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Abstract

In developing virtual acoustic environments, it is im-
portant to understand the relationship between the com-
putation cost and the perceptual significance of the re-
sultant numerical error. In this paper, we propose a
quality criterion that evaluates the error significance of
path-tracing-based sound propagation simulators. We
present an analytical formula that estimates the error
signal power spectrum. With this spectrum estimation,
we can use a modified Zwicker’s loudness model to cal-
culate the relative loudness of the error signal masked by
the ideal output. Our experimental results show that the
proposed criterion can explain the human perception of
simulation error in a variety of cases.

1. Introduction

In virtual reality, computational room acoustics, and var-
ious other fields, we need to calculate the sound received
by human ears in a virtual acoustic scene. High quality
sound rendering can significantly improve the overall user
experience in virtual reality [12]. To calculate the received
sound, we need to simulate various physical phenomena in
the sound generation and propagation process [7]. Simula-
tion of the sound generation provides the user information
about sound sources [19, 5, 14], and simulation of sound
propagation provides critical information about the sound
environment [22, 1, 31].

Sound propagation from the source to the listener can
be modeled as a linear time-invariant system, which can be
fully described with its impulse response (IR) function h(t),
a function calculated by the simulator. Given the input au-
dio f;(t), the propagated audio f, received at the listener
is given by the equation f,(t) = f;(t) x h(t), where the
asterisk stands for convolution. All simulation algorithms
inevitably generate an error h, over h, adding an extra sig-
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nal fo = f; * h, to the output audio. The simulation quality
can be measured with the energy signal-to-noise rate (SNR)
of h.

While some methods simulate sound propagation by
solving the wave equation directly [15, 15]. Speed-critical
applications usually rely on methods based on geometri-
cal acoustic (GA) methods [13, 4] or hybrid methods [30],
Among GA methods, Monte Carlo path tracing [3, 24, 23]
is one of the most popular methods for real-time simulation.
In path tracing, h(t) is given as an integral calculated by the
Monte Carlo method, which uses a large number of random
samples called “paths” to simulate the propagation process.
An advantage of path tracing is that its computation budget
can be easily adjusted to accommodate for different quality
requirements. For example, there exists a simple relation-
ship between the number of samples and IR SNR, allowing
us to balance between speed and quality easily by control-
ling the sample count. Other quality control methods have
also been proposed in previous works [23, 3].

Since the output audio is usually received by humans,
we would like to know the effect of simulation error on re-
ceivers’ hearing experiences. Simply put, we need to pre-
dict the adequate IR SNR value, under which we can pro-
duce plausible outputs for users. However, it turns out that
building the relationship between the user experience and
IR SNR is not simple. For real-time simulators, where h
is calculated on-the-fly and h. changes in every frame, the
problem becomes even more complicated. Unfortunately,
the change of h. between frames is critical for the user to
pick up the error of the simulator. There is no analysis on
the noise of real-time simulators, let alone its influence on
users’ hearing experiences.

In this paper, we will show that it is possible to bridge the
gap between IR quality and user hearing experience using
established psychoacoustic models. The main results in this
paper include:

A spectral analysis for the error signal f, of both static
and real-time path-tracing-based simulators. An an-
alytical expression for the power spectrum of f, is
given, along with practical approximations. With this
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Figure 1: Even in the same acoustic environment, human sensitivity to simulation errors in sound propagation may vary for
different input audios. Our criterion exposes this difference and allows the developer to adjust the simulation quality for
different cases. The figure above shows that, to achieve the same error loudness level (0.2 sone), the required IR SNR is
5.42dB higher for the “piano” sound when compared to the “bass” sound.

expression, we can estimate f. with IR SNR and the
spectrum of the input audio.

* A criterion that predicts the audibility of the error sig-
nal f. based on the widely-used Zwicker’s loudness
model [36, 16, 9]. From Zwicker’s original algorithm,
which calculates the “absolute loudness” of a signal in
a quiet environment, we develop an algorithm to cal-
culate the “relative loudness” of f. in the presence of
fo. This algorithm allows us to predict the “audibility
thresholds” below which the error f. becomes inaudi-
ble, which is valuable for render quality control. Our
experiments show the validity of our criterion in vari-
ous cases.

While the spectral analysis result is dedicated to path-
tracing-based simulators, the criterion can be applied to
methods other than path tracing if an estimation for their
power spectra exists.

2. Background and Related Work

To facilitate discussion, we introduce the necessary
background knowledge in this section for readers unfamiliar
with acoustics and sound simulation.

2.1. Numeric Characteristics of Audio Signals
2.1.1 Power and Power Spectrum

In signal processing, the power of a signal f of du-
ration 7' is given by the equation p = = [, f(t)2dt.
For a signal of infinite duration, the power is given as

limy s 400 % ffﬁz f(t)%dt. While power is the simplest

symbol explanation

E[X] mathematical expectation of variable X
o[ X] standard variance of X. 0%[X] = (0[X])?
Cov[X,Y] covariance of X and Y’

R set of real numbers
Z set of integers
z complex conjugate of x
) Dirac delta function
Jy F(0)8(t)dt = £(0)

F(f) Fourier transform

FUw) = Jy F(Oe "

Table 1: Symbols in this paper. We use square brackets for
parameters of random variables, round brackets for func-
tions, and calligraphic letters for operators.

metric for signal intensity, we prefer to know the power dis-
tribution of a signal on its frequency domain, as the human
hearing system responds to frequential characteristics of in-
coming sounds. Such a distribution is given by the power
spectrum. For a signal f, the power spectrum is given by the
equation 7 |F(f)|?, where T is the duration of the signal.

