
O3NJ Trees: Optimally Ordered Orthogonal Neighbor Joining Trees for
Hierarchical Cluster Analysis

Tong Ge
Shandong University

Qingdao, China
tgeconf@gmail.com

Yunhai Wang
Shandong University

Qingdao, China
cloudseawang@gmail.com

Michael Sedlmair
University of Stuttgart

Stuttgart, Germany
michael.sedlmair@visus.uni-stuttgart.de

Zhanglin Cheng
SIAT

Shenzhen, China
zl.cheng@siat.ac.cn

Ying Zhao
Central South University

Changsha, China
zhaoying@csu.edu.cn

Xin Liu
BGI

Shenzhen, China
liuxin@genomics.cn

Baoquan Chen
Peking University

Beijing, China
baoquan@pku.edu.cn

Oliver Deussen
University of Konstanz

Konstanz, Germany
oliver.deussen@uni.kn

Abstract

We propose to use optimally ordered orthogonal
neighbor-joining (O3NJ) trees as a new way to visu-
ally explore cluster structures and outliers in multi-
dimensional data. Neighbor-joining (NJ) trees are
widely used in biology, and their visual representation
is similar to that of dendrograms. The core difference to
dendrograms, however, is that NJ trees correctly encode
distances between data points, resulting in trees with
varying edge lengths. O3NJ trees optimize NJ trees for
their use in visual analysis in two ways: First, we con-
tribute a novel leaf sorting algorithm that helps users to
better interpret adjacencies and proximities within such
a tree. Second, we propose a new method to visually dis-
till the cluster tree from an ordered NJ tree. Case stud-
ies illustrate the benefits of this approach for exploring
multi-dimensional data in areas such as biology or im-
age analysis.

1. Introduction

Cluster analysis, a technique widely used in data science,
divides data into groups of similar observations. While
many fully automatic clustering algorithms exist, they do
not always yield meaningful results. For most methods a
proper number of clusters has to be pre-defined, which is
not trivial, requires a human in the loop, and often leads
to a tedious trial-and-error process. To cope with such chal-
lenges, visual interactive clustering [12] has been developed

to support users in finding proper clustering parameters and
inspecting their results.

Instead of producing a pre-defined number of clus-
ters, hierarchical cluster analysis seeks to build a cluster
hierarchy that enables users to explore possible cluster-
ings at different levels. Many different algorithms have
been proposed, see the comparison in [51]. A com-
monly used method is Agglomerative Hierarchical Cluster-
ing (AHC) [11] that creates a dendrogram, a binary tree di-
agram that illustrates how clusters are merged at each ag-
glomeration step (an example is given in Fig. 1(d)). In such
a diagram the leaf nodes represent data points, the posi-
tions of inner “joining” nodes represent the weighted mean
of their children such that their position is proportional to
the distance between the children in data space. To cluster
a given data set, the user moves a “similarity bar” over the
dendrogram (dashed black line in Fig. 1(d)), and while do-
ing so s/he interactively “cuts” the dendrogram into pieces
to find a proper number of clusters. Dendrograms origi-
nated from biology [47] for clustering genes, and we refer
to them more generally as HC trees (hierarchical clustering
trees). HC trees have been successfully applied in various
visual analysis projects [43], and are part of standard sys-
tems for data analysis [17].

Despite their benefits, HC trees have three drawbacks
that limit their effectiveness: First, all leaves with the same
lowest common ancestor have the same path length between
each other; therefore, their distance within the tree might
not fit to the actual distance in data space, which is essen-
tial for characterizing clusters of general high dimensional

1

(b)

(c)

(a)

(e) (f) (g)(d)

DATA HC OURS

12345
Persistency based merges

Figure 1. A given data set (a) is better clustered by our optimally ordered orthogonal neighbor joining tree (O3NJTree) (f) than by a
dendrogram (d) produced by the hierarchical clustering (HC) method with complete linkage. Subfigure (b) shows the nested five clusters
generated by cutting the dendrogram with a minimum similarity bar; (c) shows four clusters automatically extracted with our method; (e)
displays the NJ tree with random leaf order while (f) shows the same tree with optimal leaf order (left) and resulting cluster tree (right) as
described in the paper.

data. An example is shown in Fig. 1(b), where each node
of the red cluster has different distances to the nodes of the
blue cluster, but using HC (see Fig. 1(d)) the tree distances
between leaves of the red cluster to leaves of the blue are
the same. This indicates that HC trees do not represent data
distances well.

Second, the approach is not robust w.r.t. outliers. Since
all leaves have the same distance to the root, outliers with
large distances to other elements in data space are displayed
with the same path length to other leaves in the tree. Thus, it
is hard to see such outliers among the leaf nodes and there-
fore users need to explore internal nodes in addition. For ex-
ample, the two outliers enclosed by the red circle in Fig. 1(c)
have the same distance to root as all other leaves in the HC
tree of Fig. 1(d).

Finally, HC trees are not able to display the intrinsic
cluster structure of many data sets, since in every step the
two closest clusters are merged. Such an approach fails
in cases when clusters are not linearly separable [14], as it
does not pay attention to inter-cluster distances. As shown
in Fig. 1(b) and (d), the right part of the blue cluster is in-
correctly merged with the above green cluster. Moreover,
organizing clusters into a binary tree might be improper for
data sets having three or more major clusters.

To mitigate these problems, we propose orthogonal
neighbor joining (NJ) trees as an alternative for interactive
hierarchical cluster analysis. In contrast to HC trees, only a

few approaches use NJ trees for multi-dimensional data vi-
sualization [10, 15, 33]. These techniques mainly use these
trees as a projection technique and show their results subse-
quently in radial layouts. Trees are used for the aforemen-
tioned advantage of showing data distances more precisely
than other techniques. An orthogonal tree layout, however,
performs better than a radial layout when using NJ trees for
hierarchical cluster analysis [8, 30]. Since NJ trees have
varying edge lengths, their leaves are not aligned to each
other anymore, making it hard for the user to identify the
cluster hierarchy (Figure 1(e)). This problem becomes even
larger with increasing number of leaves.

To address this issue, we propose a new leaf ordering
algorithm for NJ trees that places leaves with large similar-
ities adjacent to each other. Such trees look like terrains
with peaks and valleys (see Fig. 1(f)). We call these rep-
resentations Optimally Ordered Orthogonal Neighbor Join-
ing (O3NJ) Trees. A number of leaf ordering methods have
been proposed for HC trees [3, 9, 13, 40], but such methods
cannot produce an optimal ordering for NJ trees because
of the unequal edge lengths. As far as we know, our algo-
rithm is the first method for ordering orthogonal NJ trees
in which adjacent leaves satisfy two conditions: i) similar
distances to the root, and ii) small data distances between
them. Moreover, our method is over one order of magni-
tude faster than all other existing leaf ordering algorithms.

