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Abstract

Human-computer interaction (HCI) is significantly
depended on hand behavior detection, e.g., hand action
recognition, gesture recognition. However, fingertip de-
tection is more practical in many HCI cases, e.g., finger
pointing, clicking. Although the great progress in gen-
eral object detection, fine-grained target detection, e.g.,
fingertip detection is still a challenging problem for ex-
isting methods because of the limited appearance fea-
tures of the fingertip. In this paper, we present a sim-
ple yet effective approach for fingertip detection by de-
signing a multi-task learning based framework. More
specifically, we introduce a point regression loss into the
object detection framework to jointly accomplish the
hand region detection and fingertip location detection
tasks. We then propose a new point regression loss re-
ferred to as root loss to pay more attention to small-
range errors for more precise fingertip localization. Our
framework further achieves number-variant fingertip
detection without the default number of fingertips. We
use the benchmark EgoGesture for performance evalu-
ation. Experimental results show the superiority of the
proposed method and the ablation studies verify the ef-
fectiveness of each component. Our method achieves the
state-of-the-art fingertip detection accuracy while main-
taining the real-time algorithm speed.

1. Introduction

With the advent of artificial intelligence era and the
emergence of smart wearable camera, such as Google
Glass [47, 7, 14, 13], human-computer interaction (HCI)
has become more and more prevalent. As a bridge for HCI,
fingertip detection has gradually become a new topic in
computer vision research. Given an image containing an ar-
bitrary gesture, fingertip detection is to locate the positions
of all the visible fingertips in the entire image. Compared to
hand action and gesture recognition, fingertip detection is
more practical in many HCI cases. It is common for a per-
son to use his/her fingertips to interact with the computer
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in both real-world and virtual environments. The localiza-
tion of fingertip can record the desired position at a specific
moment, e.g., when the finger is pointing or clicking. The
trajectories of the fingertip can also record the passing curve
for a while, which can be a specific shape, even a charac-
ter representing an interactive instruction. In this paper, we
focus on the fingertip detection from a single RGB image.

Fingertip detection can be regarded as a specific ob-
ject detection task. However, it is challenging to detect
the fingertip using a classical object detection method, e.g.,
SSD [25], Yolo [33] based model, because the fingertip is
so small with very limited features. Recently, many finger-
tip detection methods are proposed by using hand-crafted
features [20] [32], or deep features [19] [18] [42]. As
shown in the top of Figure 1, all the previous works treat
the fingertip detection as two separate tasks – the hand de-
tection and fingertip detection. They first search the hand
region in the entire image and detect the fingertip in the
cropped hand region. Besides, in the fingertip detection
process, previous methods can only handle the specific sce-
nario, e.g., 1) there is only one visible fingertip in the im-
age [20] [32] [19] [18]; 2) the number of fingertips is fixed
and given in advance [42], and the test images containing
the hands with different numbers of fingertips need differ-
ent pre-defined models.

In this paper, we treat the fingertip detection as a multi-
task learning process. We simultaneously handle two tasks,
i.e., hand detection and fingertip detection. As shown in
Figure 1, the input images contain the hands with a differ-
ent number of fingertips. We attempt to obtain the hand
region and the fingertip position together due to the two
tasks always go hand-in-hand and have inter-related fea-
tures. Specifically, we first extract the features of the in-
put images using a pre-trained Convolutional Neural Net-
work (CNN). We introduce the multi-task learning concept,
which shares features between different related tasks. The
extracted features are fed into three branches, i.e., the clas-
sification branch, box regression branch, and point regres-
sion branch. Among them, the first branch is used to esti-
mate the confidence of a candidate region in containing the
hand and fingertips. The box regression branch is to detect
the hand region, which is like the classical object detection
task. The point regression branch is used for fingertip local-
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Figure 1: The framework of previous two-stage fingertip detection method (top) and the proposed multi-task learning based fingertip
detection method (bottom).

ization. We propose a novel root loss function, as shown in
Figure 1, which is more sensitive to small errors and facili-
tates more precise fingertip localization results. In fingertip
detection, we arrange the fingertips in order and divide them
into real points (visible fingertips) and null points (invisible
fingertips). Then we propose a simple yet effective multi-
point regression strategy to uniformly handle the samples
with number-variant fingertips. To sum up, given a set of
images containing the hands (with different number of fin-
gertips) and a messy background, the proposed method can
jointly obtain the hand region and fingertip position with
high precision.

Our major contributions are three-fold.