We can also describe the signal intensity with pressure
or power levels. For a signal of power p, the power level
L, /p, is given by the equation

/P
. p
Lp/pT = 10log;, p— dB. (D)

Here p, is an appointed reference value. For example,
decibels relative to full scale (dB FS) is the case where p,. =



1. Sound pressure level (dB SPL) is the case where the
average sound pressure is 2 x 10~5Pa at p,.

For the error signal f, overlapped on the signal f, we as-
sume that E[f,] = 0 and that its Fourier spectrum F (E[f.])
is also zero. Thus we have

1

EILIF (P = 2BIF () - FEIL)P)

= ZEIF(f) - BF (I @

1
= o 1F (L)
Thus, the power spectrum of the error is also the spec-
trum of its variance. This o[ F(f.)] is what we are trying
to calculate in Sect. 3.

2.1.2 Energy SNR

A useful numerical metric for signal error is the energy
signal-to-noise rate (SNR). For a signal f of limited dura-
tion overlapped with an error signal f., the energy SNR is

_ Juf(t)%dt
SNR(f) = Y SACE (3)
When the f. is a random function,
2
SNR(f) = Je WAL 4)

- E[Jg fe(t)?dt]
Energy SNR is also frequently given in the form of SNR
levels:

Lsxr(f) = 101ogyo SNR( f) dB. (5)
2.2. Mechanisms Influencing Auditory Perceptibility

A good way to understand the various factors that influ-
ence human sound perception is to classify them by their
effects on resultant neuron signals. In this way, we can di-
vide hearing mechanisms into excitation and suppression
mechanisms.

The most remarkable feature of the excitation mecha-
nism is frequency selectivity: sound components of differ-
ent frequencies are separated by the auditory system and
perceived by different receptors. Frequency selectivity has
been well-studied from both anatomical and psychological
perspectives. It has been observed that components of dif-
ferent frequencies resonate with different positions on the
basilar membrane (BM) of the cochlea. In psychoacous-
tics, a rough relationship between frequency and BM posi-
tion is given by frequency scales like the Bark scale [33].
On further investigation, one finds that a single point on
the BM responds to a range of frequencies rather than a
single frequency. We use band-pass filters called auditory

filters to describe these frequency response patterns. There
are several models describing the characteristics of these fil-
ters, with parameters like critical bandwidth (CB) [33, 35]
or equivalent rectangular bandwidth (ERB) [8]. With an
appropriate scheme, one can divide the audible frequency
range into several bands for which the excitations minimally
interfere.

The suppression mechanism of human hearing is not as
well understood as excitation. An important related dis-
covery is otoacoustic emission [10], which shows that the
cochlea adjusts its sensibility not only neurally, but also
mechanically. The suppression mechanism affects frequen-
tial sensitivity in a highly nonlinear and nonlocal way and
drives many effects such as the “upward spread” of masking
[20], where a low-frequency sound can suppress the sensi-
bility of another sound with much higher frequency, and
auditory adaptation [ 1], where the continued presence of
a sound will be regarded as “background” and ignored by
the hearing system. Other studies show that the frequency
selectivity of hearing is also a combined effect of activation
and suppression mechanisms [17].

2.3. Masking Effect

The masking effect describes the change of perceptibil-
ity of a sound (signal) in the presence of another sound
(masker). Due to its relationship with various hearing
mechanisms, masking has long been a useful tool in the
study of human hearing. The perceptibility of the signal
is non-linearly related to its intensity level: it decreases
much faster below a certain threshold than above it [27].
This threshold is called the mask threshold. Naturally, this
threshold should be above the absolute hearing threshold,
under which a sound is imperceptible. The absolute thresh-
old can also be considered a special case of mask threshold,
with the masker being the internal noise generated by phys-
iological activities [34]. Here, we note the absolute thresh-
old as py and the mask threshold as max{po, p;}, as p; can
usually be described with simple models.

Narrow-band masking occurs when a narrow-band
masker masks a signal (usually a sinusoidal one) within the
band. This phenomenon is closely related to frequency se-
lectivity. The relationship between p, of narrow-band mask-
ing and the power spectrum of the masker is generally as-
sumed to be linear [6]:

Dt =/pm-fdw (6)
R

where p,,, is the power spectrum of the masker and f is a
function that shows the shape of the auditory filter.
Broad-band masking occurs when the signal is masked
by a broad-band masker. When the signal is sinusoidal
and the masker is white noise, [34] approximates the mask
threshold with the relationship p;(w:) = k(wt) - pm(wi),



where wy is the signal frequency. With this relationship, a
uniform masking noise is developed in [34] that makes p;
equal for all frequencies.

2.3.1 Loudness

The perceived intensity of the signal under a certain masker
is called its loudness. The “loudness” in the general sense
is the loudness when the masker is the internal noise. Loud-
ness models are closely related to auditory filter models.
Different auditory filter descriptions lead to different loud-
ness algorithms. The criterion in this paper is related to the
loudness algorithm proposed by Zwicker, which uses CB to
describe auditory filters.

The general unit of loudness is sone. Like power and
SNR, there is a corresponding unit for loudness level named
phon. Given an audio signal, different loudness algorithms
may result in different sone values. Since our criterion is a
metric for relative loudness, we also use sone as the unit of
its result values.

2.4. Sound Propagation and IR

The goal of sound propagation simulation is to calculate
the IR of the sound environment. As its name indicates, IR
represents the sound received at the listener’s position when
the sound source emits an impulse signal.

2.4.1 The Structure of IR

The impulse response can be broken down into three parts:
direct contribution, early reflections and late reflections.
The direct contribution represents the sound propagated
from the source to the listener directly. It may not exist
when there is an occluding object between the listener and
the source. This part usually has an analytical expression
and is computed directly in most path-tracing-based simu-
lators. The early reflections represent the sound reflected by
the scene in the first few times. It is related to the geometry
and acoustic characteristics of objects near the listener. The
late reflections represent the sound reflected multiple times
in the environment. It is related to the general volume and
sound absorption rate of the scene. Late reflections are im-
portant to user experience because they give the listener a
“sense of volume” of the scene [1]. In path-tracing-based
simulators, both early and late reflections are generated by
random sampling and are thus not immune to numerical er-
TOr.

