
Shape-aware Stroke Segmentation for Calligraphic Characters

Zibo Zhang
Shenzhen University

Shenzhen, China

Xueting Liu
Caritas Institute of Higher Education

Hong Kong SAR, China
tliu@cihe.edu.hk

Chengze Li
Caritas Institute of Higher Education

Hong Kong SAR, China

Huisi Wu
Shenzhen University

Shenzhen, China
hswu@szu.edu.cn

Zhenkun Wen
Shenzhen University

Shenzhen, China

Abstract

A stroke is the minimal unit of a character. The
stroke extraction and classification of calligraphy char-
acters are helpful to the digital use of characters. How-
ever, the existing instance segmentation methods have
the problems of excessive segmentation and dependence
on additional character encoding information. In this
paper, we propose a novel supervised stroke segmen-
tation method based on the information of stroke cat-
egories, which can apply stably to a variety of fonts. Ex-
tensive visual and quantitative experiments have been
conducted to validate the effectiveness of our method.
The results and statistical data show that the proposed
method is superior to existing methods in stroke segmen-
tation.

1. Introduction

Calligraphy is an artistic expression of the beauty of
words. Calligraphy is widely used in the world, includ-
ing Chinese, Japanese, and English. The variety of fonts
is a good measure of the vitality and robustness of a lan-
guage. As one of the languages with the largest number of
users globally, Chinese have a rich font ecological environ-
ment. It is a common font innovation method to change the
style of existing fonts very slightly. For example, making
the edges and corners of a certain category of strokes round
or sharp will make the new fonts present different artistic
effects, as shown in Fig. 1. If the strokes of Chinese charac-
ters can be extracted and classified, it will simplify the cre-
ation method based on existing fonts. Currently, the analy-
sis of the structure of Chinese characters (stroke extraction
and classification) is usually confined to the most traditional
and standard fonts, and it is inefficient and complicated to
try to annotate all fonts manually. For many fonts of various

Figure 1. Fonts of the same calligraphic style (“Kaiti”) may still
have minor stylistic differences as composed by different artists.

Figure 2. Comparisons on different stroke segmentation meth-
ods. (b)&(c) The existing learning-based instance segmentation
methods [7, 6] frequently obtain over-segmented results. (d) Our
method significantly outperforms existing methods in stroke seg-
mentation.

styles, the automatic analysis of Chinese characters’ struc-
ture is of great significance, which is beneficial to artistic
creation, design and evaluation.

The traditional stroke segmentation methods segment the
strokes by analyzing the continuity of the centerline or the
boundary [9, 13, 15]. Recently, deep learning methods
have been proposed to extract individual strokes based on
instance segmentation networks [6, 14]. However, these
methods usually implicitly identify pixels near and with
similar features to be a stroke, which is quite error-prone
and frequently results in over-segmentation (Fig. 2(b)&(c)).
Besides, the existing methods usually only work on low-
resolution inputs (64× 64 or 128× 128) or need additional
information of character encode, which is difficult to apply
to the wild.

There are two main challenges to this task. Firstly, The
stroke segmentation algorithm should work on any size im-

1



age. Secondly, stroke segmentation should work with mul-
tiple fonts. With these two goals, a general instance seg-
mentation method without prior knowledge generally can-
not work well. Actually, we can utilize prior facts to help
the segmentation to obtain better segmentation. In partic-
ular, calligraphic artists generally classify strokes into 32
stroke groups based on shapes. This stroke group informa-
tion can definitely help for computers to better understand
the character structure and thus assist the segmentation of
individual strokes.

We first decompose the input image into stroke lay-
ers using a deep neural network. Each stroke layer con-
tains a stroke belonging to a specific stroke category in-
stead of directly decomposing input into individual strokes.
Because different stroke categories have different appear-
ance features, extracting pixels from stroke classes is eas-
ier and more reliable than extracting pixels from individual
strokes. We use the U-net structure as the backbone of a
stroke layer decomposition network to process different in-
puts to achieve stroke segmentation of calligraphy charac-
ters of any image size. Despite the effectiveness of stroke
layer decomposition, each stroke layer must still be further
decomposed into individual strokes. Therefore, we further
propose a stroke extraction network to segment each stroke
layer’s individual strokes. Finally, to show the results as
vector images, we use Potrace [12] to vectorize the seg-
mentation results. Additionally, since the existing character
dataset usually does not contain stroke group information,
we proposed a novel iterative method for labeling characters
with stroke groups in order to train our networks. Due to the
limit of the labelled dataset, our stroke layer decomposition
and stroke extraction networks are now trained on a specific
Chinese calligraphic style. But our method could be easily
adapted to other calligraphic styles with new training data.