• We propose to use a multi-task learning based frame-
work to simultaneously get the hand and fingertip de-
tection results instead of separately obtaining them us-
ing the cascaded network in prior works.

• We develop a new point regression loss for more pre-
cise fingertip localization and the multiple fingertip de-
tection strategy to detect the number-variant fingertips.

• We show the proposed end-to-end framework outper-
forms previous fingertip detection and state-of-the-art
object detection methods while maintaining a high
running speed of over 60 fps.

The rest of this paper is organized as below. The re-
lated works are classified and summarized in Section 2. The

proposed method is elaborated in Section 3. The perfor-
mance of the proposed method is extensively evaluated in
Section 4. Finally, a conclusion is discussed in Section 5.

2. Related Work

Object Detection. Fingertip detection can be regarded
as a kind of object detection. Almost all of state-of-the-art
object detection methods are based on deep learning, which
can be divided into two major categories: one-stage detec-
tor and two-stage detector. Two-stage detectors first extract
candidate regions from the images via a proposal genera-
tor, e.g., selective search [41]. Then they classify and pre-
dict the object bounding box from each extracted candidate
region. These kind of methods, e.g., R-CNN [10], fast R-
CNN [9], faster R-CNN[34], and SPPNet [31], are chal-
lenging to meet very high speed due to the need for ex-
tracting candidate regions before detection. For one-stage
detectors, they do not need to generate region proposals
and directly generate class probability and position coor-
dinates of different objects through a single shot detection,
such as [23, 33, 28, 25, 21]. In Yolo [33], it uses a fully
connected layer after convolution layers to get the detec-
tion results directly. SSD [25] gets the final detection re-
sults with default boxes at different scales and different
aspect ratios. Although existing methods have a signifi-
cant increase in general object detection, they still perform
poorly on small objects, e.g., fingertip. Fingertip detection
is also similar to hand keypoints detection. However, most



previous approaches on hand keypoints detection rely on
depth data [2, 36, 48, 40, 29, 30]. Only recently, Simon et
al. [38] used multiview bootstrapping to create a sizeable
real-world dataset of hands annotated with 2D keypoint po-
sitions. Another work [50] estimates 3D hand gestures and
gets 3D hand key points from regular RGB images. Above
hand keypoint detection methods focus on the relative po-
sitions of hand joints and are used to estimation 3D hand
pose/gesture, which is also distinguishing of the fingertip
detection task.

Fingertip Detection. Early methods of fingertip detec-
tion leverage the relevant properties of the skin, like color
information [20]. In this work, the fingertip detection is per-
formed by separating the hand region using the skin color.
Raheja et al. [32] generated a binary silhouette of the hand
region using a skin filter based on HSV color space. As
for these methods, the most serious problem is the heavy
dependence on skin color information, which makes these
kind of methods unuseful in complex environments. There
are also several methods that make use of some other in-
formation, e.g., depth information and skeleton informa-
tion [22] [11]. More recently, CNN based fingertip detec-
tion has been studied. In [19], a cascaded CNN framework
is proposed by combining a Faster R-CNN based hand de-
tector and a multi-point fingertip detector. The work in [26]
replaces the Faster R-CNN based hand detection in [19]
with an attention-based hand detector and improves the ac-
curacy of fingertip detection. Huang et al. [18] introduced a
HSV space-based color feature for fingertip detection. Pre-
vious fingertip detection methods are used for the gesture
with only one visible fingertip until YOLSE [42] uses the
finger map to achieve multiple fingertip detection. How-
ever, above existing fingertip detection methods need the
hand bounding box as input, which can be obtained by the
manual annotation or an extra hand detector [8, 37].

Multi-Task Learning. Multi-Task Learning (MTL) has
recently become a popular topic in computer vision. The
basic idea of MTL has been proposed long ago by Caru-
ana in [3]. Since then, MTL has gradually been intro-
duced into various fields [4, 6, 17]. The rationale of
MTL is to leverage the inter-relationships between multi-
ple tasks, primarily by jointly using the features of each
task [35, 24, 27, 15]. Through the inter-related character-
istics, each task can be promoted by other tasks. MTL is
very suitable for deep learning tasks because of the features
learned from a task can be used in other tasks. It has been
proved that MTL can improve the performance of each task
in many computer vision problems [44][45]. The combina-
tion of MTL and the deep neural network has been widely
used in face detection, pose estimation, and landmark local-
ization, e.g., [49, 46, 12, 1]. Zhang et al. [46] implemented
facial landmark detection by exploiting the features of other
tasks such as head pose estimation and facial attribute infer-

ence. Similarly, the main idea of [12] is to use Deep Multi-
Task Learning approach to jointly estimate multiple hetero-
geneous attributes from a single face image. However, there
is currently no MTL based method for fingertip detection.