Although our leaf ordering algorithm arranges leaves

with similar root-leaf distances in adjacent positions, the ex-
ploration of the cluster hierarchy is not easy, since adjacent
leaves might not belong to the same cluster. To improve
exploration especially for large O3NJ trees, we propose a
method that highlights the intrinsic cluster tree by using
its geometric representation as well as the topological fea-
tures of the tree structure. Specifically, our ordering method
first identifies outliers that have large distances to root, and
then performs a persistence-based analysis to extract clus-
ters, which are clearly visible “peaks” and “valleys” in the
tree structure. In Figure 1(f) the two red leaves enclosed by
a red circle define an outlier cluster, while the green, yel-
low and blue clusters are generated by analyzing peaks and
valleys.
In summary, the main contributions of this paper are:

1. We propose a dedicated and fast optimal leaf ordering
algorithm for orthogonal NJ trees (O3NJ trees) so that
clusters and outliers are clearly shown;

2. We introduce an algorithm to extract the cluster struc-
ture from O3NJ trees;

3. We demonstrate the usefulness of our approach for
exploring multi-dimensional data by conducting case
studies in interactive clustering, evolutionary analysis,
and image classification.

2. Related Work

Existing related work can be divided into three cate-
gories: hierarchical cluster analysis, visualization of cluster
hierarchies, and leaf ordering for trees generated by hierar-
chical clustering.

2.1. Hierarchical Clustering Anaylsis

A complete review of hierarchical clustering is beyond
the scope of this paper; we therefore refer the reader to Han
et al. [22] and restrict our discussion to the design of Ag-
glomerative Hierarchical Clustering (AHC) methods, which
are most commonly used.

These methods work in a bottom-up manner [24]. Given
n data points and an n × n distance matrix, an AHC al-
gorithm first assigns each element to a cluster, then merges
the closest pair of clusters into a single cluster and com-
putes the distances between the new cluster and each of the
other clusters. This step is repeated until only a single clus-
ter remains. The distance measure between two clusters is
referred to as the linkage criterion, which can be defined
in various ways. Common criteria are single linkage, com-
plete linkage, average linkage, centroid linkage, and Ward’s
method [31].

Each linkage criterion and associated AHC method has
its advantages and disadvantages [51]. Previous studies
show that average linkage, centroid linkage, and Ward’s
linkage are quite sensitive to shape and size of clusters [26,

29]. Single linkage can handle non-elliptical shapes, but is
sensitive to noise and outliers. In contrast to them, complete
linkage is less susceptible to noise and outliers, but tends
to break large clusters. Since average linkage considers all
pairwise distances for computing the cluster distance, it is
more robust to outliers than other methods, but also compu-
tationally more expensive. Previous work [26, 29, 41] quan-
titatively compared these methods using numeric measures
such as the cophenetic correlation coefficient [47] and pro-
vided guidelines for choosing appropriate clustering meth-
ods. For simplicity, we call all these methods “ordinary
AHC methods” in order to distinguish them from our NJ
algorithm, which is also an AHC method.

NJ trees are widely used for phylogenetic data analy-
sis [39]. The NJ method resembles ordinary AHC meth-
ods, but has some unique properties. Most importantly, it
ensures that each two merged clusters are not only close to
each other but also far apart from the rest. Hence, the gener-
ated cluster hierarchies might differ from the ones produced
by ordinary methods. Biological data analysis has shown
that NJ trees perform better in many cases [32, 48].

Besides biology, NJ trees have also been used for the
visualization of document collections, where NJ clustering
results are visualized as a multi-dimensional projection us-
ing a radial layout [10, 33]. There is, however, no previ-
ous study that compares these methods for general multi-
dimensional data. Our comparative evaluation shows that
NJ trees not only better preserve input distances but also
the rank order for most data sets. In this paper we show
how this tree structure helps the hierarchical cluster analy-
sis of large data sets.

2.2. Visualization of Cluster Hierarchies

A variety of graphical representations have been devel-
oped for rendering tree structures, including classical node-
link diagrams, icicle, nested enclosure, indented outline or
treemap representations [45]. McGuffin and Robert [28]
systematically compare the space-efficiency of these meth-
ods and provide guidelines for choosing a good represen-
tation. Here we focus on node-link diagrams, which are
most commonly used to visualize cluster hierarchies. For
hierarchies generated by ordinary AHC and NJ methods,
the corresponding diagrams are referred to as cladogram
or phylogram (in biology) [34], both of them are specific
types of dendrograms. For convenience, we refer to clado-
grams as HC trees and phylograms as NJ trees. Both tree
diagrams encode distances between data elements by us-
ing path lengths, with NJ trees having unequal path lengths
from the root to the leaves.

Dendrograms are often drawn with an orthogonal layout,
either in vertical or horizontal orientation. The hierarchical
clustering explorer by Seo and Shneiderman [43] enhances
HC trees with dynamic query controls for interactive ex-

(a) (b) (c) (d)

A B C D E

B
C
D
E
F

10
8
12
14
22

16
16
16
26

12
14
22

12
24 24

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

U1U1U1
U2U2

U3

U4

7.25

1.831.83

16.62

6.38

5.620.38
1.38

5.175.17
2.75

7.25

2.75

7.25

2.75

U1

U2

U3

U4

U4

C

F

B

A

E

D

7.25

16.62

6.38

5.62

0.38

1.38

5.17

2.75

U1

U2

U3

U5

U4

13 F

8

A

C4

6

7

4

B

E

D

2

1

1

5

Figure 2. Illustration of the NJ algorithm and comparison between the NJ tree and the HC tree. (a) The input distance matrix; (b) the
procedure of the NJ algorithm by using the input matrix shown in (a); (c) the orthogonal NJ tree where the root is the duplication of U4;
(d) the HC tree generated by applying the AHC method with the average linkage to the matrix in (a).

ploration. Munzner presented tree-juxtaposer [30] which
allows users to navigate large hierarchies with a global rect-
angular focus+context technique. Etemadpour et al. [15]
have shown that NJ trees drawn with radial layouts [1] can
be used as a projection method for multi-dimensional data.
But representing NJ trees with a radial layout is less suited
for hierarchical structures as reported by Burch et al. [8].
An orthogonal layout seems to be a good compromise be-
tween compactness and readability [30]. Thus, in this paper
we investigate how orthogonal tree layouts can be used to
support visual analysis of NJ trees.

2.3. Leaf Ordering for Hierarchical Clustering

For an orthogonal tree diagram, leaf nodes are shown in
linear order along one axis. Adjacent leaves in such a lin-
ear ordering are assumed to be related [19], and thus a good
leaf ordering helps users to identify clusters of interest and
interpret the data. For a tree with n leaves, 2n−1 linear or-
derings are possible. To find a proper leaf ordering, a num-
ber of methods have been proposed [3, 9, 40] that minimize
distances of adjacent leaves. Most of them, however, aim
at sorting ordinary HC trees with equal edge lengths and do
not take the special characteristics of NJ trees into account.
Specifically, ordinary AHC methods pick the two closest
clusters for merging, if the corresponding nodes of these
clusters are adjacent in the HC tree, their leaf ordering accu-
rately reflects the merging procedure. The NJ method, how-
ever, merges nodes that are not only similar to each other,
but also far from other nodes. Thus, if we would simply ap-
ply existing ordering methods for NJ trees, the ordered leaf
nodes would not accurately represent the cluster structure
revealed by the NJ algorithm. Fig. 3(e) shows an example,
where the centroid cluster is interrupted by three outliers (B,
K and E).

To bridge this gap, we propose an efficient leaf ordering
algorithm that finds a linear ordering in which the sum of
absolute edge length differences between adjacent elements
is minimized. Such an ordering visualizes the separation
between large groups very clearly, meanwhile it allows to

spot outliers and small clusters on a detailed level.

