages spatial global
information by introducing global pooling.

CBAM has two sequential sub-modules, channel and
spatial. Given an input feature map X € REXHXW it ge-
quentially infers a 1D channel attention vector s, € R¢
and a 2D spatial attention map s, € R?*W _ The for-
mulation of the channel attention sub-module is similar
to that of an SE block, except that it adopts more than
one type of pooling operation to aggregate global in-
formation. In detail, it has two parallel branches using
max-pool and avg-pool operations:

Facvg = g;vg(X) 73
Fr?lax = gfnax (X) 74

(

(
s = o(Wad(WiFS,,) + Wad(WhFf,)) (75
Mo(X) = 5.X (

where g3, and gy, denote average global pooling and
maximum global pooling operations in the spatial do-
main. The spatial attention sub-module models the
spatial relationships of features, and is complementary
to channel attention. Unlike channel attention, it ap-
plies a convolution layer with a large kernel to generate
the attention map

Frog = Gawe(X) (77)
Frax = imax(X) (78)
ss = 0(Conv([Fyg; Frnax])) (79)
My(X) = s, X (80)

where Conv(-) represents a convolution operation, while
Jave and gy, are global pooling operations in the chan-
nel domain. [|] denotes concatenation over channels.
The overall attention process can be summarized as

X' = My(X) (81)
Y = M,(X") (82)

Combining channel attention and spatial attention
sequentially, CBAM can utilize both spatial and cross-
channel relationships of features to tell the network
what to focus on and where to focus. To be more spe-
cific, it emphasizes useful channels as well as enhancing
informative local regions. Due to its lightweight design,
CBAM can be integrated into any CNN architecture
seamlessly with negligible additional cost. Nevertheless,
there is still room for improvement in the channel & spa-
tial attention mechanism. For instance, CBAM adopts
a convolution to produce the spatial attention map,
so the spatial sub-module may suffer from a limited
receptive field.

3.5.3 BAM

At the same time as CBAM, Park et al. [L01] pro-
posed the bottleneck attention module (BAM), aiming
to efficiently improve the representational capability of
networks. It uses dilated convolution to enlarge the
receptive field of the spatial attention sub-module, and
build a bottleneck structure as suggested by ResNet to
save computational cost.

For a given input feature map X, BAM infers
the channel attention s, € R® and spatial attention
s, € RTXW in two parallel streams, then sums the
two attention maps after resizing both branch outputs
to REXHXW = The channel attention branch, like an
SE block, applies global average pooling to the feature
map to aggregate global information, and then uses an
MLP with channel dimensionality reduction. In order
to utilize contextual information effectively, the spatial
attention branch combines a bottleneck structure and
dilated convolutions. Overall, BAM can be written as

Se = BN(WQ(ngavg(X) + bl) + b2) (83)
ss = BN(Conva**(DC3*3*(DC3*? (Conv}* 1 (X)))))

(84)

s = o(Expand(ss) + Expand(s.)) (85)

Y =sX + X (86)

where W;, b; denote weights and biases of fully con-
nected layers respectively, Convi*! and Convs*! are
convolution layers used for channel reduction. DC3*?
denotes a dilated convolution with 3 x 3 kernel, applied
to utilize contextual information effectively. Expand
expands the attention maps ss and s, to REXHXW,

BAM can emphasize or suppress features in both spa-
tial and channel dimensions, as well as improving the
representational power. Dimensional reduction applied
to both channel and spatial attention branches enables
it to be integrated with any convolutional neural net-
work with little extra computational cost. However,
although dilated convolutions enlarge the receptive field
effectively, it still fails to capture long-range contextual
information as well as encoding cross-domain relation-
ships.

3.5.4 scSE

To aggregate global spatial information, an SE block
applies global pooling to the feature map. However,
it ignores pixel-wise spatial information, which is im-
portant in dense prediction tasks. Therefore, Roy et
al. [108] proposed spatial and channel SE blocks (scSE).
Like BAM, spatial SE blocks are used, complementing
SE blocks, to provide spatial attention weights to focus
on important regions.