3. The Proposed Method

3.1. Overview

In this paper, we attempt to synergistically get the hand
region and fingertip positions from a single RGB image. We
propose a fingertip detection method based on deep multi-
task learning (MTL) architecture, which is a framework to
simultaneously perform hand detection and fingertip detec-
tion. We use an end-to-end network to avoid the complex
process of detecting the hand first and then locating the fin-
gertip.

In the proposed MTL framework, a CNN is first used to
extract feature maps, then the shared output features are fed
into three branches for different tasks using corresponding
loss function. In order to further improve the precision of
fingertip detection, we propose a novel loss function, root
loss, by increasing the impact of small errors on the predic-
tion results. The root loss makes the keypoints regression
more accurate. Therefore, it is more suitable for fingertip
detection. Besides, due to the uncertainty of the number of
fingertips, we propose a unified multiple fingertip regres-
sion strategy to make the number-variant fingertip detection
feasible. In the following, we will detail the multi-task net-
work architecture, proposed regression loss, and the multi-
ple fingertip regression strategy.

3.2. Multi-task Learning Architecture

Given a RGB image, we attempt to simultaneously com-
plete two tasks of hand detection and fingertip detection to-
gether by a unified end-to-end network. We implement a
multi-task learning architecture that shares the same feature
extraction network and uses different branches for multiple
tasks as shown in Figure 2. Among them, the classification
branch is used to estimate the confidence of a candidate re-
gion containing the hand and fingertip. The hand regression
branch and fingertip regression branch are used to regress
the hand bounding box and fingertip point coordinates, re-
spectively.

We present the detailed network architecture in Fig-
ure 2. Considering the speed performance, we employ a
fully convolution network. The network takes a RGB im-
age with a uniform size as input. Then it extracts CNN
features through the common network structures, e.g., Mo-
bileNet [16], VGG [39]. We will discuss the accuracy and
speed performance using different CNN structures in Sec-
tion 4. After feature extraction, we use two feature maps
directly from the previous CNN network and four feature
maps through extra convolution operations. As shown in
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Figure 2: Architecture of our multi-task learning network. The network is composed of a basic feature extraction network, shared
convolution layers and three branches. Among them, the classification branch is used to classify the candidate region. The hand and
fingertip regression branch are used to regress the hand region and fingertip localization, respectively.

Figure 2, the cubes with different colors and sizes represent
the extracted feature maps in different layers. Next, these
six feature maps are operated by a convolution kernel with
channel number of C1 + C2 + C3, as shown by the dot-
ted arrow in Figure 2. All the output features are fed into
the permute and flatten layer and then concatenated as three
feature vectors. The sizes of three concatenated feature vec-
tors in three branches are N × Ci (i = 1, 2, 3), where
N represents the number of anchors (candidate bounding
boxes) in all six feature maps. As shown in Figure 2, the
first branch with the vector size of N × C1 represents the
confidence of classification. The parameter C1 is two be-
cause there is only one class, where C1 taking values of 1
and 0 represents the prediction of yes and no, respectively.
The last two branches represent the coordinates of the hand
bounding box (four coordinates) and the fingertips (ten co-
ordinates), respectively. Therefore C2 and C3 are 4 and 10,
respectively.

In these six feature maps, we assume that Si (i = 1, 2..6)
represents the size of the i-th feature map. So, N can be
calculated as N =

∑6
i=1 Si × α, where α represents the

default number of anchors per location in each feature map.
The selection of anchors is similar to SSD [25], which are
some pre-defined boxes of different sizes and different as-
pect ratios. A detailed training strategy will be introduced
in Section 3.5.1.

3.3. The Proposed Root Loss

At present, the typical loss functions of the regression
task are L1 loss, L2 loss and smooth L1 loss, as shown in
Figure 3 (a). Among them, the smooth L1 loss is widely
used in the general object detection task, while all the pre-
vious fingertip detection methods use L2 loss as the regres-
sion loss. From Figure 3 (a), we can see that the loss values
grow faster as the values of the x-axis increase, i.e., L2 loss
is very sensitive to the significant errors. In contrast, it re-

duces the impact of small errors on the loss value. At this
point, some researchers develop to use smooth L1 loss in
object detection, which is a combination of L1 loss and L2

loss. From the curve shown in Figure 3 (a) and (b), we can
see that the smooth L1 loss alleviates the excessive sensi-
tivity to the outliers in L2 loss. However, it does not in-
crease the sensitivity to small errors. Actually, in fingertip
detection, we aim to optimize the fingertip point coordinate
errors between predicted and ground truth results, in which
we should pay more attention to the small and medium er-
rors. This way, we propose a new loss function as shown in
Figure 3 (b).

