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Abstract

We introduce a novel method of isometric correspon-
dences for 3D shapes, designed to address the prob-
lem of multiple solutions associated with deep function-
al maps when matching shapes with left-to-right reflec-
tional intrinsic symmetries. Unlike the existing method-
s that only find the direct correspondences using single
Siamese network, our proposed method is able to detect
both the direct and symmetric correspondences among
shapes simultaneously. Furthermore, our method de-
tects the reflectional intrinsic symmetry of each shape.
Key to our method is the using of two Siamese networks
that learn consistent direct descriptors and their sym-
metric ones, combined with carefully designed regular-
ized functional maps and supervised loss. This leads to
the first deep functional map capable of both produc-
ing two high-quality correspondences of shapes and de-
tecting the left-to-right reflectional intrinsic symmetry
of each shape. Extensive experiments demonstrate that
the proposed method obtains more accurate results than
state-of-the-art methods for shape correspondences and
reflectional intrinsic symmetries detection.

1. Introduction

The problem of shape correspondence is fundamental
in the fields of computer vision and computer graphics
with wide applications in deformation transfer[37], statis-
tical shape analysis[5] and so on. While the most classi-

cal non-rigid shape correspondence methods are based on
hand-crafted features or deformation models [43], more re-
cent approaches have focused on learning an optimal model
directly from 3D data. This includes approaches based on
template shape deformation [14] and methods that exploit
different definitions of convolution and phrase correspon-
dence as a dense labeling problem [46, 40, 9].

One prominent direction in learning-based shape corre-
spondence is the deep functional map either in supervised
[20, 10, 36] or unsupervised setting [15, 33], where one
Siamese network of two branches of neural networks with
shared weights learns geometrical features that recover op-
timal represented matrix of the functional map [26]. De-
spite significant progress in this area, a key drawback of
these methods is that cannot address the multiple solutions
problem, that is when matching a pair of shapes with left-to-
right reflectional intrinsic symmetries, such as a pair of hu-
mans or animals, there exist two exact solutions, i.e., direct
(left-to-left) and symmetric (left-to-right) correspondences.
The previous methods [20, 33, 15, 10] only can predict the
direct correspondence. Furthermore, the above deep func-
tional maps cannot be used for intrinsic symmetry detection.
When the two input shapes are the same, the shared weight
Siamese network making the computed represented matrix
of the functional map is the identical matrix, which lead to
the identical mapping.

Based on the above limitations, we introduce a nov-
el deep functional map for computing the two correspon-
dences and reflectional intrinsic symmetry of each shape il-
lustrated in Figure 1. Given a pair of shapes, two Siamese
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Figure 1. Given a pair of shapes, our method learns consistent direct descriptors and their symmetric ones (left), and automatically computes
the direct and symmetric correspondences among the shapes (middle) and intrinsic symmetry of each shape (right). The corresponding

points are indicated through the same colors in each column.

networks are used in our work, where the first one with
shared weights learns consistent descriptors for the two
shapes, while the second one with another shared weight-
s learns symmetric descriptors of ones learned in the first
Siamese network. Then the above learned descriptors are
fed into the regularized functional map layers to compute
both the direct and symmetric correspondences among the
two input shapes and reflectional intrinsic symmetry of each
shape. Our main technical contributions are as follows:

* We introduce a novel deep functional map with two
Siamese networks combined with carefully designed
regularized functional maps and supervised loss for
learning consistent direct descriptors and their sym-
metric ones on 3D shapes.

* The proposed method is the first deep functional map
that can solve the problem of multiple solutions when
matching shapes with left-to-right reflectional intrin-
sic symmetries. Furthermore, our approach detects the
reflectional intrinsic symmetry of each shape.

» Extensive experiments show that our method achieves
better results than previous works of shape correspon-
dences and reflectional intrinsic symmetries detection.

1.1. Related works

Computing correspondences between 3D shapes is a
well-studied area of computer vision and computer graph-
ics. Below we only review the most closely related methods
and refer the interested readers to recent surveys including
[43, 4, 34] for more in-depth discussions.

Functional maps. Our method is built on the functional
map representation, which was originally introduced in [26]
for solving non-rigid shape matching problems, and then
extended in follow-up works [27]. The functional map ex-
presses correspondences as smaller matrices encoded in a
reduced basis, which converts complex geometry problems
into simpler optimization of linear algebra.

A range of recent works, including [1, 19, 17, 11, 8,
31, 25] among many others, have extended the generality
and improved the robustness of the functional map estima-
tion pipeline, by using different regularizers, robust penal-
ties and powerful post-processing methods. Nevertheless,
a common problem with the above non-learning approach-
es is their over-reliance on manually choice of descriptors,
which greatly restricts the results of correspondences.
Deep functional maps. Inspired by the deep geometry
learning [47], many recent methods [20, 15, 33, 10, 35] have
proposed to learn the optimal features by deep functional
maps.