Given the input feature map X, two parallel modules,
spatial SE and channel SE, are applied to feature maps
to encode spatial and channel information respectively.
The channel SE module is an ordinary SE block, while
the spatial SE module adopts 1 x 1 convolution for
spatial squeezing. The outputs from the two modules
are fused. The overall process can be written as

sc = 0(W20(Wigavg(X))) (87)
Xchn = SCX (88)
5s = o(Conv' (X)) (89)
Xspa =5,X (90)
Y = f(Xspm Xchn) (91)

where f denotes the fusion function, which can be max-
imum, addition, multiplication or concatenation.

The proposed scSE block combines channel and spa-
tial attention to enhance features as well as capturing
pixel-wise spatial information. Segmentation tasks are
greatly benefited as a result. The integration of an scSE
block in F-CNNs makes a consistent improvement in
semantic segmentation at negligible extra cost.

3.5.5 Triplet Attention

In CBAM and BAM, channel attention and spatial
attention are computed independently, ignoring rela-
tionships between these two domains [96]. Motivated by
spatial attention, Misra et al. [96] proposed triplet at-
tention, a lightweight but effective attention mechanism
to capture cross-domain interaction.

Given an input feature map X, triplet attention uses
three branches, each of which plays a role in capturing
cross-domain interaction between any two domains from
H, W and C. In each branch, rotation operations along
different axes are applied to the input first, and then a Z-
pool layer is responsible for aggregating information in
the zeroth dimension. Finally, a standard convolution
layer with kernel size k x k models the relationship
between the last two domains. This process can be
written as

X1 =Pm(X) (92)
Xo = Pmy(X) (93)
so = o(Convy(Z-Pool(X))) (94)
s1 = o(Convy (Z-Pool(X1))) (95)
sg = o(Convy(Z-Pool(X3))) (96)
Y = 250X + P (51 X)) 4 P (52X2)) - (97)

where Pm; and Pms denote rotation through 90° anti-
clockwise about the H and W axes respectively, while

Pm; ! denotes the inverse. Z-Pool concatenates max-
pooling and average pooling along the zeroth dimension.

Y = Z‘POOI(X) = [gmax(X)§ gavg(X)] (98>

Unlike CBAM and BAM, triplet attention stresses
the importance of capturing cross-domain interactions
instead of computing spatial attention and channel
attention independently. This helps to capture rich
discriminative feature representations. Due to its simple
but efficient structure, triplet attention can be easily
added to classical backbone networks.

3.5.6 SimAM

Yang et al. [148] also stress the importance of learn-
ing attention weights that vary across both channel
and spatial domains in proposing SimAM, a simple,
parameter-free attention module capable of directly es-
timating 3D weights instead of expanding 1D or 2D
weights. The design of SimAM is based on well-known
neuroscience theory, thus avoiding need for manual fine
tuning of the network structure.

Motivated by the spatial suppression phenomenon [9],
they propose that a neuron which shows suppression
effects should be emphasized and define an energy func-
tion for each neuron as:

M-1

et(wtabtayvzi) = (yt - £)2 + M—1 Z (yo - Sﬁl)
i=1

(99)

where ¢ = w;t + by, T; = wix; + by, and t and x; are
the target unit and all other units in the same channel;
i€l,...,N,and N=H x W.

An optimal closed-form solution for Eq. 99 exists:

. 4(6% +N)
T = )2+ 267 + 2

(100)

where /i is the mean of the input feature and 62 is
its variance. A sigmoid function is used to control
the output range of the attention vector; an element-
product is applied to get the final output:

Y = Sigmoid <;) X (101)

This work simplifies the process of designing at-
tention and successfully proposes a novel 3-D weight
parameter-free attention module based on mathematics
and neuroscience theories.



3.5.7 Coordinate attention

An SE block aggregates global spatial information using
global pooling before modeling cross-channel relation-
ships, but neglects the importance of positional informa-
tion. BAM and CBAM adopt convolutions to capture
local relations, but fail to model long-range dependen-
cies. To solve these problems, Hou et al. [62] proposed
coordinate attention, a novel attention mechanism which
embeds positional information into channel attention,
so that the network can focus on large important regions
at little computational cost.