3. Background

In this section, we first describe the neighbor joining al-
gorithm and then our qualitative comparison between AHC
and NJ trees to justify that they better represent general
high-dimensional data.

3.1. Neighbor Joining Algorithm

Given a distance matrix with the relations of n data
points in d dimensions. The NJ method starts with a star-
like tree where each leaf node corresponds to a data ele-
ment. Iteratively two neighboring nodes are joined until a
complete binary tree is obtained:

1. Calculate a new distance matrix Q from D by setting
Qij = Dij− (Si+Sj) where Si is the net divergence:

Si =
1

n− 2

∑
k 6=i

Dik. (1)

2. Identify the pair of nodes i and j with minimal Qij ;

3. Join nodes i and j at node x and compute the branch
lengths between from node x to i and j:

lxi = Dij/2 + (Si − Sj)/2
lxj = Dij/2 + (Sj − Si)/2 (2)

4. Update D by replacing nodes i and j with node x and
compute the distance from x to each other node k;

Dxk = (Dik +Djk −Dij)/2 (3)

5. Repeat the steps 1-4 until only two nodes remain.

By constructing Q based on the average divergence
while joining nodes using the least-distant pair of nodes in

Figure 3. Comparison between ordinal hierarchical clustering (HC) and NJ trees generated from the same distance matrix as shown in
(a). (b) Scatter plot with three clusters produced by multi-dimensional scaling; (c) HC tree where positions do not accurately resemble
distances, e.g., the distance between I and A is 29 and the distance between I and B is 45, but the horizontal position of their least common
ancestor (the root node) has the same horizontal path length to the nodes I, A and B. Moreover, cutting the HC tree into three branches
(black line) results in incorrect groupings for I and D. NJ trees accurately encode the distance matrix, but so far no good ordering algorithm
exists: (d) NJ tree displayed with a random order, as currently done in standard analysis packages such as R; (e) NJ tree ordered by using
the OLO algorithm [3]; (f) NJ tree ordered by our algorithm, three useful clusters are created.

Q, the NJ algorithm takes into account intra-cluster com-
pactness as well as inter-cluster separation.

Fig. 2(b) illustrates the algorithm with the input distance
matrix shown in Fig. 2(a). Nodes A and B are first joined
with the minimum QAB = −27.5. The distances from
these two nodes to their common ancestor U1 are 2.75 and
7.25. Following this procedure, an un-rooted NJ tree that
fits to the actual distance in data space is generated.

Rooting Strategy As already mentioned (and shown in
Fig. 2(b)), an NJ tree is un-rooted by default. However, bi-
ologists often explore NJ trees using orthogonal layouts, so
a root is needed, cf. [24]. To address this issue, we follow
a rooting strategy given in Butto [5] that simply duplicates
the last formed internal node to create the root node (see
Fig. 2(c)). The root can also be specified by a domain
expert or determined by other strategies like using the mid-
point of the longest path between any two leaves in the tree
[5]. Note that we cannot follow the AHC method [36] to
form the root by merging the last two remaining nodes, be-
cause the inter-cluster distance cannot be computed for two
nodes.

3.2. Distance Preservation within NJ Trees

Previous studies have shown that NJ trees much better fit
to the input distances than AHC trees [48, 32]; however,
most of these studies are based on biological data. To ver-
ify that NJ trees also are better in representing general high
dimensional data than AHC trees, we quantitatively com-
pared them against AHC trees produced by different vari-
ants of the AHC algorithm. We checked how well distances
between any pair of data points fit the path lengths between
the corresponding leaf nodes of the trees. The path length is
defined as the sum of all edge lengths in the path from node
i to j.

We collected 47 data sets of different size and dimen-

sionality with substantial variations and measured the dif-
ferences between data point distances and edge lengths. Ex-
perimental details and results can be found in the supple-
mental material, which show that NJ trees better represent
the input data than AHC trees for most data sets.

Figs. 2(c,d) show an example to illustrate why an orthog-
onal NJ tree performs better than an AHC tree. Path lengths
between any pair of nodes in an NJ tree are much closer to
the data distances between the nodes than for AHC trees.
For example, the path length between leaf nodes A and
B in the AHC tree is 16, while the data distance between
them is only 10. The paths between node pairs (A,F), (C,F),
(D,E), (D,F) and (E,F) show the same issue. This results
from the merging procedure within AHC methods, where
computing branch lengths is solely based on intra-cluster
distances Dij [16], without considering the corresponding
inter-cluster distance Si + Sj .

While NJ trees are superior in representing data dis-
tances faithfully, they cannot correctly encode the distance
for any given distance matrix, especially ones that do not
obey Buneman’s 4-point condition [7]. However, previous
studies show that NJ trees are still one of the best approxi-
mations for those matrices [27].

4. Leaf Ordering for Orthogonal NJ Trees

Once we have a rooted orthogonal NJ tree with n leaf
nodes, there are 2n−1 possible leaf orderings, which is sim-
ilar to an HC tree. Since closeness of adjacent leaf nodes
visually indicates similarity of the underlying data points
(such as coming from the same cluster), an optimal leaf or-
dering (OLO) would help users to detect cluster structures
in the data. This problem has been studied well for HC
trees [3, 9, 40], but to the best of our knowledge no studies
exist for NJ trees.

In Fig. 3(d) we show that random ordering mixes dif-
ferent clusters, hindering the user to determine meaningful

cluster boundaries. For example, nodes I, E, K, and B in
Fig. 3(d) are adjacent but node I is an outlier as shown in
Fig. 3(b). Furthermore, leaf orderings produced by exist-
ing OLO algorithms do not really work for NJ trees, since
these algorithms are designed for revealing cluster struc-
tures produced by ordinary AHC algorithms, which are dif-
ferent from our proposed NJ algorithm. Instead, our pro-
posed NJ tree oriented OLO algorithm (NJOLO) aims to
reveal the cluster structures characterized by the NJ algo-
rithm. An example is shown in Fig. 3(f), where the two
clusters and the outlier are clearly separated.

4.1. Problem Definition

As shown in Fig. 3(f), nodes belonging to the same clus-
ter have similar path lengths to the root and should be ad-
jacent to each other. Hence, our desired ordering places
nodes with similar path lengths from the root at adjacent
locations. Only optimizing this objective, however, would
not be enough, since nodes with similar path lengths to the
root might not be similar. For example, the leaf nodes B,
E, K and I in Fig. 3(d) have similar path lengths from the
root, but nodes B, E, and K form one cluster in the MDS-
based scatterplot (see Fig. 3(b)) while node I is an outlier.
By carefully analyzing the result, we see that the distances
between nodes B, E, K and I are quite large, which is ver-
ified by the scatterplot shown in Fig. 3(b). In other words,
if two nodes with similar path lengths from the root have a
large pairwise distance, they should not be adjacent. Thus,
we enforce an additional constraint: the data distance be-
tween two adjacent nodes should not be larger than a given
threshold, otherwise the nodes have to be separated.

For short, the path length from the root to a leaf node i
is denoted as pi. We aim to find an ordering φ that mini-
mizes the sum of absolute path length differences between
adjacent leaves φi and φi+1:

min
φ

n−1∑
i=1

|pφi
− pφi+1

|, (4)

with a hard constraint that Di,i+1 should be smaller than a
given threshold t.