FMNet [20] introduces a Siamese network to learn op-
timal consistent descriptors on the two shapes for comput-
ing the functional map. This architecture is based on op-
timizing a non-linear transformation of SHOT descriptors
to obtain functional map that is as close as possible to the
ground truth correspondence. Follow-up works have ex-
tended this approach to the unsupervised setting [15, 33] by
replacing supervised loss with structural properties of the
resulting maps, but still use pre-defined descriptors for op-
timization. Most recently, [10, 35] have proposed to learn
descriptors directly from the raw 3D data without relying
on pre-defined descriptors, resulting in significantly more



robust and accurate methods.

Despite significant progress, above approaches only can

compute the direct correspondence for shapes with reflec-
tional intrinsic symmetries. The proposed deep functional
map is the first one that can compute both direct and sym-
metric correspondences.
Multiple solutions of correspondences. When computing
an intrinsic isometry correspondence between a pair of sym-
metric shapes, such as a pair of humans or animals, there ex-
ists multiple equally good solutions. Some previous works
have been proposed to address the above multiple solution
problem [28, 30, 29, 39].

Performing functional map in an appropriate quotien-
t space is able to find the multiple correspondences [28].
However, all intrinsic symmetries of one shape should be
given in advance. The proposed orientation-preserving and
orientation-reversing energies are added as soft constraints
in the functional map for computing direct and symmet-
ric correspondences in [30]. Nevertheless, the orientation-
reversing energy is usually not strong enough to obtain de-
sirable symmetric correspondence. A compact tree struc-
ture based on the functional map is introduced for encod-
ing and enumerating possible rough initializations of corre-
spondence in [29], which can be refined to produce multiple
high-quality correspondences. A computational framework
for joint symmetry and map synchronization is proposed us-
ing a lifting map representation [39].

Unlike the above methods based on hand-crafted fea-
tures, in this paper we propose a novel learning-based ap-
proach for solving the problem of multiple solutions of cor-
respondences for shapes with reflectional symmetries.
Intrinsic symmetry detection. Symmetry is a distance p-
reserving self-homeomorphism of a shape and reflect high-
level information about shape structure. Thus, symme-
try detection has received significant attentions in com-
putational geometry and computer graphics [23, 13], es-
pecially intrinsic symmetry detection via functional maps
[21, 45, 24, 30, 29].

Functional maps with constraints of orthogonality [21]
and block diagonal structure [45] on represented matrix are
introduced for intrinsic symmetry detection. Because the
symmetry is an isometry on the shape itself, the shape cor-
respondence methods based on functional maps [30, 29],
can also be used for symmetry detection when the two input
shapes are the same. However, the above methods are de-
pendent on the hand-crafted features. In this paper, a novel
end-to-end deep functional map is proposed for reflectional
intrinsic symmetry detection.

It is noted that the previous deep functional maps cannot
be used for intrinsic symmetry detection [20, 33, 15, 10].
Because, when the two input shapes are the same, the shared
weight Siamese network in the above deep functional maps
making the computed represented matrix of the function-

al map is the identical matrix, which lead to the identical
mapping.
1.2. Background and motivation

In this section, we give a brief overview of the functional
map representation and deep functional map for computing
correspondences of 3D shapes. We then provide the moti-
vation of the proposed method.

1.3. Functional maps

The proposed method is based on the functional map rep-
resentation [26]. For completeness, we briefly summarize
the pipeline for estimating functional maps, and refer the
interested reader to a recent course [27] for a more in-depth
discussion.

Given a pair of 3D shapes, M and N, represented in a
discrete setting as triangle meshes, and containing m and n
vertices respectively, the main steps of the functional map
framework for computing correspondences are as follows:

1. The first few eigenfunctions of the discrete Laplace-
Beltrami operator are computed on each shape, namely
kaq and ks basis functions @M and &V respectively.

2. A set of descriptor functions on each shape that are ex-
pected to be approximately preserved by the unknown
correspondence are computed. For instance, a descrip-
tor function can correspond to a particular dimension
of the Heat [38] or Wave [3] Kernel Signatures com-
puted at every point. Their coefficients in the respec-
tive basis ®M and & are stored as columns of matri-
ces A and B.

3. The optimal represented matrix C,,; of the functional
map is then computed by solving the following opti-
mization problem:

Copt == HgnEdesc(C) + )\Ereg(c); (l)

where the first term aims at the descriptor preserva-
tion: Egesc = ||CA — B||?, whereas the second term
regularizes the map by promoting the correctness of it-
s overall structural properties. The simplest approach
penalizes the failure of the unknown functional map to
commute with the Laplace-Beltrami operators:

Ereq(C) = [|[CAM — ANCIP?, )

where Ajpq and Aps are diagonal matrices of the
Laplace-Beltrami eigenvalues on the two shapes.

4. The estimated functional map C,,; in the spectral do-
main is converted to a spatial point-to-point correspon-
dence. Usually, a post-processing refinement process
is needed [32, 12, 30, 22]. The refinement iteratively
takes the map from spectral to spatial domain, until it
reaches a local optimum.



Figure 2. Some representative learned direct and symmetric descriptors. In each rectangle, the left column shows the consistent direct
descriptors F1 and G in pairs, and the right column illustrates F'o and G in pairs, which are symmetric with F; and G;.
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Figure 3. Network architecture of previous deep functional maps
[20, 33, 15, 10].