2.4.2 Psychoacoustics in IR Computation

While path tracing is already one of the most efficient meth-
ods to calculate IR, the calculation process is still costly,
especially for real-time applications and low-end devices.
It is possible to use psychoacoustic knowledge to improve

the simulation efficiency. For example, [25] uses a psy-
choacoustic method to suppress IR noises. [2 1] reduces the
computation cost using the relationship between the scene
changes and the audibility of IR changes. [32] uses the A-
weighting scheme to estimate the error significance and the
appropriate computational budget for simulation. However,
the error analyses in these works are usually based on over-
simplified models that ignore some critical factors, like the
masking effect and the frame-to-frame IR variance. In con-
trast, these factors are all taken into consideration in our
new criterion.

3. Spectrum Analysis of the Error Signal

The spectrum of the ideal output f, = f; * h is given
by the equation F(f,) = F(f;) - F(h). In this section, we
will estimate the power spectrum of the error signal f.. The
calculation process is similar to the proof of the Wiener-
Khinchin theorem [29]. When dealing with discrete signals
that are sampled from continuous signals, we use the equa-
tion )

—2miwst
F(H)w) =D - flst)e @)

tez
for Fourier transform of discrete functions. Here s is the
sample rate. This equation still satisfies F(f - g) = F(f) *

F(g) and F(f xg) = F(f) - F(g). Under this definition,
we have the discrete version of Parseval’s theorem [2]:

I F(f) (w) P dew. (8)

s/2

> %f(st)th = /

ez s/2
3.1. Static Case

In path tracing, the IR function is estimated by accumu-
lating a series of independent random samples in the form
ad(t — to). The accumulated result 2’ can be regarded as
a stochastic process with expectation E[h’] = h. In prac-
tice, b’ is a discretely sampled function, and E[h/(t)] =

t+1/2s
ft—1/2s
large, h/(to) and h/(¢1) become approximately independent
when tg # t;. This independence is critical to our analysis
below.

The sample error h, = b’ — E[h/] is also a stochastic pro-
cess. From the independence assumption, we have E[h.] =
0 and Vto # tl, COV[he(to)7 he(tl)] = E[(he(to) —
h(to))(he(t1) — h(t1)] = 0. Therefore, h, is a modulated
white noise process:

h(t)dt. When the number of samples is sufficiently

he(t) = olhe(t)] - v(?). ©)
Here v(t) is a white noise with E[v(t)] = 0,0[v(t)] = 1
and vto 7& tl, COV[V(to), I/(tl)] =0.

Now consider the Fourier spectrum F (h.). We immedi-
ately know from E[v(t)] = 0 that E[F(h.)(w)] = 0, and
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Figure 2: Energy spectrum of IR and its noise on the audible
range, produced by our simulator in the Sibenik scene (see
subsubsection 5.1.1). The deviation of IR variance from the
estimation given by Eq. 11 is about 5dB at low frequen-
cies and less than 2dB at middle frequencies. However, this
deviation is minimal compared to the IR energy spectrum
itself, which is | F(h)|2.

Cov[F(he)(wo), F(he)(w1)]
= E[F(he)(wo)F (he)(w1)]
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Specifically,

PIF ()W) = F O ])0) = 5 3 o lhe(st)]

teZ
(1)
This is an interesting result: no matter what shape the IR
noise envelope o2[h,] is, it is always equivalent to a white
noise: the energy spectral density o%[F(h.)(w)] is equal
for all w. In actual path tracers, the dependence between
different parts of h. may exist, and the density spectrum
may not be entirely flat. However, the fluctuation is largely
negligible, especially when compared with the IR spectrum
(see Fig. 2).
Given the input audio f;, the energy spectral density of
the output error f. is

2[F(fi)F(he)] (12)

Thus, we have the power spectrum estimation of the er-
ror signal in the static case.

Now we’ll look at the relationship between the error
power spectrum and IR energy SNR. We discretize the in-
tegral of SNR in Eq. 4, then use Eq. 8 and Eq. 11:

Zte h(St)Q
SNR(R) = B h o)
. Ztez h(St)Q
— —EtEZ 02[h€(st)] (13)
255 | F(h) () Pdw
s - 02[F(he) ()]
Now with Eq. 12, we have

5/2 2

F(h)(w)|*dw

2 2 —s/2 ‘
F(fe) = |F(fi)l”-

P = PP =

This is the relationship between the power spectrum of
the error signal and the energy SNR of IR.

(14)

3.2. Dynamic Case

In this subsection, we discuss the case of real-time ren-
derers, where the IR is recalculated in every frame (hence
the name “dynamic”). We assume that the scene remains
unchanged during rendering. The IR difference between
frames is thus only due to calculation error. We can re-
gard the different IRs as different sample paths of the same
variable h., the spectrum of which is given in the previous
section. The resulting audio is produced by stitching mul-
tiple audio frames together. If we note the IR error of the
k-th frame as hy, then the output error signal is

Fet) = D ((fix hi) - w(t = KAL) w(t) € [0,1):
keZ
15)
Here w(t) is the window function for frame interpolation
and At,, is the frame length. Let gx, = f; * hy, then gi is a
sample path of g = f; % h., and

F(fe) =Y (Flgr)* Fw)e>kate) (16

kEZ
Let g} = (fi * hi) - w(t — kAt,,), then

F(gi)(w) = /R]:(g)(l')]:(w)(w — x)eQWi(W—x)k-Atwdx,
a7

Flw)w =) Fw)y—w) 18)
e2mi(y—x)kAty, ) dxdy.