To evaluate our method, we apply our method on test
dataset and other different calligraphic styles. Results of
qualitative and quantitative evaluation show that our method
significantly outperforms the existing methods in stroke
segmentation. Our main contributions can be summarized
as follows:

1. We propose a new stroke segmentation method to dis-
tinguish different stroke groups based on stroke shape
features.

2. We propose a novel method to segment the same cate-
gory of stroke group according to the position relation-
ship.

3. Our method enables the labelling of stroke groups
for Calligraphic characters automatically, which brings
the potential for other calligraphic applications.

2. Related Works

The main goal of this work is to classify and segment the
strokes in Chinese characters. This task requires the algo-
rithm to be able to perform structural analysis of Chinese
characters. Since it is similar to this task, the related work
on line drawing structure analysis can be provided as a ref-
erence. Human characters and drawings are usually com-
posed of strokes, so there are many existing works that ana-
lyze the structure of characters and drawings through stroke
segmentation.

2.1. Calligraphic Understanding and Stroke Representa-
tion

Template-based Stroke Decomposition The traditional
stroke decomposition scheme matches characters or strokes
to a predefined template database. The template may store
information about the strokes, skeletons, and stroke point
interconnection. When a specific character is queried, one
can quickly obtain the decomposition result from the closest
template characters [1]. Template matching can also enable
downstream tasks such as font interpolation [10]. The limi-
tation of these methods is also obvious: they are limited to
processing only characters defined in the database. They are
more likely to fail whenever the characters do not belong to
the database, or whenever the query raster characters do not
belong to a predefined calligraphic style.

Morphology-based Stroke Decomposition Multiple
studies have promoted the morphological assumptions of
strokes such as continuity, curvature, and interconnec-
tions to identify individual strokes and perform stroke
decomposition. These methods can handle arbitrary
characters without any pre-computation. In these works,
[9] proposed a procedural solution. It first obtains the
skeleton of a character using a thinning algorithm and
refines the wrongly estimated junctions. Finally, the refined
skeleton is over-segmented and reconnected according
to a continuity-based criterion to reconstruct complete
strokes. In parallel, [13] proposed a contour-based method
by checking the convexity of the stroke groups. Assuming
that the stroke groups are concave, the method subdivides
stroke groups at the concave corner points and reconstructs
each single stroke. In addition, [15] designed a hybrid
stroke segmentation method by first obtaining the character
structures through thinning and then registering the stroke
segments with a pre-computed database. This database
helps to improve the overall quality of the stroke cross-
area (i.e., overlapping) estimation and leads to a better
stroke segmentation. Although these methods manage to
decompose arbitrary character stokes, they are limited by
their procedural process nature and cannot well handle
the characters with complex structures or with a large



Figure 3. Overview. Our method feeds an input calligraphic character (a) into a stroke layer decomposition network to decompose the
character into 32 stroke layers (b) where each stroke layer only contains the strokes belonging to the same stroke category. For each stroke
layer, we further propose a stroke extraction model consisting of an iterative stroke extraction network to decompose each stroke layer into
individual strokes (c). Finally, we use PoTrace [12] to vectorize individual strokes (d).

number of strokes. Moreover, many recent works on
calligraphy stroke analysis has been proposed with the
help of deep learning models. These methods benefit
from the powerful capacity of learning models and are
more robust and flexible due to the data-driven manner.
[6] proposed a fast instance segmentation of strokes by
adapting a convolutional neural network on calligraphy.
[14] proposed another calligraphy parser by combining a
semantic segmentation network together with a character
encoding module. These methods show the potential of
applying deep learning methods to the calligraphy parsing
task. However, their methods are built upon standard object
detection frameworks, which are not entirely applicable for
non-realistic calligraphy images.