1.4. Deep functional maps

Despite its simplicity and efficiency, the above functional
map is fundamentally error prone due to the initial choice of
descriptor functions. To alleviate this dependence, several
approaches of deep functional maps have been proposed to
learn the optimal descriptors from data [20, 33, 15, 10, 35].

More specifically, the deep functional map framework
uses the Deep Neural Network (DNN) with the standard
Siamese setting for descriptors learning illustrated in Fig-
ure 3, in which two copies of the network with shared pa-
rameters produces the learned consistent descriptors F and
G on shapes M and A. Then, the represented matrix C is
computed with the Functional Map (FM) framework in Sec-
tion 1.3 with a trained loss /. We summarize the previous
works of deep functional maps via the type of used DNN,
trained loss and choice of training.

Type of DNN. The first class of used DNN in previous
works [20, 33, 15] is the residual network [16], which aims

at learning a non-linear transformation on the pre-computed
descriptors (typically SHOT [42]). The second class of
DNN is the KPConv [41] that learns descriptors directly
from raw shape geometry [10, 35].
Trained loss. The trained loss ¢z is defined on spectral
[33, 10] or spatial [20, 15] domain. The spectral loss di-
rectly builds on the functional map C obtained by the FM
block, while the spatial one converts C to a soft correspon-
dence and minimizes the spatial pairwise geodesic distance
distortion.
Choice of training. The loss ¢z can be trained in super-
vised [20, 10] or unsupervised [33, 15] manner. In the su-
pervised situation, ground truth of the point-to-point cor-
respondence T9% [20] or spectral functional map C9¢ [10]
should be known for the training shape pairs. While in the
unsupervised methods, the loss is enforced spatial geodesic
distances preserving criterion during isometric correspon-
dence [15] or the desired structural properties on the result-
ing represented matrix C of functional map, such as its bi-
jection orthogonality and commutability with the Laplacian
33]. A weakly supervised deep functional map is also pro-
posed for correspondence [35].

1.5. Motivation

Many shape classes, such as organic animal and human,
naturally have a left-to-right reflectional intrinsic symmetry.
Such symmetry implies that two equally-likely correspon-
dences exist on pairs of shapes, i.e., the direct (left-to-left)



and symmetric (left-to-right) correspondences. Although
very powerful, the above previous deep functional map only
aims at recovering the direct correspondence. In this paper,
given a pair of shapes, we propose the first deep functional
map that can compute both the direct and symmetric corre-
spondences among of shapes and reflectional symmetry of
each shape at the same time.

2. Method

In this section, we propose a novel approach to learn
both direct and their symmetric descriptors on a pair of
shapes in order to compute two equally-likely correspon-
dences, which are left-to-left direct and left-to-right sym-
metric maps, and reflectional intrinsic symmetry of each
shape through the functional map framework shown in Fig-
ure 4. The key difference between our method and previous
deep functional maps [20, 33, 15, 10] is that two Siamese
networks on the source and target shapes are used to learn
consistent direct descriptors and their symmetric ones.
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Figure 4. Overview of our deep functional map. Given a pair of
shapes M and N, the first Siamese network with weight 81 learns
consistent direct descriptors F; and G1, and the second Siamese
network with weight @2 learns descriptors F2 and G2 which are
symmetric with F'; and G1. The above descriptors are fed into the
functional map to compute the correspondences and symmetries
with a supervised loss /r.

2.1. Architecture

Given a pair of 3D shapes M and A each with one re-
flectional symmetry, the proposed method is mainly com-
posed of two parts illustrated in Figure 4, feature extractor
in section 2.2 and regularized functional map layer in sec-
tion 2.3.

The first part, labeled as Feat; and Feat, in Figure 4, aim-
s at extracting features of the raw geometry of the shapes.
However, unlike the previous works of deep functional
maps [20, 33, 15, 10] using only one Siamese network, we
use two Siamese networks on the source and target shapes
with shared learnable parameters 8,1 and 0 to learn consis-
tent direct descriptors and their symmetric ones separately.
Secondly, the above learned descriptors are projected in the
spectral bases of the shapes and fed to the regularized func-
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Direct correspondences Symmetric correspondences Reflectional symmetries

Figure 5. The corresponded relations between spectral descrip-
tors and six represented matrices of functional maps of correspon-
dences and symmetries.

tional map layer to compute the functional maps of direct
correspondences C%, ,, CX \( in two direction; symmetric
correspondences C3\/» C37r in two direction; and sym-
metries C g, Cpr of M and N at the same time. Finally,
we use a spectral loss in section 2.4 based on the differences
between the computed and the ground truth functional maps
of correspondences and symmetries.

2.2. The feature extractor

The goal of this part is to learn functional characteri-
zations of point clouds that will later be used to compute
spectral descriptors and then functional maps. We use two
Siamese networks rather than using the only one in the pre-
vious works [20, 33, 15, 10]. The first Siamese network
Feat; is applied with the same weights 6, on the source
shape M and target one AV to obtain consistent descriptors
F, and Gy, which are preserved during the direct corre-
spondences illustrated. The second Siamese network Featy
with another shared weights 65 is used to learn descriptors
F5 and G2, which are symmetric with F; and G on shapes
M and N separately. Some represented learn descriptors
of F1, Fo, G; and G, are illustrated in Figure 2, where the
descriptors are localized and seem to highlight one specif-
ic part of the body (first rectangle for foot, second for arm,
third for thigh).