Substituting y —  with y, we have

P 1F (G = [

R2

(CoMF (o)), Flg)(a + )]
Fw)(w —2)F(w)(z +y — w)-

627riykAtw ) dJCdy,

(19)
and

PIF(fe)w)] =Y o*[F(97) ()]

kEZ

_ / 2 (CoviF(9)(@), F(g) (& + )]
F(w)(w—z)F(w)(z +y —w)-

Z eQTriykAtw ) dl'dy
kEZ

(20)
The sum } , ;e w is equal to IIT(At,,y), where
III(z) is the shah function [2]:

2miyk At

IM(x) = Z §(z —n). 21
neZ
Therefore,
?[F(fe)(w)] =
a2 [ (CoviF )@ Flo)w+ )
Y kez’/R w
Flw)(w — z)F(w)(z + % - w))dx
! (22)

For a narrow-band w,

P11 )] ~ T

Here o%[F(g)] is equal to o?[F(f.)] in Eq. 14. So we
also have the relationship between o[ F(f.)] and SNR(h)

for the dynamic case. In practice, the audio quantization
error will also affect the spectrum of f.. The effect of quan-

(23)

tization adds an additional term g, where ¢ is the quantiza-
tion interval.

One may expect an even simpler estimation for
a?[F(f.)] if the bandwidth of w is completely ignored. If
we approximate F(w) with a Dirac delta function, we can
replace Eq. 23 with

PFIW] = o) S

However, this turns out to be an oversimplification.
Fig. 3 shows the results of various estimation formulae ap-
plied to a simulated dynamic rendering process. We can see

(24)

that both Eq. 22 and Eq. 23 fit the real data very well, while
Eq. 24 fails to predict the noise power at low frequencies.
This is where the dynamic case differs from the static case
— the spectral distortion brought by the window function w
cannot be ignored.
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Figure 3: Comparison of the noise signal spectrum gener-
ated by a dynamic sound rendering process and its estima-
tions.

4. Quality Criterion

Since our quality criterion is developed based on
Zwicker’s loudness, we need to investigate Zwicker’s loud-
ness algorithm first. Zwicker proposed two different loud-
ness algorithms in [9], one for “stationary” sounds and an-
other for “time-varying” sounds. The procedures of the two
algorithms are largely similar. In this section, we assume
the input audios to be stationary. That is, the spectral char-
acteristics of the input audios do not change significantly in
their durations.

A simple diagram for the loudness algorithm for station-
ary sounds is given in Fig. 4. We first filter the input audio
f by 28 band filters and calculate the power of filtered au-
dios. The results are expressed by a vector p. After this, we
convert p into the specific loudness [/ through a series of pro-
cesses. [ is a function over the Bark scale, which maps the
audible frequency range into a number between 0 and 24.
The range [n — 1,n] on the scale is called the n-th critical
band. The mapping scheme of the Bark scale is designed
to make different critical bands approximately independent
from each other in auditory perception. In the end, we in-
tegrate [ over the Bark scale to achieve the total loudness,
which is Zwicker’s loudness. Refer to [9] for the detailed
implementation of Zwicker’s algorithm.

One can see from Fig. 4 that our criterion requires
two input audios instead of one as in Zwicker’s algorithm.
Zwicker’s algorithm takes an audio f as input and outputs
its loudness S relative to the internal noise. Our criterion
requires a masker f,, and a full audio f, which is the sum
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Figure 4: Diagrams for algorithms of Zwicker’s loudness and our quality criterion. We use A and | dx to represent difference
and integral operations. Green blocks signify operations different from Zwicker’s original algorithm.

of the masker and the masked signal. In the context of sim-
ulation quality assessment, f,, = fo, f = fo + fe, Where
fo and f. is the ideal output and the error signal. We have
already discussed the power spectrum of f, and f. in the
previous section. One can use this information to calculate
the value of p and p,,, on different bands.

In Zwicker’s algorithm, the loudness IV of each critical
band (core loudness) is an important intermediate variable.
This variable is calculated using Steven’s power law [26],
which gives the relationship between audio power p and
sensation magnitude [36]:

N(p) = Cp* (25)

where C and a are parameters. Zwicker uses C =
0.03175v/2 and @ = 0.25 in his algorithm. The loudness
of a certain band is the difference between the actual sensa-
tion magnitude and the sensation threshold:

AN = max{N(p+pm)—Ni,0}, Ne = N(p:+pm) (26)

where p, p,, and p; are power of input audio, internal
noise and hearing threshold, respectively. Zwicker used
pr = %pm in his algorithm. At low frequencies, the above
equation no longer reflects the actual human perception cor-
rectly, so Zwicker introduced a few nonlinear corrections
into the algorithm to mitigate this problem.

With the core loudness known, we can calculate specific
loudness by applying acoustic filters. The specific loudness
curve is calculated as follows:

l(z) = 122§0{AF1(AN0(@} (27

where AN; is the core loudness of the i-th band and
AF;(AN;) is the corresponding specific loudness curve.
The value of AF; is equal to AN; inside the i-th band, but
also extends to higher frequencies.

The main difference between our criterion and Zwicker’s
loudness algorithm is that the mask is no longer predeter-
mined. In our criterion, p,, is the power of the input mask
audio f,,, plus the internal noise power, and p; is no longer a
static value. This leads to the possibility of upward spread-
ing: When the mask audio is intensive on a certain band, its
masking effect will also extend to higher frequencies like
the function AF;. Because of this, we calculate the differ-
ence of specific loudness instead of core loudness in our
criterion.

From Fig. 4, we can see that the position change of
the difference operation has some effect on two other op-
erations. “low frequency correction 2 multiplies the core
loudness of the first critical band by a factor c:

¢ =min{0.4 + 0.32AN%2 1}, (28)

To achieve a similar effect, we replace cAN with ¢(IN —
N¢) + Ny and ¢(N,;, — N¢) + N, in our criterion, where
Ny is the threshold in Zwicker’s algorithm. For auditory
filters, we use a linear approximation to replace AF;(AN;)
in Eq. 27:

AF;(N) ~ % . AF;(30). (29)



Using this approximation, we have AF;(N — N') =
AF;(N) — AF,;(N'), making the difference operation and
the application of auditory filters exchangeable. Fortu-
nately, the original AF; is already very close to a linear func-
tion, and this approximation does not introduce too much
error.