Relationship to HC Tree Ordering. The OLO for HC
tree aims to find an ordering that minimizes the difference
of the adjacent leaves in the ordering:

min
φ

n−1∑
i=1

Dφi,i+1
. (5)

If the path length in the HC tree can represent the distance
between data points, Eq. (5) can be written as:

min
φ

n−1∑
i=1

pφi,φi+1 , (6)

Algorithm 1 Optimal Leaf Ordering of NJ tree
1: function OLONJ(u,D)
2: if |u| == 1 then
3: C(u, v, v) = 0 return C(u, v, v)
4: else
5: C(ul, L,R) = OLONJ(ul, D)
6: C(ur, L,R) = OLONJ(ur, D)
7: for v in leaves of ul do // left subtree of u
8: for w in leaves of ur do // right subtree of u
9: if Dm,k ≤ t then

10: C(u, v, w) =
11: min

m∈ul,k∈ur

C(ul, v,m)+C(ur, k, w)

12: +|pm − pk|
13: else
14: C(u, v, w) = +∞
15: end if
16: C(u,w, v) = C(u, v, w)
17: end for
18: end for
19: end if
20: return C(u, L,R) // L and R denote all possible
21: // pairs of leaves from ul and ur
22: end function

which is the sum of path length between adjacent leaf nodes.
Since it is substantially different from Eq. 4, applying it to
the NJ tree produces undesired results. Fig. 3(e) shows an
example in which the ordering separates node I from the
clusters, but places the yellow cluster in the middle of the
blue cluster.

4.2. Dynamic Programming

Like the OLO algorithms [3, 2] for HC trees, Eq. (4)
can also be solved by using dynamic programming (DP).
Since this problem is defined on the NJ tree, we can take the
advantage of having a binary tree structure to decompose
this problem into subproblems for ordering sub-trees.

Hence, we associate the ordering of each leaf sub-
sequence with an internal node. For each internal node u,
let its children be ul, ur, the number of leaves |u|, and the
cost of the optimal ordering of its subtree C(u). For every
pair of leaves v ∈ ul and w ∈ ur, C(u, v, w) is the cost for
optimal ordering of the subtree rooted at u with the leftmost
and rightmost leaf nodes v andw, andC(u) is the minimum
of all possibleC(u, v, w). Based on the tree decomposition,
Eq. (4) can be re-written in a recursive form:

C(u, v, w) = min
m∈ul,k∈ur

C(ul, v,m) + C(ur, k, w) + d(m, k)

(7)

subject to Dm,k ≤ t

where the leaf m is the rightmost leaf of µl and k is the

6

9

4

6

6

21

20

21

21

10

11

15.5
13.2

inversions : 33 cost : 39 # inversions : 26 cost : 44 # inversions : 17 cost : 57

13.3

20.7
20.5

9.6

7.6

5.7
7.5

I

E

D

C

B

K

G

A

H

F

J

21

10

11

15.5
13.2

I

D

C

6

9

4

6

6

21

20

21

13.3

20.7
20.5

9.6

7.6

5.7
7.5

E

B

K

G

A

H

F

J

21

10

11

15.5
13.2

I

D

C

7.6

6

6

21

20

21

13.3

20.7
20.5

9.6

E

B

K

G

A

6

9

4
5.7

7.5
H

F

J

inversions : 8 cost : 45 cost : 36

21

10

11

15.5
13.2

I

D

C

7.6
6

6

21

2013.3

20.7
20.5

9.6

21E

B

K

G

A

5.7

7.5
9H

6F

4J

21

10

11

I

D

C

21E

20B

21K

6G

6A

9H

6F

4J

21

11

I

D

C

6

6

21

20

21E

B

K

G

A

9H

6F

4J

Level 0 Level 1 Level 5

(a) (b) (c) (d)

Figure 4. Overview of our leaf ordering algorithm: (a) an orthogonal NJ tree with unequal edge length where each node is assigned a
weight based on the edge length; (b) by performing monotonicity based flipping within a breadth-first traversal the inversion is reduced; (c)
extraction of the ordered sub-trees with a depth-first traversal; (d) the optimal leaf ordering result is obtained by applying the DP algorithm
to the ordered sub-trees.

leftmost leaf of µr. By default, d(m, k) is the absolute path
length difference between the nodes m and k. To integrate
the hard constraint Dm,k ≤ t to the DP procedure, we set
d(m, k) to +∞ if the distance between nodes m and k is
larger than t. Hence, d(m, k) is defined as:

d(m, k) =

{
|pm − pk|, if Dm, k ≤ t
+∞ if Dm, k > t.

As shown in Algorithm 1, this ordering works in a
bottom-up way. When calculating the C values for the
subtree rooted by u, the C values of ul and ur are already
computed and stored in a table. Once C(µ, v, w) for
all pairs of v and w are computed, the smallest value
of C(u, v, w) is C(u). Meanwhile, early termination is
applied to optimize the search for the smallest C(u, v, w).
The pseudo-code is given in Algorithm 2.

Time Complexity. Because of the tabled values,C(u, v, w)
is computed only once for each of the O(n2) pairs of leaves
v and w. Each computation of C(u, v, w) involves all the
possible m, k leaves that lie in the intersection of ul and
ur and thus results in at most O(n2) time. In all, the time
complexity of the whole algorithm is O(n4).

4.3. Acceleration techniques

We propose two acceleration techniques to dramatically
decrease the running time of our algorithm while producing
an accurate and optimal leaf ordering.

Early Termination. Since all values of C(ul, v, R)
and C(ur, L, w) are already computed when we compute
C(u, L,R), we can terminate the search of best pairs of m
and k early when C(u, L,R) cannot be further improved.
To achieve this goal, we take the following pre-processing
steps to reduce the computation time:

• compute the minimal path length difference minP =
minv∈ul,w∈ur

|pm − pk|;

• sort C(ul, v, R) and C(ur, L, w) in ascending order,
where R denotes all possible right leaves of ul when v
is the leftmost leave of ul and L is the same for w and
µr.

Accordingly, we compute C(u, v, w) by performing two
loops of m and k according to the order of C(ul, v, R) and
C(ur, L, w). Denote by curC the current minimal cost we
have for C(u, v, w). For a given pair of leaves m and k, if
we have C(ul, v,m) +C(ur, k, w) +minP ≥ curC, then
any leaf pair m, k′ coming after k cannot produce a value
that is smaller than curC and thus the loop of k can be ter-
minated. Likewise, the loop for m can also be terminated
earlier. Algorithm 2 outlines this procedure.

Sequence Simplification. Looking at the array P =
{p1, · · · , pn} we see that Eq. 4 reaches its minimum when
P is a monotonic sequence. While this does not allow us to
overlook the underlying NJ tree, it suggests us to reduce the
search space of the DP algorithm by partitioning the whole
tree into a few sub-trees whose path lengths to the root form
a few monotonic sub-sequences. Since the leaf ordering in
each of these monotonic sub-trees could be seen as fixed,
we can simplify each sub-tree by its leftmost and rightmost
leaves for finding the optimal leaf ordering and the compu-
tations time is further reduced. To this end, we perform the
following two steps to construct a few monotonic sub-trees.