2.2. Line Drawing Segmentation and Vectorization

Besides those calligraphy-oriented methods, there are
also methods dedicated to the segmentation of line draw-
ings. Given that the minimal unit of representation for line
drawings is also (ink) strokes like characters, we may find
these methods helpful for our task. Kim et al. [7] proposed
a stroke-by-stroke semantic segmentation method for line
drawings and calligraphy by estimating the similarities in
the overlapped stroke areas. However, it still cannot create
smooth and complete segmentation around complex junc-
tions. We will illustrate this problem in the comparison of
result. Meanwhile, Guo et al. [3] aimed to achieve line
drawing vectorization by detecting the junction points of
complex drawings and reconstructing the stroke ordering
based on a neural estimation. More recently, Egiazarian et
al. [2] proposed an end-to-end solution that directly converts
technical drawings into vector-based stroke representations.
These two vectorization methods achieve reasonable stroke
segmentation on line drawings. However, they may have is-
sues in processing calligraphy images as the line widths of
the strokes are much larger.

Figure 4. There are 32 commonly used calligraphic stroke cate-
gories. The name of each stroke category can be found in the
supplementary materials.

3. Overview

An overview of our method is shown in Fig. 3. Given an
input calligraphic character image (Fig. 3(a)), we first gen-
erate a number of stroke layers for it via the stroke layer de-
composition network, each containing only strokes belong-
ing to a specific stroke category (Fig. 3(b)). In this paper, we
divide the calligraphic stroke into 32 categories. The map-
ping between the stroke layer index and the stroke category
is shown in Fig. 4. We use a U-net-like [11] network archi-
tecture as our stroke layer decomposition network, which
allows input with arbitrary resolution and outputs stroke
layers with the same resolution. This network requires
paired inputs and ground-truth stroke layers. However, the
existing calligraphy dataset Make Me a Hanzi [8] only con-
tains uncategorized strokes as the ground-truth. Therefore,
in order to make the stroke layer decomposition network
with a large amount of trainable data, we propose an itera-
tive stroke classification network to label each stroke with
one of th32 stroke categories.

Then we decompose each stroke layer into individual



Figure 5. Occasionally, strokes in the same stroke layer, i.e., be-
longing to the same stroke category, will overlap.

strokes (Fig. 3(c)). In the vast majority of cases, strokes be-
longing to the same stroke category (i.e., stroke layer) will
not overlap in one calligraphic character. So, we use a sim-
ple flood-filling method to extract such individual strokes.
Occasionally, strokes in the same stroke category will over-
lap, as shown by the black strokes in Fig. 5. To handle these
overlapped strokes, we further propose a stroke separation
network to separate each stroke layer image into individual
strokes accordingly.

Finally, we use PoTrace [12] to vectorize the segmented
strokes.

4. Approach

Our system consists of three parts, stroke layer decompo-
sition to decompose the input calligraphic character image
into 32 stroke layers, stroke extraction to separate individual
strokes from each stroke layer, and vectorization to vector-
ize each individual stroke.

4.1. Stroke Layer Decomposition

Extracting strokes with large differences in appearance
is a challenging task, especially when predicted with con-
volutional neural networks [7, 6]. As shown in Fig. 4, we
classify the calligraphic strokes into 32 stroke categories,
which is one of the general ways to classify commonly used
characters in calligraphy. We observe that the strokes from
different stroke categories have distinctly different appear-
ances globally or locally, while the strokes from the same
stroke category are mostly similar with only scale differ-
ences and minor deformation. Inspired by this, we propose
to first decompose the input calligraphic characters into dif-
ferent stroke layers, each of which only contains the strokes
from a specific stroke category. Since each stroke layer
has its own unique stroke appearance features, identifying a
stroke layer is much more robust and easier than identifying
individual strokes. We propose a deep learning approach to
solve this stroke layer decomposition problem.