4.1. Soft Threshold

While the relationship p; = % Pm 1s used in Zwicker’s al-
gorithm, experiments have shown that the ratio k, = p;/pp,
is not a fixed value but is highly related to frequency and rel-
atively independent from p,,, [18]. Therefore, we can model
kp as a function of frequency. However, the function £ may
also vary for different individuals, and we should take this
variance into account if possible.

Our solution to the abovementioned problem is to use a
“soft threshold” in our criterion. Suppose that we calculate
Aa with the equation below:

Aa = max{a — a4, 0}. (30)

The key point of the soft threshold is to regard a; as a
distribution instead of a fixed value. we consider Aa as a
function of a, then we have

a

ElAd](a) = / CDF(ay)dz. 31)

— 00

Here CDF(ay) is the cumulative distribution function of
a¢. In our case, we assume that a; conforms to a logistic
distribution. When F[a;] = E, and o[a;] = o,, we have

E[Ad] = sln(eaisE"' +1),s= \/?;aa.
™

We will take F[Aa| as the difference under the soft
threshold.

In our algorithm, we are calculating the difference of
specific loudness Al instead of AN or Ap. Like Zwicker,
we assume that k; = [;/l,, is independent from [,,,. The
values of E[k;] and o[k;] are measured by experiments.

To compare k; with k, values measured in previous pa-
pers, we ignore the low-frequency correction and derive the
relationship of p and [ from Eq. 25 and Eq. 29:

(32)

Loc C((p+pm)* = Phy)- (33)
Thus, we have the approximate conversion formula
k=C((1+4kp)* —1). (34)

5. Experiments and Results

In this section, we will show the results of our experi-
ments. We first measured the values of E[k;] and o[k;] and
tested the independence between k; and [,,,. Then we test

our criterion on real outputs. We achieve these goals by
measuring the audible power threshold of different signals
under masking. The details are presented below.

5.1. Experiment Procedure

5.1.1 Stimuli

In our experiment, we ask the subjects to listen to differ-
ent audio clips with Beyerdynamic DT770 headphones in
a quiet room. The background noise of the experiment en-
vironment is between 30-45 dB SPL. The audio clips are
played by a web application on a regular PC computer.
All the audio clips are generated and played in the 16-bit,
48kHz stereo format. The content of the left and right chan-
nels are all identical.

When measuring k;, we use sinusoidal waves of differ-
ent frequencies as signals and pink noise as maskers. The
power spectrum of a pink noise signal is inversely propor-
tional to frequency, which is similar to many natural sounds.
In our experiment, we use pink noise at 55 dB SPL gener-
ated by the stochastic Voss-McCartney algorithm [28]. The
frequencies of sinusoidal waves are the midpoints of the 24
critical bands defined in [34], which is a bit different from
the specification in [9]. We change the definition of the first
band from 0-100Hz to 20-100Hz in our experiment. Each
band corresponds to a test case, and both are indexed by the
upper bound Bark value of the bands. This gives 24 test
cases in total.

To validate the independence between k; and [,,, we
measured the audible threshold of sinusoidal signals on
band 1, 7, 9, and 19 with maskers of varied intensities.
We used 6 different masker power levels equally spaced be-
tween 50-70 dB SPL. This validation process also requires
24 test cases.

When testing our criterion on real outputs, we generate
the audio clips similar to real sound renderers:

1. We simulate sound propagation using a path tracing-
based simulator in different scenes. Here we tried to
cover all the “typical varieties” of sound environments.
The reverberation length and the presence of direct
contribution (DC) are two of the most prominent fac-
tors that affect user perception. Thus, we used 4 scene
configurations with 2 different geometry models (see
Fig. 5). The configurations are listed below:

* Sibenik-DC: Interior model of a cathedral with
a long reverberation time. The audio source and
the listener are mutually visible so that the direct
contribution (DC) component is present in the re-
sultant IRs.

¢ Sibenik-noDC: Same as above, but now the
source is not visible from the listener.
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Figure 5: Floor plans of the geometry models used in our
experiment. The position of the sound source and listener
are marked with red and blue dots.

* Roomset-DC: Interior model of a two-story
guesthouse with multiple small rooms and nar-
row corridors. The reverberation time is rela-
tively short. The source is visible from the lis-
tener.

¢ Roomset-noDC: Same as above. The source is
now invisible.

We computed 2000 IRs in each configuration. Each IR
is computed from 48000 sampled paths, and the maxi-
mum number of reflections in a path is 40. We take the
average of the 2000 IRs as the “reference IR” and the
difference between each IR and the reference IR as its
numerical error.

2. We generate the masker audio clip by convoluting
the input audio with the reference IR. We scaled the
masker audio so that its power level is around 65 dB
SPL when being played. The signal clip is generated
by convoluting the input with IR errors according to
Eq. 15. Here we set w to a 512-sample Hanning win-
dow and At,, = 256. The IR error of each frame is
randomly chosen from the 2000 candidates.

We used 6 different input audios in our experiment:
* bass: A music piece played by synthetic bass.

The power spectrum concentrates at around
70Hz.

* piano: A piano piece whose energy distributes
broadly in the 350-1000Hz range.

» voice: Speech of a male narrator. The energy
concentrates on the 60-600Hz range.

e drums: Intense outdoor percussion music. The
energy distributes broadly on the 100-2500Hz
range.

e drips: Sound of dripping water. The energy dis-
tributes mainly between 600-3000Hz.

* nature: Environmental noise recorded on the
Patagonian plain with rain sounds and occasional
animal callings. The power spectrum is very sim-
ilar to pink noise.