Similar to the usage of piecewise function in smooth L1

loss, we propose a new loss function for fingertip point re-
gression. The difference from L1 loss is that for the fewer
errors, we use a function whose gradient gradually increases
as the coordinate value of x-axis approximates to zero. Such
a setting can help the loss function be more sensitive to
small errors. In this paper, we consider using the r-th root
function r

√
(·) to satisfy above condition.

As discussed above, we propose a piecewise loss func-
tion, which is composed of a nonlinear function r

√
(·) for

small errors and a linear function |(·)| for large errors. The
formulation of the proposed loss function, referred to as
Root loss, is defined as follow:

Root (x) =

{
ω · ( r

√
|x|
φ + ε− r

√
ε), if |x| < ω

|x| − Cr, otherwise
(1)

Cr = ω − ω · ( r

√
ω

φ
+ ε− r

√
ε), (2)

where ω mainly controls the length of the nonlinear region
into (−ω, ω). The parameters φ and r jointly control the
curvature of the function curve. Moreover, we can see that
the derivative of r

√
z is 1

r (
1
z )

r−1
r . The r-th root function

r
√
z has a non-derivable condition at zero point (z = 0).



0

1

2

3

4

5

6

7

8

-4 -3 -2 -1 0 1 2 3 4

L1 Loss

L2 Loss

Smooth L1 Loss

Ours

L1 Loss

L2 Loss

Smooth L1 Loss
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parameters ω and φ, where we fix r = 2.

Thus we add an offset ε to ensure that it can be derivable at
any point. The parameter Cr is the link between the linear
region and the nonlinear region in the loss function, which
can be computed by above four parameters.

In practice, we set r ≥ 2 in the function r
√
z to satisfy

the condition that the smaller z has a larger gradient. The
value of φ can not be set as too small value. Note that if
φ is too small, the value of gradient will be huge for small
errors, which will cause the exploding gradient problems.
The function curves with different parameters are shown in
Figure 3 (c) and (d). We will show the advantage of the
proposed root loss for fingertip regression and the impact of
different parameter selections in Section 4.

3.4. Multiple Fingertip Regression Strategy

Multiple fingertip detection is a task to localize the po-
sitions of all the visible fingertips under different gestures,
which has a different number of fingertips. Due to the un-
certainty of gestures, it is a challenging task to determine
the number of fingertips meanwhile localizing the positions
of them. As we know, CNN based keypoint detection meth-
ods require providing the number of keypoints in advance.
Different tasks require different network structures to match
the specific number of output points. So, we focus on how
to use a unified network to achieve number-variant multiple
fingertip detection.

In order to solve the above problem, we propose a mul-
tiple fingertip regression strategy. Inspired by the fixed-
number keypoints detection, we introduce the regression la-
bel of the invisible fingertip point. Specifically, the multiple
fingertip regression loss is defined as follows:

Ltip =
∑
i∈R

R(|Pi − P gt
i |) +

∑
j∈N

R(|Pj − P gt
j |), (3)

where R denotes the proposed root loss, P and P gt repre-
sent the predicted and the ground-truth results, respectively.
We regard the visible fingertips as real points and the in-
visible fingertips as null points, which are represented as

0 𝑃௫ଵ 𝑃௫ଶ 𝑃௫ଷ 0

0 𝑃௬ଵ 𝑃௬ଶ 𝑃௬ଷ 0

thumb little finger…

𝑃௫ 𝑃௫ଵ 𝑃௫ଶ 𝑃௫ଷ 𝑃௫ସ
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Hand bounding box

thumb little finger…
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Figure 4: Illustration of the proposed multiple fingertip regres-
sion strategy. In the training stage (left), we regress the real points
(P 1-P 3) into the positions of fingertips and null points into the
upper left corner. In the testing stage (right), we first obtain all the
possible points and then filter out the null points by considering
two conditions. As shown in the middle, we filter out the detected
points closing to the upper left corner or far away from the hand.