Like the previous deep functional map [10], in this part
we also use the state-of-the-art point cloud learning method
KPConv [41], by extending the segmentation network pro-
posed in that work, as the feature extractor in the branch of
the above two Siamese networks. The KPConv uses specif-
ic defined convolution and pooling operators on point cloud
to learn features. Please refer to the original work for the
network details [41].

2.3. The functional map layer

For the given pair of 3D shapes M and N, the main
goal of this section is to compute correspondences between
shapes in both directions, i.e., by treating the shapes as both
source and target, and symmetries of each shape from the
computed raw-data features 1, G1, F5 and G in section



Method/Dataset F S |FonS | SonF
BCICP 7.4 | 12. * *
ZoomOut 23. | 24. * *
SURFMNet 6.8 | 3.5 23. 23.
SURFMNet + ICP 43 | 24 13. 13.
Unsup FMNet 8.6 | 5.0 21. 21.
Unsup FMNet + PMF | 11. | 8.3 14. 13.
FMNet 11. | 28. 39. 39.
FMNet + PMF 6.8 | 14. 15. 16.
GeomFmap 32 | 47 12. 3.5
GeomFmap + ZO 1.9 | 35 10. 2.0
Ours 3.1 | 3.6 11. 33
Ours + Z0 1.9 | 2.7 9.1 1.9

Table 1. Comparative results (*100) of the different methods for
the direct correspondence.

2.2. The functional maps of direct correspondences in t-
wo directions are denoted as C/[\’,, v and Cf[ > Symmetric
correspondences are represented as C3,; and C3 ., and
reflectional symmetries of M and N are respectively de-
noted as C g and Cpr. We stress again that in this block
the above six functional maps are computed simultaneously
shown in Figure 4.

Firstly, we express the computed feature function in the
respective spectral basis ®M and ®N on M and N. This
leads to the spectral descriptors F; = (®M)1F,, Fy =
(M)TF,, G, = (@N)TGl and Gy = ((DN)TGQ, where
(@) and (®V)T are the Moore pseudo inverses of &M
and ®V respectively. This step is where we shift focus from
the spatial to the spectral domain corresponded to the dot
product blocks in Figure 4.

Next, we use the spectral descriptors f‘l, f‘g, Gl and
G, to carefully compute the six functional maps, i.e., direct
correspondences of Cf,t A Cf\’/ Aq> Symmetric correspon-
dences of C% ;. C%- s and reflectional symmetries C g
and Cjs. It should be emphasized that the descriptors of
F., Fy on shape M are corresponded to G1, Gy on shape
N respectlvely during the direct correspondences of C
and CL N F1 is reflectional symmetric with Fg on shape
M; and G1 is reflectional symmetric with G’Q on shape NV.
The relations between the spectral descriptors Fl, Fg, Gl
and G and six functional maps are illustrated in Figure 5.
Thus, the minimized energies of the six regularized func-
tional maps are as follows:

Direct correspondences.

(G1, Go)lIP+
AlCAm — ANCI?,

CRm = HgHHC(Gh Go) — (F1, o)+
ACAN — AmCI?.

CRuy = min||C(Fy, Fy) -

3)

Symmetric correspondences.
Cluw = HgHIIC(Fl, Fy) — (Go, Gy)|*+
N|CAM — AN C?,

A L 4)
Cirm = min||C(G1, Go) — (Fo, Fy)lI*+
M|CAN — ApCI12
Reflectional symmetries.
Cm = min||C(Fy, Fy) — (F2, Fy)[*+
ACANM — AmCIP,
)

(G2, G1)|I*+
A|CAN — AnCJ 2.

Cy = IIlCi:HHC(Gl, Gz) -

Thirdly, we compute the above six linear square mini-
mization problems of equations (3), (4) and (5) using the
first one as example, the others are similarly. As in the pre-
vious work [10], the matrix C%), ,, is computed by each row
¢; to a separate linear system:

(F1,Fo) (B, Fo) "+ diag (1 —p))?))es = (F1, Fa )by,
(6)

where 1! and ,u respectively correspond to the i'" eigen-

values of the Laplace-Beltrami operators of M and N, and

b; is the i* row of (G1, G3).

2.4. The supervised spectral loss

Similar to the deep functional map in [10], the proposed
method also uses a loss with respect to the ground truth
functional map in the spectral domain. However, in ad-
dition to labels in direct correspondences (C%,,)9" and
(CXr )9t refered to [10], we add symmetric correspon-
dences ground truths (C%,,,)9" and (C3,,)9" and reflec-
tional symmetries ground truths (C )9 and (Cr)9¢ to op-
timize the Siamese networks. The loss is defined as sum
of the Frobenius norm of differences between the above
ground truth functional maps and the computed six func-
tional maps in the section 2.3.