The above list covers most types of input audios that
may appear in virtual acoustic simulations. We con-
sider the first three audios as “melodic” because they
contain pitch-related semantic information, which is
usually sensitive to spectrum distortion. The last three
audios are considered “noisy” for the absence of such
information. The combination of 6 input audios and 4
scene configurations gives 24 test cases in total.

After generation, we crop all the signal and masker clips
to the first 10 seconds and apply an exponential fading to
the beginning and the end of each clip. The fading duration
is 0.5s.

5.1.2 Method

We use the following trial to determine if a masked signal
is audible to a subject. We present 4 candidate clips to the
subject and the masker clip for reference. 1-3 of these can-
didates are the masked signal clip, and the rest are masker
only, leading to 14 different possible combinations. The
probability for each combination is the same. We require
the subject to listen to the candidates and select all the clips
containing the signal or press “give up” if they cannot tell
a difference. All the candidate clips are replayable until the
subject has submitted their answer. If the answer is correct,
the signal is considered audible under masking.

Given a masker, the audible power threshold of a signal
is determined by a bisection search. We set the initial width
of the search range to 60 dB on the logarithmic scale and
choose the upper bound empirically. For sinusoidal signals
masked by pink noise, the upper bound is 30-40 dB above
the power of the masker. We set the signal power to the
midpoint of the search range and test its audibility. The
midpoint is used as the new upper bound if the masked sig-
nal is audible or the new lower bound otherwise. We repeat
this process until the width of the search range is below 1
dB and take the midpoint as the measured threshold.



5.1.3 Subjects

Our main experiment results are produced by 17 subjects (8
female and 9 male, aged between 19-27). The age group is
similar to the one for measuring the absolute threshold of
hearing [34] used in Zwicker’s original algorithm. To ex-
amine the subjects’ hearing condition, We performed pure
tone audiometry tests in the range of 250-8000 Hz. For ev-
ery subject, the measured absolute hearing threshold is less
than 25 dB HL on the whole frequency range, which indi-
cates normal hearing. We divide the test cases into 3 groups
according to their purposes (measurement of k;, validation
of independence, validation on real outputs). 10 subjects
are allocated to each group and their audible thresholds are
measured under all 24 cases. Each group of tests takes 1-2
hours to finish.

Additionally, we validate our criterion on real outputs
with 5 subjects (3 female and 2 male, aging between 28-
40). According to audiometry results, 2 out of 5 among
these subjects have their absolute hearing threshold between
25-40 dB HL on certain frequencies, which indicates mild
hearing impairment.

None of the subjects has previous experience in psychoa-
coustic experiments.

5.2. Result
5.2.1 Measurement of k;

The influence of sinusoidal signals is always concentrated
on the influence range of one core loudness band. Thus
we can determine from measured audibility thresholds the
value of k; on every single band. Fig. 6a shows the value of
measured k; from sinusoidal band 1-24 mask tests.

To use the measured data in our criterion, we need to fit
E[k;] and o[k;] with functions on the Bark scale. In the ac-
tual criterion, we use the following piecewise polynomials:

0.0013(4.4 — 2)* 4+ 0.0052, x < 4.4
E[k)] = <{ 0.0052, 4.4 <z <181
0.0011(z — 18.1)% +0.0052, z > 18.1
(35)
0.0013(4.4 — 2)* +0.004, x < 4.4
alk)] = ¢ 0.004, 44<x<18.1
0.002(x — 18.1)2 4+ 0.004, =z > 18.1
(36)

To compare with previous data, we convert k, values
measured by Glasberg and Moore in [16] and k, = 1/3 in
Zwicker’s algorithm into k; curves on the bark scale. We
use the conversion formula Eq. 34 and the frequency-to-
Bark mapping function from [37]. The result is displayed
in Fig. 6b, with curves defined by Eq. 35 and Eq. 36. We
can see that Eq. 35 matches well with previously measured

band index 1 7 9 19
r -0.5084 -0.0384 -0.0298 -0.2593

Table 2: Pearson correlation coefficient » of k; and [,,, on
different bands.

data at central frequencies and shows a similar trend at low
and high frequencies.

For the independence assumption of k; from [,,,, we cal-
culated the Pearson correlation coefficient between k; and
l,, on four bands with measured k; values under varied [,,.
The result is given in Table 2. r < 0 implies that the value
of k; tends to decrease when the masker loudness increases.
This trend is negligible for bands 7 and 9, but not for bands
1 and 19. Hence the independent assumption holds for mid-
dle frequencies but is not entirely valid for low and high
frequencies. This will not affect the accuracy of our crite-
rion in most cases, but it may have some effect when the
input sound has a very intense low/high-frequency compo-
nent. We will not fix this problem in the current criterion
for the sake of simplicity.

5.2.2 Application on Real Outputs

When applied to real outputs, our criterion gives interest-
ing results and becomes a powerful tool for analyzing noise
audibility. The experiment results are shown in Fig. 7 and
Fig. 8.

Fig. 7 shows that our criterion can help in the choice
of IR SNR for the actual rendering process. The figure
shows the loudness-SNR relationship curves under a cer-
tain scene configuration. We can see that the error audibility
thresholds cluster around the “knee” part of the relationship
curves, where the loudness goes up quickly when the SNR
decreases and stay invariant when the SNR increases. Our
criterion can explain the difference of error significance be-
tween different input audios very well. The average IR SNR
required for the error to be imperceptible is 2.09 dB when
the input is “bass”, and 9.32 dB when the input is “piano”,
which is much higher. While it is known that human hearing
is less sensitive to the difference of low-frequency sounds,
our criterion can show this difference in a quantitative man-
ner.