The coordinate attention mechanism has two con-
secutive steps, coordinate information embedding and
coordinate attention generation. First, two spatial ex-
tents of pooling kernels encode each channel horizontally
and vertically. In the second step, a shared 1 x 1 con-
volutional transformation function is applied to the
concatenated outputs of the two pooling layers. Then
coordinate attention splits the resulting tensor into two
separate tensors to yield attention vectors with the
same number of channels for horizontal and vertical
coordinates of the input X along. This can be written
as

2 = i (X) (102)
2" = gag(X) (103)
f = 8(BN(Convy*([z";2"]))) (104)
£ f = Split(f) (105)
s" = o(Conv; () (106)
s = o(Conv, ' (f*)) (107)
Y = Xshsv (108)
where ggvg and g, denote pooling functions for vertical
and horizontal coordinates, and s* € REX™W and s* €
RE*HXT represent corresponding attention weights.
Using coordinate attention, the network can accu-
rately obtain the position of a targeted object. This
approach has a larger receptive field than BAM and
CBAM. Like an SE block, it also models cross-channel
relationships, effectively enhancing the expressive power
of the learned features. Due to its lightweight design

and flexibility, it can be easily used in classical building
blocks of mobile networks.

3.5.8 DANet

In the field of scene segmentation, encoder-decoder
structures cannot make use of the global relationships
between objects, whereas RNN-based structures heavily
rely on the output of the long-term memorization. To
address the above problems, Fu et al. [10] proposed a

novel framework, the dual attention network (DANet),
for natural scene image segmentation. Unlike CBAM
and BAM, it adopts a self-attention mechanism instead
of simply stacking convolutions to compute the spatial
attention map, which enables the network to capture
global information directly.

DANet uses in parallel a position attention module
and a channel attention module to capture feature de-
pendencies in spatial and channel domains. Given the
input feature map X, convolution layers are applied
first in the position attention module to obtain new
feature maps. Then the position attention module se-
lectively aggregates the features at each position using
a weighted sum of features at all positions, where the
weights are determined by feature similarity between
corresponding pairs of positions. The channel attention
module has a similar form except for dimensional re-
duction to model cross-channel relations. Finally the
outputs from the two branches are fused to obtain final
feature representations. For simplicity, we reshape the
feature map X to C x (H x W) whereupon the overall
process can be written as

Q, K, V=W,X, W,X, W,X (109)
YP = X 4 VSoftmax(QT K) (110)

Y = X + Softmax(X X)X (111)

Y = yPos 4 ychn (112)

where W,, Wy, W, € RE*C are used to generate new
feature maps.

The position attention module enables DANet to
capture long-range contextual information and adap-
tively integrate similar features at any scale from a
global viewpoint, while the channel attention module
is responsible for enhancing useful channels as well as
suppressing noise. Taking spatial and channel relation-
ships into consideration explicitly improves the feature
representation for scene segmentation. However, it is
computationally costly, especially for large input feature
maps.

3.5.9 RGA

Unlike coordinate attention and DANet, which em-
phasise capturing long-range context, in relation-aware
global attention (RGA) [166], Zhang et al. stress the
importance of global structural information provided
by pairwise relations, and uses it to produce attention
maps.

RGA comes in two forms, spatial RGA (RGA-S) and
channel RGA (RGA-C). RGA-S first reshapes the input
feature map X to C'x (H x W) and the pairwise relation



matrix R € RUDXW)IXHXW) is computed using

Q =(W9X) (113)
K =s(WKX) (114)
R=Q"K (115)

The relation vector r; at position ¢ is defined by stacking
pairwise relations at all positions:

r; = [R(i,:); R(:,1)] (116)

and the spatial relation-aware feature g; can be written
as

Y = (05 (SOWe2)): 6(Wor)]  (117)

where g, denotes global average pooling in the channel
domain. Finally, the spatial attention score at position
1 is given by

RGA-C has the same form as RGA-S, except for taking
the input feature map as a set of H x W-dimensional
features.

RGA uses global relations to generate the atten-
tion score for each feature node, so provides valuable
structural information and significantly enhances the
representational power. RGA-S and RGA-C are flexible
enough to be used in any CNN network; Zhang et al.
propose using them jointly in sequence to better capture
both spatial and cross-channel relationships.