Network Architecture The architecture of our stroke
layer decomposition network is built on the U-net [11] as
in Fig. 6. The network is fully convolutional with six down-
scaling levels and six upscaling levels, so the input of the

Figure 6. Network structure of the stroke layer decomposition net-
work where the output contains 32 channels.

network can be of any resolution. The output of this net-
work has the same resolution as the input, but with 32 chan-
nels, each referring to a stroke category. For example, the
input characters in Fig. 6 have five strokes from the first
stroke category, so the first channel of their output should
contain only these five strokes. The advantage of the 32
channels is that the overlap between the two strokes can be
easily handled. The overlap of strokes is the most challeng-
ing part of the task because it falls into both stroke cate-
gories. We choose U-net over other networks for this stroke
layer decomposition task because its receptive field is rel-
atively large, which is important for identifying stroke fea-
tures, especially when the stroke is large.

Training Dataset Preparation Once the idea of the
stroke layer decomposition network is determined, the next
problem to be solved is the preparation of the dataset
since there exists no publicly available training dataset with
stroke category labels. The existing calligraphy dataset
Make Me a Hanzi [8] contains the stroke segmentation la-
belling for 9, 574 calligraphic characters. These Chinese
characters belong to the same font and contain both simpli-
fied and traditional characters. By labelling the segmented
strokes in this dataset with its stroke category information,
we can build our dataset for the stroke layer decomposition
network. The original dataset was divided into the training
set and test set in a ratio of 9:1. Our synthesized dataset was
generated following the same division. There are altogether
112, 617 strokes for the characters in this dataset, so man-
ually labelling these strokes is extremely tedious and time-
consuming. For fast and accurate labelling, we propose to
classify the stroke category of each stroke via an iterative
stroke category classification network.

We use ResNet [5] as the backbone of our classifica-
tion network. To start training, we first manually select 8
strokes for each stroke category. If some stroke categories
were very rare (less than 8 strokes in all characters), we
select all strokes in such stroke categories. Finally, we ob-
tain 300 strokes and their stroke category label as our initial
training dataset to train our stroke category classification
network. After the training, we move all strokes with high
confidence predictions (maximal stroke category prediction
> 0.9) and their predicted stroke category into the train-
ing dataset and then trained the stroke classification network



Figure 7. The number of different stroke categories.

Figure 8. We generate fake calligraphic characters by randomly
removing frequently appeared strokes from characters that contain
less frequently appeared strokes. The first line is the original char-
acter, and the red strokes are the less frequently appear strokes.
The second line is the fake character.

again based on the new training data. As this process con-
tinues, the training set will get larger and larger, and the
number of cases without high confidence strokes will get
smaller and smaller. The iteration is terminated when no
high-confidence strokes are added at a certain iteration. Af-
ter the completion of the iteration, there are very few strokes
(< 0.01%) that do not obtain enough confidence level. For
these very few cases, we will perform manual classification.
The number of strokes in each predicted stroke category can
be found in Fig. 7.

In addition, we can see that the frequencies of the dif-
ferent stroke categories are clearly unbalanced. Based on
statistics in Fig. 7, the stroke category with the largest fre-
quency is the first stroke category, which contains 31, 591
strokes in all calligraphic characters in our training dataset.
In contrast, the stroke category with the lowest frequency
is the 18th stroke category, which contains only 1 stroke in
all characters. This makes the network not quite robust to
segmentation of these less frequently appeared stroke cat-
egories. Therefore, we first propose to augment our train-

Figure 9. Examples of stroke layer decomposition which decom-
pose an input calligraphic character into 32 stroke layers.

ing data by introducing fake characters that contain less fre-
quently appeared stroke. To compose characters that follow
general character structure, we randomly select some char-
acters that contain less frequently appeared strokes and ran-
domly remove several frequently appeared strokes. Fig. 8
shows several fake and orignal characters containing the
31st stroke. By introducing fake characters to our train-
ing dataset, the robustness of the segmentation result can be
significantly improved, especially for stroke layers that do
not appear frequently.