R and N , respectively. For different hands with the arbi-
trary number of fingertips, we all produce five keypoints (in
a hand), including the real points and null points. As men-
tioned above, the key to complete the regression task is to
introduce the Dummy Regression Label (DRL) of the null
points. For a training image, the DRLs of the null points are
uniformly set as the upper left corner of the training image,
as shown in Figure 4 (left). Attributed to the above setting,
the regression results of the null points tend to be near the
upper left corner. The result of real points will be regressed
to the corresponding positions of fingertips.

In the testing stage, after getting the regression results,
we need to complete the filtering operations in order to get
the true fingertips. We use two methods to filter out the non-
finger points, as shown in Figure 4 (right). First, attributed
to our multi-task learning architecture, we can constrain the
position of the fingertips by the region of the hand bounding
box. In most cases, the fingertip will be inside the hand



region. So, we filter the detected points far away from the
hand, where the distance d between them is larger than a
threshold value δ. Second, we filter out the points quite
closing to the upper left corner (null point regression label),
i.e., a predicted fingertip is removed if its distance d to the
upper left corner is smaller than the threshold value δ.

3.5. The Framework

3.5.1 Training loss

Our framework is designed to complete two different tasks,
i.e., hand detection and fingertip detection. As shown in
Figure 1, we simultaneously optimize three losses in differ-
ent branches thus propose to minimize the following objec-
tive function

L = Lconf(C, Cgt) + Lbox(B,Bgt) + Ltip(P,Pgt). (4)

The total loss function of the entire framework is composed
of three parts, i.e., the classification loss Lconf , hand regres-
sion loss Lbox, and fingertip regression loss Ltip. We use
the two-class softmax loss function, smooth L1 loss func-
tion and the proposed root loss function for the above three
losses.1 The sets C and Cgt indicate the classification con-
fidence and ground-truth class of all anchors. The sets B
and P indicate the coordinate sets of the predicted hand
bounding box and fingertip point of the anchors, Bgt and
Pgt indicate the corresponding ground truth.

3.5.2 Implementation details

Our model is implemented by PyTorch on an NVIDIA
GTX-2080Ti GPU. We use the SGD algorithm as the op-
timizer for learning the network parameters. During the
training phase, the learning rate is set to 1 × 10−3, and de-
cays by 5× 10−4 per epoch. We set the batch size as 32 in
the training process. In the experiments, we use MobileNet
for feature extraction. Similar with [25], we set the number
of anchors α = 6 in the experiment. We set the parame-
ter r as 2 and the regular term ε as 10−8 in Eq. (1). The
parameters ω and φ are experimentally set to 3 and 2, re-
spectively. We will analyze the parameters setting of ω and
φ in Section 4.4. The threshold value δ for filtering error
predictions is set to 30px. Note that all the parameters are
fixed for different testing data in our experiments.

1Here, we use the smooth L1 loss for hand bounding box regression
rather than root loss because that the main advantage of the proposed root
loss is for accurate point regression, e.g., fingertip or other hand/facial
landmark detection. However, the hand detection is a region detection
task, which regresses both the key points (e.g., the upper-left corner of the
hand box) and the box size. Also, the appearance features at the regressed
key points, in most cases, contains no discriminative representation of the
hand.

4. Experimental Results and Analysis

4.1. Setup

4.1.1 Dataset and metrics

We use the public dataset EgoGesture[42] to evaluate the
proposed method, which contains eleven single-hand ges-
tures subsets and five double-hand gestures subsets. The
whole dataset is made up of single RGB images with the
size of 640 × 480 pixels captured by the egocentric-view
camera. The dataset is collected from many different condi-
tions, e.g., complex backgrounds, lighting changes, differ-
ent user hands and directions, skin-like backgrounds, etc.
The variety of conditions can avoid the unity of training
data. In order to meet the needs of common application
scenarios, we use five subsets with commonly used gestures
(single hand with one to five fingers) in our experiment fol-
lowing [42]. Among them, the subset of single one finger
has a total of 3,374 images, including 12 different scenes.
The number of images is 300 in most scenes, but it varies in
some some individual scenes. For the other four subsets,
each has 3,780 images, including seven different scenes,
and the number of images in each scene is 540. In order
to make the experimental results more robust, that is, the
training and test data have relatively obvious differences,
we take the last 10% in each scene of each dataset as the
test set and the rest as the training set. We do not randomly
divide the training/test dataset, which can avoid the situa-
tion in which a test image is very similar to the adjacently
sampling images in the training set. Finally, we have a total
of 16,645 images as the training data and 1,849 images as
the testing data.