One may have concerns about the robustness of our cri-
terion to different inputs. Ideally, we expect the measured
error audibility thresholds to be “nearly equally loud” in all
cases. Fig. 8 shows that the thresholds are indeed largely
stable. The average threshold loudness is 0.7813, and 94%
of the results fall between 0-2 sone. Even for older and
mildly hearing-impaired subjects, the result of our criterion
remains valid (See Fig. 9).
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Figure 7: Relationship between IR energy SNR and noise
loudness of input audio “piano” and ‘“bass” under the
“Sibenik-DC” scene configuration. The measured error au-
dibility thresholds of 10 subjects are marked on the loudness
curves.

Fig. 8 also shows some interesting phenomena. The sen-
sibility of different subjects to simulation noise varies a lot,
but we can still find similar features in their results. The
presence of DC lowers the threshold significantly. In other
words, the simulation error is much more distinguishable
with the help of DC. When the DC is absent, the noise of
input “nature” is the least perceptible one among all cases.
This is probably due to that the input audio itself is sim-
ilar to a “noise signal”. However, for most input audios,
the threshold loudness is not very different. The influence
of reverberation strength is minimal. The results in the
Roomset and the Sibenik scene are almost indistinguish-
able. The difference between “melodic” and “noisy” input
audios doesn’t seem to have much influence on the loudness
either.

6. Conclusion and Future Work

In this paper, we demonstrated that an algorithm that cal-
culates the auditory effects of sound propagation simulation
error can be built on a solid theoretical basis. Experimen-
tal results show that our criterion is valid for a variety of
sounds and people with different hearing abilities, and the
result matches results from previous research.

Our error analysis for path tracing relies only on the as-
sumption of sample independence. Thus it can be applied
to other path traced methods like bidirectional path trac-
ing (BDPT) with sample strategies like multiple importance
sampling (MIS) [3]. Our analysis is also helpful in the op-
timization of sound propagation simulators. For example,
Eq. 22 shows us the connection between the shape of the
interpolation window and the error spectrum. Many audio
renderers use linear interpolation between frames, which is
equivalent to using a triangular window. Our analysis shows
that a better window function, like the Hanning window,
could improve the final quality of the output audio.

There is still a lot of work to do related to the current
criterion. We will list a few points here.

We have mentioned that Zwicker’s loudness algorithm
has another version for “time-varying” sounds, the spectra
of which vary significantly during playback. One can see
from Fig. 8 that the noise loudness for input audio “drips”
seems to be very different from other audio. The audio
“drips” contains intermittent water dripping sounds and is
not as “stationary” as other inputs. This probably indicates
that we need to modify our algorithm when dealing with
time-varying input audios.

While our “soft threshold” has taken the variance of hu-
man hearing abilities into consideration, the variance model
is probably oversimplified. We chose the logistic distribu-
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tion in subsection 4.1 for its mathematical simplicity. Ide-
ally, for a better description of k;, we need a nonsymmetric
distribution defined on [0, +00) that is relatively uniform on
the logarithmic scale. Unfortunately, distributions satisfy-
ing such conditions usually have very complex CDFs with
no analytical integral expression. This problem could be
solved with numerical approximation, from which we may
derive a soft threshold that better explains human hearing.

Finally, while we expect our criterion to be able to im-
prove the efficiency of existing sound simulators, especially
the real-time ones, it is not as simple as it seems. Our cri-
terion uses signal statistics and operations on the spectral
domain. The statistics require knowledge of multiple IR
frames, and the Fourier transform can be time-consuming.
To integrate our criterion into real applications, we need an
efficient implementation that works well with real-time sim-
ulators, which we will try to develop in the future.

References

[1] J. Blauert and W. Lindemann. Auditory spaciousness: some
further psychoacoustic analyses. The Journal of the Acousti-

(2]

3

—

(4]

(3]

[6

—_

[7

—

8]

cal Society of America, 80 2:533-42, 1986.

R. N. Bracewell. The Fourier transform and its applications,
volume 31999. McGraw-Hill New York, 1986.

C. Cao, Z. Ren, C. Schissler, D. Manocha, and K. Zhou. In-
teractive sound propagation with bidirectional path tracing.
ACM Transactions on Graphics (TOG), 35(6):1-11, 2016.
A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, and
D. Manocha. Ad-frustum: Adaptive frustum tracing for in-
teractive sound propagation. IEEE Transactions on Visual-
ization and Computer Graphics, 14(6):1707-1722, 2008.

G. Cirio, D. Li, E. Grinspun, M. A. Otaduy, and C. Zheng.
Crumpling sound synthesis. ACM Transactions on Graphics
(TOG), 35:1 - 11, 2016.

B. Glasberg and B. Moore. Derivation of auditory filter
shapes from notched-noise data. Hearing Research, 47:103—
138, 1990.

S. guang Liu and D. Manocha. Sound synthesis, propagation,
and rendering: A survey. ArXiv, abs/2011.05538, 2020.

T. Houtgast. Auditory-filter characteristics derived from
direct-masking data and pulsation-threshold data with a
rippled-noise masker. The Journal of the Acoustical Society
of America, 62(2):409-415, 1977.



4 4+
o Q
= =
o) o)
2 £
N 24 w2

0 : ‘ : ‘ ‘ : 0

bass piano voice drums drips nature bass piano voice drums drips nature
input audio input audio
(a) Sibenik-DC (b) Sibenik-noDC

47 4+
Q Q ]
=) =
o) o
2 £
©n 2 0 2+

0 ; ’ : ’ ; 0 : : . .

bass piano voice drums drips hature
input audio

(c) Roomset-DC

bass piano voice drums drips nature
input audio

(d) Roomset-noDC

Figure 9: Error loudness at measured audibility thresholds for the 28-40 age group with hearing-impaired subjects. The result
is similar to Fig. 8. Different subjects are marked with different colors.

(9]

[10]

[11]

(12]

(13]

[14]

[15]

Acoustics — Methods for calculating loudness — Part 1:
Zwicker method. Standard, International Organization for
Standardization, Geneva, CH, June 2017.

D. T. Kemp. Stimulated acoustic emissions from within the
human auditory system. The Journal of the Acoustical Soci-
ety of America, 64(5):1386-1391, 1978.