Implementation Details We conducted all of our exper-
iments using PyTorch on an NVidia GeForce RTX 2080Ti
with 11GB of memory. Our model is optimized using RM-
Sprop with a weight decay of 1e-8, momentum of 0.9, and
batch size of 16. We train our model with the image dimen-



Figure 10. Network structure of the stroke layer decomposition
network where the input contains one channel and the output con-
tains two channels.

sion of 5122 for 40k iterations, which lasts about 9 hours.
The initial learning rate is set to 0.0001, and the learning
rate is reduced with the plateau strategy. We adopt binary
cross-entropy as the loss function. Two examples of our
stroke layer decomposition result is shown in Fig. 9.

4.2. Stroke Separation and Vectorization

While stroke layers are simpler to be identified than sin-
gle strokes, a stroke layer may contain multiple strokes of
the same stroke category. As a result, we need further lo-
calize a single stroke from each stroke layer. We use the
flood-fill method to extract all connected black components
from the stroke layer because most strokes in a stroke layer
will not overlap. Each connected component is considered
a potential stroke. Output noise is identified as potential
strokes with areas smaller than 0.0001 times the total area
of the image and will be removed directly. Then, for each
potential stroke image, we feed it into the stroke separation
network, which outputs two stroke images, each with one
separated stroke. If the potential stroke has only one stroke,
one of the output stroke images should be empty. When
more than two strokes are overlapping, the stroke separa-
tion network will output one image containing one stroke
and another image containing all other strokes based on the
position relationship. The stroke separation network will
then be fed the output two stroke images until all stroke im-
ages contain only one stroke.

As shown in Fig. 10, we adopt a network architecture for
our stroke separation network that is similar to the previ-
ously presented stroke layer decomposition network. The
difference is that the input has one channel, and the out-
put has two channels. We use the same training strategy as
our previous network, as presented in the previous subsec-
tion. According to our data, 1.68 percent of strokes over-
lap with strokes of the same categories. Only 3 of the 32
categories have multiple cases of overlapping. In the over-
lapping case, 99.07 percent of the overlapped strokes are
composed of two strokes, while 0.93 percent of them con-
tains three strokes. As a result, we only prepare input im-
ages that contain two or three overlapped strokes from the

Table 1. Compared with different segmentation methods (64 × 64).
[Kim et al. 2018] [Inoue and Yamasaki 2019] Ours

Stroke IOU 0.958 0.926 0.975
Layer IOU - - 0.992

same stroke category in our prepared training data, which
includes 825 images of two strokes and 5 images of three
strokes. We also prepare 940 images of a single stroke to en-
sure that our network outputs the accurate result for single-
stroke images. Fig. 10 shows some examples of outputs
from our stroke separation network.

Finally, we vectorize the segmentation output using Po-
trace [12] and use the same parameters throughout the vec-
torization process.

5. Experimental Results

5.1. Qualitative Analysis

We first visually compare our stroke segmentation results
to those of two state-of-the-art methods, Kim’s method [7]
and Inoue’s method [6]. Some examples are shown in
Fig. 13, where we can see that segmentation of the over-
lapping regions among different strokes is critical. Even af-
ter dividing the stroke segmentation into path segmentation
and stroke intersection segmentation, Kim’s method fails
to achieve smooth enough line segmentation for the diffi-
cult characters. In addition, without excellent path segmen-
tation, its stroke intersection segmentation cannot achieve
high accuracy, as shown in Fig. 13(b) by the obvious discon-
nection of the brushstrokes and the abrupt intersection seg-
mentation. Inoue’s method further divides the strokes into
foreground and background and uses the Mask-RCNN [4]to
segment different strokes to reduce the problem of stroke
disconnection. However, without an efficient mechanism to
control and refine the intersections among different brush-
strokes, Inoue’s method cannot precisely extract the over-
lapping regions (Fig. 13(c)). Unlike previous methods, our
method can preserve the integrity of each stroke, even when
the strokes from different categories have clearly different
appearances globally or locally, resulting in better stroke
segmentation results (Fig. 13(d)).

On the other hand, we also applied our method to seg-
ment more challenging characters with new fonts to demon-
strate the effectiveness of our method. Several typical se-
lected fonts are shown in Fig. 11. The fonts in the left four
columns differ only slightly from our dataset, and the font
styles in the right four columns differ even more. Since seg-
mentation by stroke category is more in line with the writ-
ing rules of Chinese characters, our method obviously can
achieve accurate stroke segmentation results, which also
proves that segmentation by stroke categories is a robust
and feasible way.