• Initialization. A weight is assigned to each node. For
a leaf node, the weight is its path length to the root;
for each internal node µ, its weight is the average of
all weights of its leaves. Fig. 4(a) shows an example,
where all nodes have been assigned weights except the
root.

Algorithm 2 Early Termination for computing C(u, v, w)
1: minP = minv∈ul,w∈ur |pm − pk|
2: curC = +∞
3: for m in ordered C(ul, v,m) do
4: if C(ul, v,m) + C(ur, k0, w) + minP ≥ curC

then
5: C(u, v, w) = curC; break
6: end if
7: for k in ordered C(ur, k, w) do
8: if C(ul, v,m) + C(ur, k, w) +minP ≥ curC

then
9: break

10: end if
11: if Dm,k < t then
12: tmp = C(ul, v,m) +C(ur, k, w) + |pm −

pk|
13: else
14: tmp = +∞
15: end if
16: if curC > tmp then
17: curC = tmp
18: end if
19: end for
20: end for
21: C(u, v, w) = curC

• Flipping. A monotonic sequence does not have any in-
versions. Two elements pi and pj form an inversion if
pi > pj and i < j. We reduce the number of inversions
within a sub-tree by flipping nodes at each level using
a breadth-first traversal. For each internal node u at the
ith level, we check if the weight of its right child node
ur is smaller than the one of the left child node ul. If
this is the case, we flip the two sub-trees rooted at u.
This level by level flipping gradually reduces the num-
ber of inversions. In Fig. 4(b) the number of inversions
are reduced from 33 to 8 after traversal. Since nodes
at the same level might not be adjacent because of un-
equal edge lengths, flipping cannot reduce the cost of
leaf ordering.

On the right of Fig. 4(b), a few ordered sub-trees with
monotonically decreasing edge lengths are generated and
then such sub-trees can be extracted by performing the
depth first traversal. Based on sub-trees, we employ the
DP algorithm with early termination to find an optimal leaf
ordering. Fig. 4(d) shows the final ordering result for the
input NJ tree, noticing that the threshold t is by default the
average of the distance matrix.

5. Cluster Tree Distilling

As mentioned above, the leaves of an O3NJ tree have
unequal root-leaf distances and thus do not align to each
other. Moreover, two adjacent leaves might not belong to
the same cluster. For example, the two red leaves enclosed
in a red box in Fig. 1(f) form a cluster of outliers, while
their adjacent green leaves belong to another cluster. These
two characteristics create difficulties for the user to explore
a hierarchy when using an NJ tree. To address this issue, we
propose a new method to distill a cluster tree from an O3NJ
tree by taking it as a visual representation. Fig. 5 shows the
pipeline of our method that consists of two steps: 1) tree
splitting based on an analysis of root-leaf distances and 2)
hierarchical clustering of the 1D curve (the gray curve in
Fig. 5(b)) formed by connecting the positions of adjacent
leaves with line segments.

Tree Splitting. In this step, we first compute the Absolute
Adjacent Root-leaf Distance Difference (ARD) for all pairs
of adjacent leaves and then find a proper threshold to cut
the tree. The histogram on the right of Fig. 5(a) shows the
sorted ARD set of the tree on the left. We see that only
two adjacent leaf pairs have large distance differences. This
is reasonable, since our leaf ordering algorithm guarantees
that most adjacent leaves have a similar root-leaf distance.
Thus, we consider ARD values as outliers if their values lie
above a threshold:

ω = q75 + 1.5(q75− q25)

where q75 and q25 are the 75th and 25th percentile of the
ARD values. Once we defined ω according to that formula,
we can cut the tree into different branches, cf. Fig. 5(b).

Hierarchy generation. For each branch in the split O3NJ
tree, adjacent leaves have similar root-leaf distances. Con-
necting them with line segments forms a curve with peaks
and valleys. In Fig. 5(c), such peaks and valleys are high-
lighted for the middle branch. For each leaf we find the
lowest common ancestor (LCA) for its left and right adja-
cent nodes. Once they are found, we distill a new cluster
tree based on the parent-child relationship between these
LCA nodes. Fig. 5(d) illustrates the two-level hierarchy of
clusters obtained by such a peak-valley analysis, the corre-
sponding clusters are shown in Fig. 5(e).

Visual Encoding. We visualize the distilled cluster tree
with an orthogonal tree where the number of children of
each parent is determined by cluster structures. For exam-
ple, the root nodes in Fig. 1 and Fig. 5 have two and three
children, respectively. Meanwhile, the size of each node is
proportional to the number of elements in the corresponding
cluster, while each node has a unique color.

A

B

C
D

E

F

G

H

I

J

K

AR
D

threshold

A

B

C
D

E

F

G

H

I

J

K

A

B

C
D

E

F

G

H

I

J

K

Peak
Valley

(a) (b) (c) (e)

A

B

C

D

E

F

G

H

I

J

K

(d)
Figure 5. Distilling the cluster tree from an O3NJ tree includes splitting and hierarchy extraction: (a) input O3NJ tree and a histogram of
the ARD values; (b) the selected threshold from the histogram in (a) cuts the tree into three parts; (c) identified peaks and valleys as well
as the corresponding two-level cluster tree for the middle branch; (d) distilled cluster tree and nested clusters shown as scatter plot (right).

Persistence based Simplification. Because of our sub-
monotonic DP algorithm, the leaves of an O3NJ tree do
not satisfy strict monotonicity, which results in many small
noisy peaks and valleys. In order to reveal the hierarchy
of major clusters, we use the persistence-based topologi-
cal simplification by Weinkauf et al. [50] to remove such
noisy peaks and valleys, where the persistence is defined
by the root-leaf distance difference between adjacent peaks
and valleys. We successively remove adjacent peaks and
valleys with the smallest persistence values and merge them
to adjacent large ones until a given persistence threshold β
is reached. Since most persistence values are quite small
(see Fig. 6(b)), we set β to a value of 10% of the maximal
persistence following the suggestion of Gyulassy et al. [20].
As shown in Fig. 6(c), this default threshold removes most
noisy peaks and valleys, while resulting in meaningful clus-
ters.

Figure 6. Persistence based simplification of an O3NJ tree: the
optimally ordered version of Fig. 1(e) is the input shown in (a), a
default threshold of 10% of the maximal persistence value shown
in the persistence histogram in (b) removes most noisy peaks and
valleys and results in the cluster hierarchy shown in (c).

6. Evaluation

We implemented our O3NJ tree in Javascript and provide
a corresponding interface1. Although their default values
produce reasonable results for most data, fine-tuning these
parameters allows the user to generate better clusters for
challenging datasets. Using this interface, we conducted
three case studies, using one synthetic dataset and two real
datasets from biology and computer vision.

6.1. Synthetic Data

To demonstrate the effectiveness of our O3NJ tree in
clustering, we did a first experiment with the synthetic Com-
pound data [18], which has been used for the evaluation of
various clustering algorithms. It is a challenging 2D dataset
that contains arbitrarily shaped clusters with various densi-
ties. Fig 7 depicts our O3NJ tree and clustering results gen-
erated by hierarchal clustering with complete-linkage and
DBSCAN [14].