(CRW)" 17+ IICR M — (CRa)” 1P+
ICRn = (CRA) P+ 1CRrpa = (CRepd) 1P+
ICa = (Ca)”|I* + 1Cx — (Can)?|I*.

lp = [|[CRn —

(N
2.5. Postprocessing

Once the proposed model is trained, we test it on a pair
of shapes and get a functional map, which can either direct-
ly is converted to a point-to-point correspondence or refined
further. We use the ZoomOut [22] refining algorithm based
on navigating between spatial and spectral domains while
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Figure 6. Comparisons on the FAUST re-meshed for direct correspondence without refinement.

progressively increasing the number of spectral basis func-
tions from 30 to 100. By virtue of this optimization algo-
rithm, we have achieved better experimental results shown
in section 3.
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Figure 7. Geodesic distance error curves for the direct correspon-
dence.

3. Experimental results

This section explains the implementations of our method
and experimental results. Section 3.1 describes the dataset-
s and evaluation measurement. Section 3.2 is the imple-
mentation detail. Sections 3.3, 3.4 and 3.5 are the com-
parisons results with previous works for direct correspon-
dences, symmetric correspondences and reflectional sym-
metries. Finally, section 3.6 shows robustness of the pro-
posed method. We show the shape matching by color trans-
fer, where corresponding points on the source and target
shapes have same colors.

3.1. Datasets and evaluation measurement

We test our method on a wide spectrum of human
datasets. First, the original FAUST [5] and SCAPE [2]
datasets containing 100 and 71 shapes. We also highlight
that the SCAPE

Source Ours 3D-CODED

[

Figure 8. Comparisons on the SMAL [48] models for the direct
correspondence with refinement.

dataset is slightly more challenging since the shapes are
less regular, and two shapes never share the same pose. For
convenience, the original FAUST and SCAPE are represent-
ed as O-F and O-S respectively. Second, the re-meshed ver-
sions of FAUST dataset containing shapes in 1-1 correspon-
dence, and of SCAPE, made publicly available by Ren et
al. [30]. These re-meshed datasets offer significantly more
variability in terms of shape structures and connectivity, in-
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Figure 9. Comparisons on the FAUST re-meshed for the symmet-
ric correspondence with refinement.

Source BCICP MapTree

Method/Dataset | F S
BCICP 19. | 15.
MapTree 11. | 6.3
Ours 3.0 | 3.7

Table 2. Comparative results (*100) of the different methods for
the symmetric correspondence.
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Figure 10. Geodesic distance error curves for the symmetric cor-
respondence.

cluding for instance point sampling density, making them
harder to match for existing algorithms. The re-meshed
version of FAUST and SCAPE are denoted as F and S re-
spectively. Third, hippopotamus generated by SMAL [48]
with 5000 for training and 25 for test. These hippopotamus

Method/Dataset | F S O-F | O-S
GIS 7.3 * 10. | 7.3
BCICP 44 | 40| 26 | 6.6
MapTree 37 | 57| 47 | 6.7
Ours 26 35|22 | 173

Table 3. Comparative results (¥100) of the different methods for
reflectional symmetries detection.

are generated using random parameters, which are from a
Gaussian distribution of ad-hoc variance 0.2.

We use the measurement introduced in [18] to evaluate
the results, where the per-point geodesic distance between
the

ground truth correspondence of direct/symmetric map
and the computed one is reported. All results are multiplied
by 100 for the sake of readability.

3.2. Implementation detail

We implement our method in Tensorflow by adapting the
open-source implementation of GeomFmap [10]. Like the
GeomFmap [10], the size of the functional basis is 30 and
the regularizer A is 0.001 by default. However, our method
contains two Siamese networks, each of which shares pa-
rameters. We train our network with a batch size of 4 shape
pairs for 10000 steps. We use a learning rate of 0.001
and gradually decreasing it to 0.0001 with ADAM opti-
mizer. Following the pipeline of KPConv, we start with a
sub-sampled version of the point clouds with a grid sub-
sampling of step 0.03.

3.3. Results of direct correspondences

In this section, we compare our method with previous
works of direct correspondences based on functional map
[30, 22, 33, 15, 20, 10] and deep deformation [14].
Functional map. We compare our method with several
state-of-the-art works via functional map. The first cat-
egory contains non-learning methods: BCICP [30] and
ZoomOut [22]. The second category includes unsupervised
deep learning methods: SURFMNet [33] and Unsup FM-
Net [15] with and without refinement algorithm (ICP [26]
for SURFMNet and PMF [44] for Unsup FMNet). The
third category includes supervised deep learning methods:
FMNet [20] and GeomFmap [10] with and without refine-
ment algorithm (PMF [44] for FMNet and ZoomOut [22
for GeomFmap). For a fair comparison with other meth-
ods, we show our results with and without ZoomOut [22
post-processing refinement in direct correspondence. For
convenience, we refer to ZoomOut as ZO, and our method
without ZoomOut as Ours.

Following the standard protocol, we split the FAUST re-
meshed and SCAPE re-meshed into training and test set-
s containing 80 and 20 shapes for FAUST, and 51 and 20
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Figure 11. Geodesic distance error curves for the reflectional symmetry detections.

shapes for SCAPE. In Table 1, F and S show the results for
training and testing on the same dataset, whereas F on S
means trained on FAUST re-meshed and tested on SCAPE
re-meshed. It is noted that axiomatic methods do not require
a learning process, so we just compare them on the test set-
s. As evident in Table I, our method obtains a particular-
ly comparable or superior performance to other methods.
Figure 6 is a comparison result without refinement, which
shows that our method gets a better performance. Further-
more, as show in Figure 7, we obtain a more accurate per-
formance especially on SCAPE dataset.