Figure 11. Compare different fonts for different segmentation methods. The resolution of the input is 512 × 512 for all examples.

Table 2. Segmenting overlap strokes in different image sizes.
64 × 64 128 × 128 512 × 512

Layer IOU 0.9732 0.9836 0.9706
Stroke IOU 0.9818 0.9894 0.9834

5.2. Quantitative Analysis

To quantitatively compare our stroke segmentation
method with other state-of-the-art methods, we further per-
formed a statistics comparison based on two metrics, in-
cluding “Stroke IOU” and “Layer IOU”. For each seg-
mented pixel path, we find the closest path in the ground
truth (i.e., the intersection area between them is the largest
among all paths) and compute the ratio of the number of
pixels in the intersection divided by the number in the
union. Therefore, we can formulate the “Stroke IOU” as
following,

IOUstroke =
1

N

N∑
i

max

 N∑
j

Pi

⋂
Gj

Pi

⋃
Gj

 (1)

where N represents the number of categories of strokes. Pi

is the model’s prediction of category i strokes, and Gj is the
ground truth of the j category strokes.

Similarly, we can employ the second comparative metric,
“Layer IOU” to evaluate the performance of our method on
stroke classification as following,

IOUlayer =
1

N

N∑
i

|Pi

⋂
Gi|

|Pi

⋃
Gi|

(2)

Figure 12. Before and after comparison of fake characters is intro-
duced. (a) Input. (b) Output with no fake characters introduced.
(c) Output with fake characters introduced. With the introduction
of false characters, overlaps are more accurate, especially for less
frequent stroke categories.

where N represents the number of categories of strokes. Pi

is the model’s prediction of category i strokes, and Gi is
the ground truth of the i categories strokes. Note that the
other methods we compared only identify and segment in-
dividual strokes, so “Layer IOU” is not applicable for these
methods. The statistics results are as shown in Table 1. We
can also easily observe that our method generally outper-
forms all competitors in “Stroke IOU” metrics. In addition,
we also measure the impact of different resolutions on our
stroke segmentation. As shown in Table 2, we can still ob-
tain satisfied “Stroke IOU” and “Layer IOU” values for seg-
menting overlap strokes in three different image sizes.



Table 3. Different image sizes with vs without fake characters.

64 × 64 64 × 64 + fake 128 × 128 128 × 128 + fake 512 × 512 512 × 512 + fake

Layer IOU 0.9900 0.9920 0.9912 0.9934 0.9812 0.9861
Stroke IOU 0.9680 0.9750 0.9756 0.9814 0.9645 0.9756

5.3. Importance of Fake Data

We created 4,382 fake characters and tested them at dif-
ferent image sizes to measure their impact on our perfor-
mance. As shown in Table 3, fake characters improve the
performance of different metrics and image sizes. In terms
of metrics, for each character, the weight of an infrequent
stroke in layer IOU is 1/32, while the weight of stroke in
stroke IOU is 1/(Number of Strokes). According to our
statistics, the average number of strokes in each character
is 11.8, which is significantly smaller than the number of
stroke layers (i.e. 32), so the increment of stroke IOU is
more significant than the increment of layer IOU. In terms
of image sizes, the size of 64 × 64 and 128 × 128 have sim-
ilar increments, while the size of 512 × 512 has a larger
increment due to the increased difficulty in segmentation.
A visual comparison is presented in Fig. 12. The segmenta-
tion result was evidently improved, especially in the stroke
overlapping area. In summary, it is evident from our sta-
tistical results that fake characters can significantly improve
the performance of the stroke layer decomposition network,
indicating the importance of fake data for training a better
segmentation network.

6. Conclusion

We proposed a novel supervised deep learning approach
based on stroke category information which first decom-
poses the input character into stroke layers by shape fea-
tures and then decomposes each stroke layer into individual
strokes. While our current stroke segmentation network is
trained on a single calligraphic style due to the limitation of
the publicly available training dataset, our method should
be able to be applied to more calligraphic styles provided
by the dataset. We will continue our research in this direc-
tion in the future.