3.5.10 Self-Calibrated Convolutions

Motivated by the success of group convolution, Liu et
at [86] presented self-calibrated convolution as a means
to enlarge the receptive field at each spatial location.
Self-calibrated convolution is used together with a
standard convolution. It first divides the input fea-
ture X into X; and X5 in the channel domain. The
self-calibrated convolution first uses average pooling to
reduce the input size and enlarge the receptive field:

T, = AvgPool,.(X1) (119)

where r is the filter size and stride. Then a convolution
is used to model the channel relationship and a bilin-
ear interpolation operator Up is used to upsample the
feature map:

X1 = Up(Convy(T1)) (120)

Next, element-wise multiplication finishes the self-
calibrated process:

Yll = COHV3(X1)O’(X1 + X{) (121)

Finally, the output feature map of is formed:

Y1 = Convy (YY) (122)
Y2 = CODV1 (XQ) (123)
Y = [Y1; Y] (124)

Such self-calibrated convolution can enlarge the recep-
tive field of a network and improve its adaptability. It
achieves excellent results in image classification and cer-
tain downstream tasks such as instance segmentation,
object detection and keypoint detection.

3.5.11 SPNet

Spatial pooling usually operates on a small region which
limits its capability to capture long-range dependen-
cies and focus on distant regions. To overcome this,
Hou et al. [61] proposed strip pooling, a novel pooling
method capable of encoding long-range context in either
horizontal or vertical spatial domains.

Strip pooling has two branches for horizontal and
vertical strip pooling. The horizontal strip pooling
part first pools the input feature F' € RE*H*W in the
horizontal direction:

y' = gavg(X) (125)

Then a 1D convolution with kernel size 3 is applied in y
to capture the relationship between different rows and
channels. This is repeated W times to make the output
1, consistent with the input shape:

yn, = Expand(Conv1D(y')) (126)

Vertical strip pooling is performed in a similar way.
Finally, the outputs of the two branches are fused using
element-wise summation to produce the attention map:

s = o(Conv'**(y, + yn)) (127)
Y = sX (128)

The strip pooling module (SPM) is further developed
in the mixed pooling module (MPM). Both consider
spatial and channel relationships to overcome the local-
ity of convolutional neural networks. SPNet achieves
state-of-the-art results for several complex semantic
segmentation benchmarks.

3.5.12 SCA-CNN

As CNN features are naturally spatial, channel-wise and
multi-layer, Chen et al. [17] proposed a novel spatial
and channel-wise attention-based convolutional neural
network (SCA-CNN). It was designed for the task of



image captioning, and uses an encoder-decoder frame-
work where a CNN first encodes an input image into
a vector and then an LSTM decodes the vector into a
sequence of words. Given an input feature map X and
the previous time step LSTM hidden state h;_; € R?, a
spatial attention mechanism pays more attention to the
semantically useful regions, guided by LSTM hidden
state hy;_1. The spatial attention model is:

a(hy_1,X) = tanh(Convi* (X) ® Wih,_1)  (129)
®,(hi—1, X) = Softmax(Convy**(a(hs_1,X))) (130)

where @& represents addition of a matrix and a vec-
tor. Similarly, channel-wise attention aggregates global
information first, and then computes a channel-wise
attention weight vector with the hidden state h;_1:

b(ht—1, X) = tanh((Wagavg(X) + b2) ® Wihs—1)
(131)

®.(hy_1,X) = Softmax(W3(b(hs—1, X)) +b3) (132)
Overall, the SCA mechanism can be written in one of
two ways. If channel-wise attention is applied before
spatial attention, we have

Y = f(X, @y (he—, XPu(hy_1, X)), @ (hy_1, X))
(133)

and if spatial attention comes first:

Y = f(X, By (hy_1, X), ®e(he1, Xy (he_1, X))
(134)

where f(-) denotes the modulate function which takes
the feature map X and attention maps as input and
then outputs the modulated feature map Y.

Unlike previous attention mechanisms which consider
each image region equally and use global spatial infor-
mation to tell the network where to focus, SCA-Net
leverages the semantic vector to produce the spatial
attention map as well as the channel-wise attention
weight vector. Being more than a powerful attention
model, SCA-CNN also provides a better understanding
of where and what the model should focus on during
sentence generation.

3.5.13 GALA

Most attention mechanisms learn where to focus using
only weak supervisory signals from class labels, which
inspired Linsley et al. [34] to investigate how explicit
human supervision can affect the performance and inter-
pretability of attention models. As a proof of concept,
Linsley et al. proposed the global-and-local attention

(GALA) module, which extends an SE block with a
spatial attention mechanism.