Deep deformation. In Figure 8, our method is compared
with the 3D-CODED [14], which learns deformation of the
template for computing direct correspondences. These two
methods are all trained on the hippopotamus introduced in
section 3.1. The average geodesic distances of our method
and 3D-CODED are 3.0 and 1.3. The comparison result
shows that our method performs better than 3D-CODED,
especially in the back region.

3.4. Results of symmetric correspondences

As we all know, exiting deep functional map method-
s only can detect direct correspondence, so we compare
our pipeline with classic axiomatic techniques BCICP [30]
and MapTree [29]. Same as the direct correspondence, we
choose FAUST re-meshed and SCAPE re-meshed to train
and test on the same dataset, while BCICP and MapTree
are not learning-based techniques, so we just test them on

Source Ours GIS BCICP MapTree

!
f

Figure 12. Comparisons on the FAUST for the reflectional sym-
metry detection with refinement. Corresponding points have the
same colors. Black rectangles are used to mark regions with larger
errors.




the test sets. And both axiomatic methods include post opti-
mization, so we add ZoomOut to our method in this part and
refer it to Ours. As evident in Table 2, our mean geodesic
distance error is much lower than others on both FAUST re-
meshed and SCAPE re-meshed datasets. Figure 9 demon-
strates the comparisons of symmetric correspondences. Fig-
ure 10 further shows that our matching results have higher
accuracy. This mainly because BCICP and MapTree exces-
sively rely on initial manual descriptor while our method
learns suitable descriptors directly from raw 3D data.

3.5. Results of reflectional symmetry detections

In this section, we compare our method with previous re-
flectional symmetry detection methods based on functional
maps, i.e., GIS [45], BCICP [30] and MapTree [29]. The
training process is the same as the correspondence experi-
ment, in which two shapes are randomly selected from the
training set. As for the test, each shape in test sets is fed in-
to the network as the source and target simultaneously and
C is eventually selected to evaluate our pipeline. For a
fair comparison with other methods, we show our results
with ZoomOut [22] refinement. And for the eight detect-
ed self-symmetries in the MapTree, we carefully choose the
one with the smallest geodesic distances to the ground-truth
of left-to-right symmetry. Comparison baselines are all be-
longed to axiomatic techniques, so we only test them on test
sets.

As evident in Table 3, our method is comparable or su-
perior to other baselines. And Figure 11 demonstrates our
matching results have higher accuracy. In order to evalu-
ate our method more intuitively, we use rectangle boxes to
mark the regions with larger errors in Figure 12. It should
be noted that the GIS method fails on the dataset of SCAPE
re-meshed.

3.6. Robustness

We also perform the proposed method on the animal
models with different perturbations. We collect a horse
dataset containing 8 clean shapes from TOSCA [7] and 45
shapes from SHREC'10 [6], which are the deformable ver-
sion of TOSCA. The training set is composed of 4 shapes
from TOSCA and 24 from SHREC'10 which belongs to the
first three levels of 8 classes perturbations, such as isometry,
topology, hole, micro hole, local scale, noise, shot noise and
sampling. The rest of shapes are used as test set. Since the
horse shapes have much vertices, we increase the grid sub-
sampling step to 2 for the KPConv. Figure 13 illustrates the
comparisons of direct and symmetric correspondence from
the sources to clean shape and its deformable ones. The av-
erage geodesic distance errors of direct and symmetric cor-
respondences from sources to the clean shape are 1.83 and
2.55, and the errors for the deformable ones are 4.56 and
2.75. The qualitative results and quantitative errors demon-

\
ﬂ
ﬂ

Source Clean shape

Deformable shape

Figure 13. Direct and symmetric correspondences results from
sources to clean shape and its deformable ones with holes (top),
Gaussian noises (middle) and shot noises (bottom). Correspond-
ing points have the same colors. The boundary edges are shown in
yellow color.

strate the proposed method is robust to the above perturba-
tions.

4. Conclusion, limitations and future works

In this paper, a novel deep functional map is proposed to
solve the multiple solutions problem when matching shapes
with left-to-right reflectional intrinsic symmetries. Both
the direct and symmetric correspondences among a pair of
shapes and reflectional intrinsic symmetry of each shape are
computed at the same time. The key novelty is that the sec-
ond Siamese network learns symmetric descriptors of the
first Siamese network. We demonstrate through extensive
experiments on correspondences and symmetries detection



that our method obtains better results than previous works.

Our method still has some limitations. Firstly, we only
target multiple solutions of matching shapes with left-to-
right reflectional intrinsic symmetries, and do not consider
rotational and continuous intrinsic symmetries. Secondly,
the proposed method limited by requiring the ground truth
maps of correspondences and symmetries of enough train-
ing examples. This makes it difficult to apply our method to
new shape classes for which ground truth data is not avail-
able.