Fig 7(a) shows the O3NJ tree (left) and its two-level
distilled cluster tree (right). The corresponding cluster-
ing result is shown in Fig 7(b). Compared to the ground
truth (see Fig 7(f)), the four clusters on the left are cor-
rectly identified, while the inner green cluster on the right
side is mis-grouped with a part of the outer orange clus-
ter. By looking at the histogram of the ARD values of the
green cluster (Fig 7(c,d)), we found that most of the inner
green nodes have smaller ARD values than the mis-grouped
nodes. Hence, we use the default ARD threshold to separate
the inner green cluster from such outlier nodes, shown with
a black border in Fig 7(d,e). Combining this result with
the automatically found clusters in Fig 7(b) we obtained the
clustering result shown in Fig 7(i), where five major clusters
are clearly separated.

Although the green outlier nodes are still not merged
with the orange nodes in the bottom right, this result is

1http://www.njvis.net/

Figure 7. Cluster analysis of the Compound data (a-e) with our
O3NJ tree and comparing our result (i), to the ground truth (f), as
well as to clusterings generated by the complete-linkage method
(g) and DBSCAN (h). The cluster tree is distilled from the
O3NJ tree (a) the result is shown in (b), where the mis-grouped
green cluster is highlighted. By thresholding its ARD histogram
(c), green outlier nodes are separated from the inner green clusters
(d,e).

better than the ones generated by the ordinary AHC meth-
ods and DBSCAN. More specifically, the complete-linkage
method is not able to correctly identify any major clus-
ter, while DBSCAN identifies four major clusters but mis-
groups the two clusters on the top left (see Fig 7(h)).
Thus, our automatic result is already comparable to DB-
SCAN (see Fig 7(b) vs. Fig 7(h)). Including user feed-
back, it quickly produces almost perfect results, as shown
in Fig 7(i). This is a first evidence that clustering with our
O3NJ tree approach could work better than state-of-the-art
clustering methods for certain challenging datasets.

6.2. Cucumber data

In evolutionary analysis [23, 37], biologists often use
multi-dimensional scaling (MDS) [4] to reduce high-
dimensional genome data collected from various species
into 2D scatterplots. These scatterplots are then used to ex-
plore class separation and study evolutionary relationships
among species with NJ trees. Our O3NJ tree not only com-
bines these two functionalities but also produces more ac-
curate results as illustrated by the following case study of a

Figure 8. Exploration of the Cucumber data: (a) O3NJ tree and
the distilled hierarchy; (b) MDS plot; (c) heat map showing the
input distance matrix. Three kinds of inconsistencies between
our O3NJ tree representation and MDS results are highlighted by
black, green and blue circles in O3NJ tree, while the corresponding
nodes are also highlighted in MDS plot and the heap map. Class
label and cluster index of each node are encoded by border and fill
color.

cucumber genome dataset, provided by one of our collab-
orators, a biologist, who has more than 10 years of experi-
ence in evolutionary analysis.

His data was collected by sequencing 23,436 genes from
115 cucumber species classified into 4 geographical classes:
East Asian, Eurasian, Indian, and Xishuangbanna. Using
this data, our collaborator had two analysis goals: i) veri-
fying if the classification matches with the inherent clusters
in the data; and ii) comparing the distribution of the Indian
class to the other classes, because he assumed that the In-
dian group should be closer to the wild type [42], while the
other three groups belong to the cultivated type.

We analyzed the data together with our collaborator. Us-
ing default parameters, we obtained an O3NJ tree and a dis-
tilled two-level cluster tree with six clusters. Our collabora-
tor expected a one-to-one mapping between class labels and
cluster index (Task 1). While there were only four classes,
our method produces five major clusters and one outlying
cluster. Our O3NJ tree tool visualizes such inconsistency
by encoding the class label and cluster index of the corre-
sponding nodes into their border and fill color (see Fig. 8
(a)).

After examining the tree in Fig. 8 (a), our collaborator
came up with three observations: i) the green, cyan, and
yellow clusters match well with the classes of Xishuang-
banna, Eurasian and East Asian; ii) the brown and purple
clusters both belong to the Indian class; iii) a few outliers

are identified from all clusters except the green one. From
the first two observations, he concluded that most classifi-
cations align with the data characteristic and the division of
the Indian class is also as expected. Based on the last obser-
vation, he then concentrated on the Xishuangbanna class,
where the edge lengths from the root i) are smaller than
other classes and ii) have fewer variations. He did not ex-
pect this because the Xishuangbanna class uniquely accu-
mulates β-carotene in its fruit [35]. Similarly, the five out-
liers in the East Asian class, especially the three adjacent to
the Indian sub-class 2 were also unexpected. He told us that
the East Asian class is often assumed to be well cultivated
and he was not aware of a species close to the wild-type in
this class.

To verify this observation, he checked if our O3NJ tree is
correct by comparing it to an MDS projection of the input
distance matrix (see Fig. 8 (b), colors are like in subfig-
ure (a)). The classes shown in green, cyan, and yellow are
also well-separated in the MDS plot, but the distribution of
two Indian sub-classes in brown and purple is quite different
from our O3NJ tree shown on the right of Fig. 8 (a). Some
nodes have small distances in the tree but large distance in
the MDS plot (two outliers denoted by a black circle), oth-
ers have large distances in the tree but small distances in the
MDS plot (two outlier nodes denoted by a green circle), and
nodes of a class in the tree are close to others in the MDS
plot (five nodes from the Indian sub-class 2 denoted by a
blue circle adjacent to Indian sub-class 1). We jointly inves-
tigated the corresponding input distance matrix (Fig. 8 (c)).
The heat map rows and columns of the outlier nodes with
black circles show that they are close to each other but far
from other nodes which is consistent to the tree. Thus, our
collaborator concluded that our result more accurately re-
flects the input data, which we further verified by the stress
error [21] in the O3NJ tree and MDS plot (210.4 vs. 564.9).

Based on these experiences, our collaborator plans to
use a combination of our O3NJ tree tool and MDS plots
to further investigate which genes produce the unexpected
outliers in the East Asian class. Regarding the small edge
length of Xishuangbanna class, he hypothesized that the
distance measure we used might not reflect the data accu-
rately enough. He thus will try different measures in the
future.

6.3. CIFAR-10 Image data

To demonstrate the usefulness of our tool for larger
datasets, we conducted a third case study with the CIFAR-
10 image dataset [25] with 10,000 32 × 32 color images
labeled into 10 classes (animals and vehicles). For this case
study, we worked together with two deep learning experts,
who have more than 5 years of experience in deep learn-
ing research. They trained a convolutional neural networks
(CNN) and used this model to generate a 64-dimensional

Figure 9. Exploration of CIFAR-10 Image data with our distilled
cluster tree (d). (a) clustering accuracy of several algorithms mea-
sured by Rand Index; (b) overlaying k-mean clustering results to
the MDS plot, where the lasso color indicates the cluster index and
the class label is encoded by the point color; (c) sub-tree of the car
class shown in the O3NJ tree with images of one outlier and three
selected nodes; (d) distilled cluster tree, where each node is over-
laid a pie chart indicating the percentages of the mixed different
classes; (e-g) representative images of clusters.

feature vector for each image. The goal of our collabora-
tors was to use O3NJ to validate their CNN model and help
answering two core questions: i) which classes can be dis-
criminated from other classes by the model, and which ones
not; and ii) learn why it does not work well for some classes.