References

[1] X. Chen, Z. Lian, Y. Tang, and J. Xiao. An automatic stroke
extraction method using manifold learning. In 38th An-
nual Conference of the European Association for Computer
Graphics, Eurographics 2017 - Short Papers, Lyon, France,
April 24-28, 2017, pages 65–68. Eurographics Association,
2017. 2

[2] V. Egiazarian, O. Voynov, A. Artemov, D. Volkhonskiy,
A. Safin, M. Taktasheva, D. Zorin, and E. Burnaev.
Deep vectorization of technical drawings. In A. Vedaldi,
H. Bischof, T. Brox, and J. Frahm, editors, Computer Vi-
sion - ECCV 2020 - 16th European Conference, Glasgow,

UK, August 23-28, 2020, Proceedings, Part XIII, volume
12358 of Lecture Notes in Computer Science, pages 582–
598. Springer, 2020. 3

[3] Y. Guo, Z. Zhang, C. Han, W. Hu, C. Li, and T. Wong. Deep
line drawing vectorization via line subdivision and topology
reconstruction. Comput. Graph. Forum, 38(7):81–90, 2019.
3

[4] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on com-
puter vision, pages 2961–2969, 2017. 6

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016. 4

[6] N. Inoue and T. Yamasaki. Fast instance segmentation for
line drawing vectorization. In Fifth IEEE International Con-
ference on Multimedia Big Data, BigMM 2019, Singapore,
September 11-13, 2019, pages 262–265. IEEE, 2019. 1, 3, 4,
6, 9

[7] B. Kim, O. Wang, A. C. Öztireli, and M. H. Gross. Seman-
tic segmentation for line drawing vectorization using neural
networks. Comput. Graph. Forum, 37(2):329–338, 2018. 1,
3, 4, 6, 9

[8] S. Kishore. Make me a hanzi. 3, 4
[9] H. Leung and H. Kang. Stroke extraction for chinese callig-

raphy images. In Asia Pacific Workshop on Visual Informa-
tion Processing (VIP2005), pages 223–229, 2005. 1, 2

[10] Z. Lian and J. Xiao. Automatic shape morphing for chinese
characters. In Z. Zhang and Z. Li, editors, SIGGRAPH Asia
2012 Technical Briefs, Singapore, November 28 - December
1, 2012, pages 2:1–2:4. ACM, 2012. 2

[11] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer,
2015. 3, 4

[12] P. Selinger. Potrace: a polygon-based tracing algorithm. Po-
trace (online), http://potrace. sourceforge. net/potrace. pdf
(2009-07-01), 2, 2003. 2, 3, 4, 6, 9

[13] Y. Sun, H. Qian, and Y. Xu. A geometric approach to stroke
extraction for the chinese calligraphy robot. In 2014 IEEE
International Conference on Robotics and Automation, ICRA
2014, Hong Kong, China, May 31 - June 7, 2014, pages
3207–3212. IEEE, 2014. 1, 2

[14] W. Wang, Z. Lian, Y. Tang, and J. Xiao. Deepstroke: Un-
derstanding glyph structure with semantic segmentation and
tabu search. In MultiMedia Modeling - 26th International
Conference, MMM 2020, Daejeon, South Korea, January 5-
8, 2020, Proceedings, Part I, volume 11961 of Lecture Notes
in Computer Science, pages 353–364. Springer, 2020. 1, 3



Figure 13. Comparison with different stroke segmentation methods. The resolution of the input is 512 × 512 for all examples. (b)&(c) [7]
and [6] are prone to errors at the intersection of strokes. (d) Our method can obtain much more correct and precise segmentation results,
especially at junctions. We use Potrace [12] to vectorize the segmentation results. Similar to the other methods, the vectorization process
slightly smooths the contour of the strokes and leads to minor shape change between raster and vector characters, as shown in the green
boxes in the last row.



[15] Z. Xu, Y. Liang, Q. Zhang, L. Dong, and E. Izquierdo. De-
composition and matching: Towards efficient automatic chi-
nese character stroke extraction. In 2016 Visual Communi-
cations and Image Processing, VCIP 2016, Chengdu, China,
November 27-30, 2016, pages 1–4. IEEE, 2016. 1, 2