Given the input feature map X, GALA uses an at-
tention mask that combines global and local attention
to tell the network where and on what to focus. As
in SE blocks, global attention aggregates global infor-
mation by global average pooling and then produces a
channel-wise attention weight vector using a multilayer
perceptron. In local attention, two consecutive 1 x 1
convolutions are conducted on the input to produce a
positional weight map. The outputs of the local and
global pathways are combined by addition and multi-
plication. Formally, GALA can be represented as:

59 = Wad (Wigass(®)) (135)
51 = Convy**(6(Convi**(X))) (136)
s, = Expand(s,) (137)
s; = Expand(s;) (138)
s = tanh(a(sy + s;) +m - (sys7)) (139)
Y = sX (140)

where a,m € R® are learnable parameters representing
channel-wise weight vectors.

Supervised by human-provided feature importance
maps, GALA has significantly improved representa-
tional power and can be combined with any CNN back-
bone.

3.6. Spatial & Temporal Attention

Spatial & temporal attention combines the advan-
tages of spatial attention and temporal attention as
it adaptively selects both important regions and key
frames. Some works [113, 37] compute temporal atten-
tion and spatial attention separately, while others [412]
produce joint spatiotemporal attention maps. Further
works focusing on capturing pair-wise relations [147].
Representative spatial & temporal attention attentions
are summarised in Tab. 8. We next discuss specific
spatial & temporal attention mechanisms according to
the order in Fig. 4.

3.6.1 STA-LSTM

In human action recognition, each type of action gener-
ally only depends on a few specific kinematic joints [113].
Furthermore, over time, multiple actions may be per-
formed. Motivated by these observations, Song et
al. [113] proposed a joint spatial and temporal attention
network based on LSTM [60], to adaptively find dis-
criminative features and keyframes. Its main attention-
related components are a spatial attention sub-network,
to select important regions, and a temporal attention



Table 8. Representative spatial & temporal attentions sorted by date. Action=action recognition, ReID = re-identification.

Description of the attention
process

Goals

a) use a sub-network to produce
a spatial attention map b) aggre-
gate spatial information by us-
ing spatial attentionc) use a sub-
network to produce a temporal
attention map d) aggregate tem-
poral information.

emphasize key points in
both spatial and temporal
domains

a) produce spatial attention map
for each frame using previous hid-
den state b) aggregate spatial
information into frame-wise fea-
tures ¢) produce temporal atten-
tion map using previous hidden
stated) aggregate global informa-

a) emphasize important
regions in both spatial
and temporal domains
b)capture global informa-
tion

a) produce per-frame attention
maps using /s norm b) obtain spa-
tial scores for each patch by sum-
mation using /; norm c) aggregate
global information along in tem-
poral domain

a) emphasize important re-
gions in both spatial and
temporal domains b) over-
come occlusion problems
in video-based RelD

Method Publication | Applications
STA- AAAT2017 Action
LSTM [113]
RSTAN [37] | TIP2018 Action

tion
STA [12] AAAT2019 RelD
STGCN [147] | CVPR2020 RelD

a) partition each frame into
patches b) flatten spatial and tem-
poral dimensions and construct a
patch graph using pairwise simi-
larity c¢) apply graph convolutions
to the patch graph

Same as STA

sub-network, to select key frames. The spatial attention
sub-network can be written as:

St = US tanh(stXt + thhf—l + bsi) —|— bso (141)
oy = Softmax(s;) (142)
}ft = atXt (143)

where X; is the input feature at time ¢, Ug, Wi, bgs,
and by, are learnable parameters, and hj_; is the hid-
den state at step t — 1. Note that use of the hidden
state h means the attention process takes temporal
relationships into consideration.

The temporal attention sub-network is similar to the
spatial branch and produces its attention map using:

Bt = 6(Wyp Xy + Wiphl | +b,). (144)

It adopts a ReLU function instead of a normalization
function for ease of optimization. It also uses a regular-
ized objective function to improve convergence.

Overall, this paper presents a joint spatiotemporal
attention method to focus on important joints and
keyframes, with excellent results on the action recogni-
tion task.