The generated feature vectors correctly group the images
from different classes in a good model. Our collaborators
frequently do that by clustering the data, and then check
how well the clustering results match with class labels (a
typical task in multi-dimensional data analysis [6]. We thus
tested this data with a few clustering algorithms such as SL,
AL, CentL, WL, k-means (k=10) [31] and our method. We
measured the accuracy between the clustering results and
the existing class labels using the Rand Index (RI) [38].
RI=0 indicates clustering results do not at all match class
labels, and RI=1 they exactly match. Fig. 9(a) shows the RI
values of the different methods.

To compare the clustering results generated by k-means
(2-nd best method) and our method, we visualized the k-
means clustering results in an MDS plot, where the col-
ors of the dots show the ground truth class labels and the

hulls around them show the k-means clustering result (see
Fig. 9(b)). Some small classes were well identified, but a
large cluster in the middle (with the red hull) is a mix of dif-
ferent elements. In contrast, our distilled cluster tree shown
in Fig. 9(d) separates the classes of animals and vehicles
well. Opposed to the k-means-based analysis, this indicates
that the trained model has enough ability to discriminate
these two high-level classes. Meanwhile, our cluster tree
revealed three small compound clusters. For those we vi-
sualized the nodes with a pie chart to show the percentage
of each class. Since we use dots as visual encodings and
an accurate judgment of the mixing level is not important,
we opted for pie charts to ensure consistency with the in-
terface. Such information is not revealed by k-means clus-
tering. Considering the higher RI measure of our approach,
our collaborators concluded that our clustering result is the
better solution for their problem.

To verify that the small compound clusters are reason-
able, our collaborators explored the tree structure of each
class. Fig. 9(c) shows a sub-tree of the car class, where an
outlier (airplane) is clearly shown, the three other selected
nodes correspond to cars of different poses and colors. This
indicates that the feature vectors generated by this model
have a strong intra-class discrimination ability. During fur-
ther exploration they found that the adjacent nodes of the
outlier airplane correspond to images with red foreground
objects, (third image on the bottom of Fig. 9(c)). They
also investigated images from clusters with mixed classes
to learn why such images cannot be discriminated by their
model. Fig. 9(e) shows six representative images of the
cluster mixed from birds and airplanes. The flying birds
have very similar shapes to the flying airplanes. Further in-
vestigating the bird and airplane clusters (see Fig. 9(f,g))
shows that most images in these two clusters have very dif-
ferent shapes.

Our collaborators also investigated the other two clus-
ters with mixed classes and obtained similar findings. They
found their CNN model might pay too much attention to the
global shape and too little to the local context and that more
local shape information has to be incorporated. In addition,
they concluded that the model might give too large weights
to the color of some objects (e.g, car). Hence, they want
to find better ways to combine different properties. Finally,
they confirmed that our method and associated clusters and
outliers are more accurate and intuitive than their current
practices, and they will thus continue to use it.

7. Conclusion

We have presented a novel visualization representation,
O3NJ tree, for hierarchical analysis of multi-dimensional
data. This representation is based on NJ trees, which so
far have been mostly used for phylogenetic data analysis in
biology. A quantitative comparison between NJ trees and

dendrograms produced by various ordinary AHC methods
shows that NJ trees characterize the inherent clusters for
general multi-dimensional data better than other methods.
Orthogonal NJ trees are thus an alternative approach for in-
teractive hierarchical cluster analysis. Since such trees have
varying edge lengths, identifying major clusters is hard. To
address this issue, we proposed a dedicated ordering algo-
rithm that helps users to better interpret adjacencies and
proximities within such trees and a new method to visu-
ally distill a cluster tree from an ordered NJ tree. Finally,
we demonstrated the benefits of this approach for exploring
multi-dimensional data with three case studies.

Limitations: The NJ algorithm is slower than the or-
dinary AHC method, which hampers the application of
our approach for large data analysis. A few state-of-the-
art accelerating strategies [33, 46] generate appropriate NJ
trees and have to be investigated. Second, our approach
might not automatically generate reasonable clustering re-
sults for some challenging datasets using the default param-
eters. This limitation is shared with almost all other clus-
tering approaches. In the future, we plan to explore auto-
tuning strategies [49] on parameters. Third, some potential
scalability issues in color may exist in the visual represen-
tation of the distilled cluster trees. Finally, our current ap-
proach does not allow users to learn why some nodes have
unequal edge lengths; such information would be impor-
tant for domain scientists. Inspired by the rank-by-feature
framework [44], we plan to integrate our O3NJ tree into a
multiple-coordinated view system that allows exploring re-
lationships between clusters and data attributes.

Acknowledgement

This work was supported in part by the grants of the
NSFC (62141217, 62132017), Shenzhen Basic Research
Program (JCYJ20180507182222355), and the CAS grant
(GJHZ1862).

References

[1] C. Bachmaier, U. Brandes, and B. Schlieper. Drawing phy-
logenetic trees. Springer, 2005. 4

[2] Z. Bar-Joseph, E. D. Demaine, D. K. Gifford, N. Srebro,
A. M. Hamel, and T. S. Jaakkola. K-ary clustering with op-
timal leaf ordering for gene expression data. Bioinformatics,
19(9):1070–1078, 2003. 6

[3] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast opti-
mal leaf ordering for hierarchical clustering. Bioinformatics,
17(suppl 1):S22–S29, 2001. 2, 4, 5, 6

[4] I. Borg and P. J. Groenen. Modern multidimensional scaling:
Theory and applications. Springer, 2005. 10

[5] G. Bottu. The phylogenetic handbook: a practical approach
to DNA and protein phylogeny. Cambridge University Press,
2003. 5

[6] M. Brehmer, M. Sedlmair, S. Ingram, and T. Munzner. Visu-
alizing dimensionally-reduced data: Interviews with analysts

and a characterization of task sequences. In IEEE VIS Work-
shop Beyond Time and Errors: Novel Evaluation Methods
for Visualization (BELIV), pages 1–8. ACM, 2014. 11

[7] P. Buneman. A note on the metric properties of trees. Journal
of combinatorial theory, series B, 17(1):48–50, 1974. 5

[8] M. Burch, N. Konevtsova, J. Heinrich, M. Hoeferlin, and
D. Weiskopf. Evaluation of traditional, orthogonal, and
radial tree diagrams by an eye tracking study. TVCG,
17(12):2440–2448, 2011. 2, 4

[9] M. Chae and J. J. Chen. Reordering hierarchical tree based
on bilateral symmetric distance. PloS one, 6(8):e22546,
2011. 2, 4, 5

[10] A. M. Cuadros, F. V. Paulovich, R. Minghim, and G. P.
Telles. Point placement by phylogenetic trees and its ap-
plication to visual analysis of document collections. In Pro-
ceedings of the IEEE Symposium on Visual Analytics Science
and Technology, pages 99–106, 2007. 2, 3

[11] W. H. Day and H. Edelsbrunner. Efficient algorithms for
agglomerative hierarchical clustering methods. Journal of
classification, 1(1):7–24, 1984. 1

[12] M. F. De Oliveira and H. Levkowitz. From visual data ex-
ploration to visual data mining: a survey. IEEE Trans. Vis.
& Comp. Graphics, 9(3):378–394, 2003. 1