A.J. King and K. M. M. Walker. Listening in complex acous-
tic scenes. Current Opinion in Physiology, 18:63-72, 2020.
Physiology of Mammalian Hearing.

P. Larsson, D. Vistfjill, and M. Kleiner. Better presence and
performance in virtual environments by improved binaural
sound rendering. 2002.

C. Lauterbach, A. Chandak, and D. Manocha. Interactive
sound rendering in complex and dynamic scenes using frus-
tum tracing. [EEE Transactions on Visualization and Com-
puter Graphics, 13(6):1672-1679, 2007.

D. Li, Y. Fei, and C. Zheng. Interactive acoustic transfer ap-
proximation for modal sound. ACM Transactions on Graph-
ics (TOG), 35:1 — 16, 2015.

R. Mehra, A. Rungta, A. Golas, M. Lin, and D. Manocha.
Wave: Interactive wave-based sound propagation for virtual
environments. [EEE transactions on visualization and com-
puter graphics, 21(4):434-442, 2015.

[16]

[17]

(18]

(19]

(20]

(21]

(22]

B. Moore and B. Glasberg. A revision of zwicker’s loudness
model. Acta Acustica united with Acustica, 82:335-345, 03
1996.

B. Moore, B. Glasberg, R. Hess, and J. Birchall. Effects
of flanking noise bands on the rate of growth of loudness
of tones in normal and recruiting ears. The Journal of the
Acoustical Society of America, 77(4):1505-1513, 1985.

B. Moore, R. Peters, and B. Glasberg. Auditory filter shapes
at low center frequencies. The Journal of the Acoustical So-
ciety of America, 88(1):132-140, 1990.

W. Moss, H. Yeh, J.-M. Hong, M. C. Lin, and D. Manocha.
Sounding liquids: Automatic sound synthesis from fluid sim-
ulation. ACM Transactions on Graphics (TOG), 29(3):1-13,
2010.

A.J. Oxenham and C. J. Plack. Suppression and the upward
spread of masking. The Journal of the Acoustical Society of
America, 104(6):3500-3510, 1998.

A.R., N.R,R. K, and D. M. P-reverb: Perceptual charac-
terization of early and late reflections for auditory displays.
In 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pages 455-463, 2019.

A. Rungta, S. Rust, N. Morales, R. L. Klatzky, M. C. Lin,
and D. Manocha. Psychoacoustic characterization of propa-



(23]

(24]

[25]

(26]

(27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

gation effects in virtual environments. ACM Transactions on
Applied Perception (TAP), 13:1 — 18, 2016.

C. Schissler and D. Manocha. Interactive sound propagation
and rendering for large multi-source scenes. ACM Transac-
tions on Graphics (TOG), 36(4):1, 2016.

C. Schissler, R. Mehra, and D. Manocha. High-order diffrac-
tion and diffuse reflections for interactive sound propaga-
tion in large environments. ACM Transactions on Graphics
(TOG), 33(4):1-12, 2014.

J. V. D. Schuitman and D. D. Vries. Applying cochlear mod-
eling and psychoacoustics in room acoustics. journal of the
audio engineering society, 2008.

S. Stevens.  The direct estimation of sensory magni-
tudes: Loudness. The American Journal of Psychology,
100(3/4):664—689, 1987.

S. Stevens and M. Guirao. Loudness functions under inhibi-
tion. Attention Perception & Psychophysics, 2:459-465, 10
1967.

L. Trammell. Improved Pink Noise Generator Algo-
rithm. https://www.ridgerat—-tech.us/pink/
newpink.htm.

N. Wiener. Time series. MIT press, 1949.

H. Yeh, R. Mehra, Z. Ren, L. Antani, D. Manocha, and
M. Lin. Wave-ray coupling for interactive sound propaga-
tion in large complex scenes. ACM Transactions on Graph-
ics (TOG), 32(6):1-11, 2013.

P. Zahorik, D. S. Brungart, and A. W. Bronkhorst. Audi-
tory distance perception in humans : A summary of past
and present research. Acta Acustica United With Acustica,
91:409-420, 2005.

H. Zhou, Z. Ren, and K. Zhou. Adaptive geometric sound
propagation based on a-weighting variance measure. Graph-
ical Models, 116:101109, 2021.

E. Zwicker. Subdivision of the audible frequency range into
critical bands (frequenzgruppen). The Journal of the Acous-
tical Society of America, 33(2):248-248, 1961.

E. Zwicker and H. Fastl. Psychoacoustics: Facts and models,
volume 22. Springer Science & Business Media, 2013.

E. Zwicker, G. Flottorp, and S. Stevens. Critical band width
in loudness summation. The Journal of the Acoustical Soci-
ety of America, 29(5):548-557, 1957.

E. Zwicker and B. Scharf. A model of loudness summation.
Psychological review, 72:3-26, 1965.

E. Zwicker and E. Terhardt. Analytical expressions for
critical-band rate and critical bandwidth as a function of fre-
quency. The Journal of the Acoustical Society of America,
68(5):1523-1525, 1980.


https://www.ridgerat-tech.us/pink/newpink.htm
https://www.ridgerat-tech.us/pink/newpink.htm

	. Introduction
	. Background and Related Work
	. Numeric Characteristics of Audio Signals
	Power and Power Spectrum
	Energy SNR

	. Mechanisms Influencing Auditory Perceptibility
	. Masking Effect
	Loudness

	. Sound Propagation and IR
	The Structure of IR
	Psychoacoustics in IR Computation


	. Spectrum Analysis of the Error Signal
	. Static Case
	. Dynamic Case

	. Quality Criterion
	. Soft Threshold

	. Experiments and Results
	. Experiment Procedure
	Stimuli
	Method
	Subjects

	. Result
	Measurement of kl
	Application on Real Outputs


	. Conclusion and Future Work