3.6.2 RSTAN

To capture spatiotemporal contexts in video frames,
Du et al. [37] introduced spatiotemporal attention to
adaptively identify key features in a global way.

The spatiotemporal attention mechanism in RSTAN
consists of a spatial attention module and a temporal
attention module applied serially. Given an input fea-
ture map X € RP*XTXHXW and the previous hidden
state hy_1 of an RNN model, spatiotemporal attention
aims to produce a spatiotemporal feature representa-
tion for action recognition. First, the given feature map
X is reshaped to RPXT*(HXW) “and we define X (n, k)
as the feature vector for the k-th location of the n-th
frame. At time ¢, the spatial attention mechanism aims



to produce a global feature [,, for each frame, which
can be written as

ar(n, k) = we tanh(Wphe—y + W X (n, k) + ba)

(145)
WxH
of(n, k) = evaan(mk’)/ Z e Yot (n,k) (146)
j=1
HxW
=Y oj(nk)X(n k) (147)
k=1

where 7, is introduced to control the sharpness of the
location-score map. After obtaining frame-wise fea-
tures {l1,...,Ir}, RSTAN uses a temporal attention
mechanism to estimate the importance of each frame
feature

Bi(n) = wg tanh(Wj he—1 + Wil(n) + bg)  (148)

T
B (n) = ewﬁt(n)/z V8B (n) (149)
j=1

o= B m)in) (150)
n=1

The spatiotemporal attention mechanism used in
RSTAN identifies those regions in both spatial and
temporal domains which are strongly related to the pre-
diction in the current step of the RNN. This efficiently
enhances the representation power of any 2D CNN.

3.6.3 STA

Previous attention-based methods for video-based per-
son re-identification only assigned an attention weight
to each frame and failed to capture joint spatial and
temporal relationships. To address this issue, Fu et
al. [12] propose a novel spatiotemporal attention (STA)
approach, which assigns attention scores for each spatial
region in different frames without any extra parameters.

Given the feature maps of an input video {X,,|X,, €
REXHXWAN STA first generates frame-wise attention
maps by using the [, norm on the squares sum in the
channel domain:

C
I Zc=1 Xn(c,h, w)2||2
H W c
Zh:l szl | Zc:l Xn(c,h,w)?|[2
Then both the feature maps and attention maps are
divided into K local regions horizontally, each of which

represents one part of the person. The spatial attention
score for region k is obtained using

si= S el (152)

(i,j) ERegiony,

gn(h, w) = (151)

To capture the relationships between regions in different
frames, STA applies [; normalization to the attention
scores in the temporal domain, using

Sn.k
S(n, k) = ——2b (153)
SN sl

Finally, STA splits the input feature map X; into K re-
gions {X, 1,..., X, x} and computes the output using

Yl = [Xargmaxn S(n,1),15 -+ -3 Xargmaxn S(n,K),K] (154)

N N
Y2=13" 80, ) Xpas. ;Y S, K) X ] (155)
n=1 n=1

Y = [YZ;YQ] (156)

Instead of computing spatial attention maps frame by
frame, STA considers spatial and temporal attention in-
formation simultaneously, fully using the discriminative
parts in both dimensions. This reduces the influence of
occlusion. Because of its non-parametric design, STA
can tackle input video sequences of variable length; it
can be combined with any 2D CNN backbone.

3.6.4 STGCN

To model the spatial relations within a frame and tem-
poral relations across frames, Yang et al. [147] pro-
posed a novel spatiotemporal graph convolutional net-
work (STGCN) to learn a discriminative descriptor for
a video. It constructs a patch graph using pairwise sim-
ilarity, and then uses graph convolution to aggregate
information.

STGCN includes two parallel GCN branches, the
temporal graph module and the structural graph mod-
ule. Given the feature maps of a video, STGCN first
horizontally partitions each frame into P patches and
applies average pooling to generate patch-wise fea-
tures x1,...,xy, where the total number of patches
is N = TP. For the temporal module, it takes each
patch as a graph node and construct a patch graph for
the video, where the adjacency matrix A is obtained by
normalizing the pairwise relation matrix E, defined as

E(i,j) = (Woa:) W, (157)
N
A(i,j) = E*(i,5)/Y_ E*(i. ) (158)
j=1
A=D"3(A+I)D"2 (159)
where D(i,i) = Z;-V:l(A—i—I)(i,j). Given the adjacency

matrix E, the m-th graph convolution can be found
using

X" = AX"IW 4 X! (160)



where X € R¥*¢ represents the hidden features for all
patches and W™ € R*¢ denotes the learnable weight
matrix for the m-th layer. For the spatial module,
STGCN follows a similar approach of adjacency matrix
and graph convolution, except for modeling the spatial
relations of different regions within a frame.