[13] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Bot-
stein. Cluster analysis and display of genome-wide expres-
sion patterns. Proc. of the National Academy of Sciences,
95(25):14863–14868, 1998. 2

[14] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In Proc. of the Second Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, KDD’96, pages 226–231, 1996. 2, 9

[15] R. Etemadpour, R. Motta, J. G. de Souza Paiva, R. Minghim,
M. C. F. de Oliveira, and L. Linsen. Perception-based evalu-
ation of projection methods for multidimensional data visu-
alization. IEEE Trans. Vis. & Comp. Graphics, 21(1):81–94,
2015. 2, 4

[16] M. Farach, S. Kannan, and T. Warnow. A robust model
for finding optimal evolutionary trees. Algorithmica, 13(1-
2):155–179, 1995. 5

[17] C. Fraley and A. E. Raftery. Mclust: Software for model-
based cluster analysis. Journal of classification, 16(2):297–
306, 1999. 1

[18] P. Fränti and S. Sieranoja. Clustering datasets, 2015. 9
[19] G. Gruvaeus and H. Wainer. Two additions to hierarchical

cluster analysis. British Journal of Mathematical and Statis-
tical Psychology, 25(2):200–206, 1972. 4

[20] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and
B. Hamann. A topological approach to simplification of
three-dimensional scalar functions. TVCG, 12(4):474–484,
2006. 9

[21] M. Halle and J.-R. Vergnaud. An essay on stress. MIT press,
1990. 11

[22] J. Han, J. Pei, and M. Kamber. Data mining: concepts and
techniques. Elsevier, 2011. 3

[23] P. D. Hebert, A. Cywinska, S. L. Ball, et al. Biological identi-
fications through dna barcodes. Proc. of the Royal Society of

London B: Biological Sciences, 270(1512):313–321, 2003.
10

[24] S. C. Johnson. Hierarchical clustering schemes. Psychome-
trika, 32(3):241–254, 1967. 3

[25] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Technical Report, University of
Toronto, 2009. 11

[26] F. K. Kuiper and L. Fisher. A monte carlo comparison of six
clustering procedures. Biometrics, pages 777–783, 1975. 3

[27] S. Landau, M. Leese, D. Stahl, and B. S. Everitt. Cluster
analysis. John Wiley & Sons, 2011. 5

[28] M. J. McGuffin and J.-M. Robert. Quantifying the space-
efficiency of 2d graphical representations of trees. Informa-
tion Visualization, 9(2):115–140, 2010. 3

[29] G. W. Milligan. An examination of the effect of six types
of error perturbation on fifteen clustering algorithms. Psy-
chometrika, 45(3):325–342, 1980. 3

[30] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and
Y. Zhou. Treejuxtaposer: scalable tree comparison using
focus+ context with guaranteed visibility. ACM Trans. on
Graph., 22(3):453–462, 2003. 2, 4

[31] F. Murtagh and P. Contreras. Algorithms for hierarchical
clustering: an overview. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2(1):86–97, 2012.
3, 11

[32] L. Nakhleh, T. Warnow, D. Ringe, and S. N. Evans. A com-
parison of phylogenetic reconstruction methods on an indo-
european dataset. Transactions of the Philological Society,
103(2):171–192, 2005. 3, 5

[33] J. G. Paiva, L. Florian, H. Pedrini, G. Telles, and
R. Minghim. Improved similarity trees and their applica-
tion to visual data classification. IEEE Trans. Vis. & Comp.
Graphics, 17(12):2459–2468, 2011. 2, 3, 12

[34] J. B. Procter, J. Thompson, I. Letunic, C. Creevey,
F. Jossinet, and G. J. Barton. Visualization of multiple align-
ments, phylogenies and gene family evolution. Nature meth-
ods, 7:S16–S25, 2010. 3

[35] J. Qi, X. Liu, D. Shen, H. Miao, B. Xie, X. Li, P. Zeng,
S. Wang, Y. Shang, X. Gu, et al. A genomic variation map
provides insights into the genetic basis of cucumber domes-
tication and diversity. Nature genetics, 45(12):1510–1515,
2013. 11

[36] P. Rai and S. Singh. A survey of clustering techniques. Inter-
national Journal of Computer Applications, 7(12):1–5, 2010.
5

[37] A. Rambaut, O. G. Pybus, M. I. Nelson, C. Viboud, J. K.
Taubenberger, and E. C. Holmes. The genomic and epi-
demiological dynamics of human influenza a virus. Nature,
453(7195):615, 2008. 10

[38] W. M. Rand. Objective criteria for the evaluation of cluster-
ing methods. Journal of the American Statistical association,
66(336):846–850, 1971. 11

[39] N. Saitou and M. Nei. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Molecular bi-
ology and evolution, 4(4):406–425, 1987. 3

[40] R. Sakai, R. Winand, T. Verbeiren, A. V. Moere, and J. Aerts.
dendsort: modular leaf ordering methods for dendrogram
representations in r. F1000Research, 3, 2014. 2, 4, 5

[41] S. Saraçli, N. Doğan, and İ. Doğan. Comparison of hier-
archical cluster analysis methods by cophenetic correlation.
Journal of Inequalities and Applications, 2013(1):203, 2013.
3

[42] P. Sebastian, H. Schaefer, I. R. Telford, and S. S. Renner. Cu-
cumber (cucumis sativus) and melon (c. melo) have numer-
ous wild relatives in asia and australia, and the sister species
of melon is from australia. Proc. of the National Academy of
Sciences, 107(32):14269–14273, 2010. 10

[43] J. Seo and B. Shneiderman. Interactively exploring hierarchi-
cal clustering results. IEEE Computer, 35(7):80–86, 2002. 1,
3

[44] J. Seo and B. Shneiderman. A rank-by-feature framework
for interactive exploration of multidimensional data. Infor-
mation visualization, 4(2):96–113, 2005. 12

[45] B. Shneiderman. Tree visualization with tree-maps: 2-d
space-filling approach. TOG, 11(1):92–99, 1992. 3

[46] M. Simonsen, T. Mailund, and C. N. Pedersen. Rapid
neighbour-joining. In WABI, volume 8, pages 113–122.
Springer, 2008. 12

[47] R. R. Sokal and F. J. Rohlf. The comparison of dendrograms
by objective methods. Taxon, 11(2):33–40, 1962. 1, 3

[48] T. Stefan Van Dongen and B. Winnepenninckx. Multiple up-
gma and neighbor-joining trees and the performance of some
computer packages. Mol. Biol. Evol, 13(2):309–313, 1996.
3, 5

[49] M. Sugiyama, M. Yamada, M. Kimura, and H. Hachiya. On
information-maximization clustering: Tuning parameter se-
lection and analytic solution. In Proc. of the 28th Interna-
tional Conference on Machine Learning, pages 65–72, 2011.
12

[50] T. Weinkauf and D. Günther. Separatrix persistence: Extrac-
tion of salient edges on surfaces using topological methods.
Computer Graphics Forum, 28(5):1519–1528, 2009. 9

[51] Y. Zhao and G. Karypis. Evaluation of hierarchical clustering
algorithms for document datasets. In Proc. of the eleventh in-
ternational conference on Information and knowledge man-
agement, pages 515–524. ACM, 2002. 1, 3