In the future, we would like to investigate learning meth-
ods for addressing the multiple solutions of correspon-
dences of shapes with rotational intrinsic symmetries, such
as octopus, in spirit of the work [29]. We also want to inves-
tigate possible unsupervised learning method for the mul-
tiple solutions problems of matching shapes with intrinsic
symmetries.

5. Acknowledgments

We sincerely thank the anonymous reviewers for their
constructive comments. This work was supported in
parts by NSFC (61972267, 62161146005, U21B2023,
U2001206, 61976040, 61976041), National Key R&D Pro-
gram of China (2020YFB1708902), DEGP Key Project
(2020SFKC059), and Guangdong Laboratory of Artificial
Intelligence and Digital Economy (SZ).

References

[1] Y. Aflalo, A. Dubrovina, and R. Kimmel. Spectral gener-
alized multi-dimensional scaling. International Journal of
Computer Vision, 118:380-392, 2016. 2

[2] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Davis,
and J. Rodgers. SCAPE: Shape completion and animation
of people. ACM Transactions on Graphics, 24(3):408-416,
2005. 7

[3] M. Aubry, U. Schlickewei, and D. Cremers. The wave kernel
signature: A quantum mechanical approach to shape analy-
sis. In International Conference on Computer Vision, pages
1626-1633,2011. 3

[4] S. Biasotti, A. Cerri, A. Bronstein, and M. Bronstein. Recent
trends, applications, and perspectives in 3D shape similar-
ity assessment. Computer Graphics Forum, 35(6):87-119,
2016. 2

[5] F. Bogo, J. Romero, M. Loper, and M. J. Black. FAUST:
Dataset and evaluation for 3D mesh registration. In Comput-
er Vision and Pattern Recognition, pages 3794-3801, 2014.
1,7

[6] A.Bronstein, M. Bronstein, U. Castellani, A. Dubrovina, and
A. Sharma. SHREC 2010: Robust correspondence bench-
mark. In Eurographics Workshop on 3D Object Retrieval,
pages 87-91, 2010. 10

[71 A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Nu-
merical geometry of non-rigid shapes. Springer Science &
Business Media, 2008. 10

8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

O. Burghard, A. Dieckmann, and R. Klein. Embedding
shapes with Green’s functions for global shape matching.
Computers & Graphics, 68:1-10, 2017. 2

M. Chen, C. Wang, and H. Qin. Jointly learning shape de-
scriptors and their correspondence via deep triplet CNNs.
Computer Aided Geometric Design, 62:192-205, 2018. 1

N. Donati, A. Sharma, and M. Ovsjanikov. Deep geomet-
ric maps: Robust feature learning for shape correspondence.
In Computer Vision and Pattern Recognition, pages 8589—
8598,2020. 1,2,3,4,5,6,8

D. Eynard, E. Rodola, K. Glashoff, and M. M. Bronstein.
Coupled functional maps. In International Conference on
3D Vision, pages 399—407, 2016. 2

D. Ezuz and M. Ben-Chen. Deblurring and denoising
of maps between shapes. Computer Graphics Forum,
36(5):165-174,2017. 3

L. Gao, L. Zhang, H. Meng, Y. Ren, Y. Lai, and L. Kobbelt.
PRS-Net: Planar reflective symmetry detection net for 3D
models. [IEEE Transactions on Visualization & Computer
Graphics, 27(6):3007-3018, 2020. 3

T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and
M. Aubry. 3D-CODED: 3D correspondences by deep defor-
mation. In European Conference on Computer Vision, pages
257-275,2018. 1, 8,9

O. Halimi, O. Litany, E. Rodola, A. M. Bronstein, and
R. Kimmel. Unsupervised learning of dense shape corre-
spondence. In Computer Vision and Pattern Recognition,
pages 4370-4379, 2019. 1,2,3,4,5,8

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Computer Vision and Pattern
Recognition, pages 770-778, 2016. 4

Q. Huang, F. Wang, and L. Guibas. Functional map networks
for analyzing and exploring large shape collections. ACM
Transactions on Graphics, 33(4):36:1-36:11, 2014. 2

V. G. Kim, Y. Lipman, and T. Funkhouser. Blended intrinsic
maps. ACM Transactions on Graphics, 30(4):79:1-79:12,
2011. 8

A. Kovnatsky, M. M. Bronstein, A. M. Bronstein,
K. Glashoff, and R. Kimmel. Coupled quasi-harmonic bases.
Computer Graphics Forum, 32(2):439-448, 2013. 2

O. Litany, T. Remez, E. Rodola, A. Bronstein, and M. Bron-
stein. Deep functional maps: Structured prediction for dense
shape correspondence. In International Conference on Com-
puter Vision, pages 5660-5668, 2017. 1,2, 3,4,5, 8

X. Liu, S. Li, R. Liu, J. Wang, H. Wang, and J. Cao. Properly
constrained orthonormal functional maps for intrinsic sym-
metries. Computers & Graphics, 46:198-208, 2015. 3

S. Melzi, J. Ren, E. Rodola, A. Sharma, P. Wonka, and
M. Ovsjanikov. ZoomOut: Spectral upsampling for efficien-
t shape correspondence. ACM Transactions on Graphics,
38(6):155:1-155:14, 2019. 3, 6, 8, 10