Flattening spatial and temporal dimensions into a
sequence, STGCN applies the GCN to capture the
spatiotemporal relationships of patches across differ-
ent frames. Pairwise attention is used to obtain the
weighted adjacency matrix. By leveraging spatial and
temporal relationships between patches, STGCN over-
comes the occlusion problem while also enhancing infor-
mative features. It can used with any CNN backbone
to process video.

4. Directions

We present our thoughts on potential future research
directions.

4.1. General attention block

At present, a special attention mechanism needs to
be designed for each different task, which requires con-
siderable effort to explore potential attention methods.
For instance, channel attention is a good choice for im-
age classification, while spatial attention is well-suited
to dense prediction tasks such as semantic segmenta-
tion and object detection. Channel attention focuses on
what to pay attention to while spatial attention consid-
ers where to pay attention. Based on this observation,
we encourage consideration as to whether there could
be a general attention block that takes advantage of
all kinds of attention mechanisms. For example, a soft
selection mechanism (branch attention) could choose be-
tween channel attention, spatial attention and temporal
attention according to the specific task undertaken.

4.2. Characterisation and interpretability

Attention mechanisms are motivated by the human
visual system and are a step towards the goal of build-
ing an interpretable computer vision system. Typically,
attention-based models are understood by rendering
attention maps, as in Fig. 9. However, this can only
give an intuitive feel for what is happening, rather than
precise understanding. However, applications in which
security or safety are important, such as medical di-
agnostics and automated driving systems, often have
stricter requirements. Better characterisation of how
methods work, including modes of failure, is needed
in such areas. Developing characterisable and inter-
pretable attention models could make them more widely
applicable.

4.3. Attention-based pre-trained models

Large-scale attention-based pre-trained models have
had great success in natural language processing [3, 5].
Recently, MoCoV3 [21], DINO [12] and BEiT [5] have
demonstrated that attention-based models are also well
suited to visual tasks. Due to their ability to adapt to
varying inputs, attention-based models can deal with
unseen objects and are naturally suited to transferring
pretrained weights to a variety of tasks. We believe that
the combination of pre-training and attention models
should be further explored: training approach, model
structures, pre-training tasks and the scale of data are
all worth investigating.

4.4. Optimization

SGD [104] and Adam [72] are well-suited for opti-
mizing convolutional neural networks. For visual trans-
formers, AdamW [94] works better. Recently, Chen et
al. [20] significantly improved visual transformers by
using a novel optimizer, the sharpness-aware minimizer
(SAM) [39]. It is clear that attention-based networks
and convolutional neural networks are different models;
different optimization methods may work better for dif-
ferent models. Investigating new optimzation methods
for attention models is likely to be worthwhile.

4.5. Deployment

Convolutional neural networks have a simple, uni-
form structure which makes them easy to deploy on
various hardware devices. However, it is difficult to
optimize complex and varied attention-based models on
edge devices. Nevertheless, experiments in [92, , 154]
show that attention-based models provide better results
than convolutional neural networks, so it is worth trying
to find simple, efficient and effective attention-based
models which can be widely deployed.

5. Conclusions

Attention mechanisms have become an indispensable
technique in the field of computer vision in the era of
deep learning. This survey has systematically reviewed
and summarized attention mechanisms for deep neural
networks in computer vision. We have grouped different
attention methods according to their domain of oper-
ation, rather than by application task, and show that
attention models can be regarded as an independent
topic in their own right. We have concluded with some
potential directions for future research. We hope that
this work will encourage a variety of potential applica-
tion developers to put attention mechanisms to use to
improve their deep learning results. We also hope that
this survey will give researchers a deeper understanding



of various attention mechanisms and the relationships
between them, as a springboard for future research.
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