N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan. Symme-
try in 3D geometry: Extraction and applications. Computer
Graphics Forum, 32(6):1-23, 2013. 3

R. Nagar and S. Raman. Fast and accurate intrinsic symme-
try detection. In European Conference on Computer Vision,
pages 417-434, 2018. 3



[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

[37]

(38]

(39]

(40]

[41]

D. Nogneng and M. Ovsjanikov. Informative descriptor p-
reservation via commutativity for shape matching. Computer
Graphics Forum, 36(2):259-267, 2017. 2

M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher,
and L. Guibas. Functional maps: A flexible representation
of maps between shapes. ACM Transactions on Graphics,
31(4):30:1-30:11,2012. 1, 2,3, 8

M. Ovsjanikov, E. Corman, M. Bronstein, E. Rodola, and
A. Bronstein. Computing and processing correspondences
with functional maps. In ACM SIGGRAPH Courses, pages
1-62,2017. 2,3

M. Ovsjanikov, Q. Mérigot, V. Patraucean, and L. Guibas.
Shape matching via quotient spaces. Computer Graphics Fo-
rum, 32(5):1-11, 2013. 3

J. Ren, S. Melzi, M. Ovsjanikov, and P. Wonka. Maptree:
Recovering multiple solutions in the space of maps. ACM
Transactions on Graphics, 39(6):264:1-264:17, 2020. 3, 9,
10, 11

J. Ren, A. Poulenard, P. Wonka, and M. Ovsjanikov. Contin-
uous and orientation-preserving correspondences via func-
tional maps. ACM Transactions on Graphics, 37(6):248:1—
248:16, 2018. 3,7,8,9, 10

E. Rodola, L. Cosmo, M. M. Bronstein, A. Torsello, and
D. Cremers. Partial functional correspondence. Computer
Graphics Forum, 36(1):222-236, 2017. 2

E. Rodola, M. Moeller, and D. Cremers. Point-wise map
recovery and refinement from functional correspondence. In
Vision, Modeling & Visualization, pages 25-32, 2015. 3
J.-M. Roufosse, A. Sharma, and M. Ovsjanikov. Unsuper-
vised deep learning for structured shape matching. In Inter-
national Conference on Computer Vision, pages 1617-1627,
2019. 1,2,3,4,5,8

Y. Sahillioalu. Recent advances in shape correspondence.
The Visual Computer, 36:1705-1721, 2020. 2

A. Sharma and M. Ovsjanikov. Weakly supervised deep
functional map for shape matching. In Advances Neural In-
formation Processing Systems, pages 19264-19275, 2020. 2,
4

N. Sharp, S. Attaiki, K. Crane, and M. Ovsjanikov. Diffu-
sionnet: Discretization agnostic learning on surfaces, 2020.
1

R. W. Sumner and J. Popovic. Deformation transfer for trian-
gle meshes. ACM Transactions on Graphics, 23(3):399-405,
2004. 1

J. Sun, M. Ovsjanikov, and L. J. Guibas. A concise and
provably informative multi-scale signature based on heat d-
iffusion. Symposium on Geometry Processing, 28(5):1383—
1392, 2009. 3

Y. Sun, Z. Liang, X. Huang, and Q. Huang. Joint map
and symmetry synchronization. In European Conference on
Computer Vision, pages 257-275, 2018. 3

Z.Sun, Y. He, A. Gritsenko, A. Lendasse, and S. Baek. Em-
bedded spectral descriptors: Learning the point-wise corre-
spondence metric via siamese neural networks. Journal of
Computational Design and Engineering, 7:18-29, 2020. 1
H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui,
F. Goulette, and L. J. Guibas. Kpconv: Flexible and de-

(42]

(43]

(44]

[45]

[46]

[47]

(48]

formable convolution for point clouds. In International Con-
ference on Computer Vision, pages 6411-6420, 2019. 4, 5
F. Tombari, S. Salti, and L. D. Stefano. Unique signatures of
histograms for local surface description. In European Con-
ference on Computer Vision, pages 356-369, 2010. 4

0. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or.
A survey on shape correspondence. Computer Graphics Fo-
rum, 30(6):1681-1707, 2011. 1, 2

M. Vestner, R. Litman, E. Rodola, A. Bronstein, and D. Cre-
mers. Product manifold filter: Non-rigid shape correspon-
dence via kernel density estimation in the product space.
In Computer Vision and Pattern Recognition, pages 6681—
6690, 2017. 8

H. Wang and H. Huang. Group representation of global in-
trinsic symmetries. Computer Graphics Forum, 36(7):51—
61,2017. 3, 10

L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li. Dense
human body correspondences using convolutional networks.
In Computer Vision and Pattern Recognition, pages 1544—
1553, 2016. 1

Y. Xiao, Y. Lai, F. Zhang, C. Li, and L. Gao. A survey on
deep geometry learning: From a representation perspective.
Computational Visual Media, 6(2):113-133, 2020. 2

S. Zuffi, A. Kanazawa, D. W. Jacobs, and M. J. Black. 3D
menagerie: Modeling the 3D shape and pose of animal-
s. Computer Vision and Pattern Recognition, pages 6365—
6373,2017. 7,8