We apply standard classification and object detection
metrics for evaluating fingertip detection performance. We
use precision, recall and their comprehensive evaluation in-
dex F1-score to mainly evaluate the performance of finger-
tip detection. When calculating the precision and recall, we
consider the fingertips as correct detection results if their
errors are no more than a specified distance error thresh-
old. For the fingertip detection, we tend to be more inclined
to detect the precise positions in practical applications. We
may be more concerned about the distance precision of each
fingertip. We also introduce a metric to measure the dis-
tance error of all the detected fingertips – Mean Distance
Error (MDE). MDE is calculated as the mean value of all
fingertips with distance errors no more than the distance er-
ror threshold.

4.1.2 Comparative methods

We choose two approaches as the baseline methods. The
first one is YOLSE [42] that is specifically for fingertip
detection, and the other is the current classical object de-
tection method SSD [25]. Note, we do not find the pub-



lic code of YOLSE, and the splitting of the training and
test set is not reported in the published paper. Therefore,
we re-implement this work fully in accordance with the de-
tails described in [42]. For a fair comparison, we train/test
the method using our well-defined training set and test set.
YOLSE is not an end-to-end method to detect fingertips,
which needs the ground truth hand area as inputs. Be-
sides, similar to the proposed method, we train a unified
network of YOLSE to handle the image with a different
number of fingertips, which is different from the training
method in [42]. SSD, as a object detection method, requires
the target bounding box as input. For a fair comparison,
we take the fingertip coordinates as the center and the sur-
rounding five pixels area as the bounding box of the finger-
tip. When evaluating, the center point coordinate of each
predicted box is taken as the predicted position of the fin-
gertip. We evaluate the fingertip detection performance in
this way: as for every ground-truth fingertip, we find the fin-
gertip prediction point with the smallest distance from the
ground truth among the detected fingertips. If the minimum
distance error is within our established threshold, we con-
sider this detection point as the true point corresponding to
the ground-truth fingertip. Then we repeat above operation
for other fingertips.

4.2. Comparative Results

We compare the proposed method with SSD and
YOLSE. Figure 5 shows the variation of Recall, Precision,
F1-score, and MDE of all methods against different nor-
malized distance error thresholds [5] in x-axis, which is the
given thresholds (discussed in Section 4.1.1) divided by the
diagonal length of the image. The value in the legend in-
dicates the area under the curve (AUC) scores, where the
area surrounded by the axises is one. We can see that the
AUC values of our methods using MobileNet (Ours) and
VGG network (Ours V) are higher than the AUC values of
other methods, i.e., SSD V, SSD M and YOLSE, as shown
in Figure 5 (a), (b) and (c). This demonstrates that the pro-
posed multi-task framework is very effective for detecting
fingertips.

As shown in Figure 5 (a), YOLSE has a significant in-
crease in the recall value as the normalized distance error
threshold increases. It indicates that YOLSE can roughly
detect the fingertips, but the localization results are not
accurate enough. It also demonstrates the correctness of
our reimplementation of YOLSE. As for the reason why
YOLSE has insufficient localization accuracy under small
error threshold, there are two reasons as follow: 1) The pa-
rameters used to generate the finger map in YOLSE are not
reported in the paper. Different parameter settings generate
the Gaussian maps with different sizes, which affects the fi-
nal predicted position of the fingertip. More details can be
found in [42]. 2) There may be some tricks in the original

implementation of this algorithm, which is also an impor-
tant factor affecting the final localization accuracy. From
Figure 5 (d), we can see that our method is slightly lower
than SSD with VGG on the mean distance error (MDE).
However, the algorithm efficiency and detection accuracy
of SSD with VGG are lower than our method, which will
be discussed in Section 4.4.2.

Table 1: Comparison results of SSD, YOLSE and our
method. SSD V, SSD M denote SSD detector with VGG-
16 and MobileNet as the feature extraction network, respec-
tively.

Methods Precision Recall F1-score MDE
SSD V 86.1% 70.0% 77.2% 3.29
SSD M 88.5% 82.2% 85.2% 5.30

YOLSE 41.5% 51.4% 45.9% 12.54

YOLSE @30 61.2% 74.0% 67.0% 16.13

YOLSE @45 71.2% 85.1% 77.5% 18.64

Ours 97.4% 87.7% 92.3% 3.85

In the following, we show the quantitative evaluation re-
sults using a specific distance error thresholds, e.g., 20 pix-
els2. As shown in Table 1, the first two rows show the fin-
gertip detection performance of SSD with different back-
bone networks. We can see that SSD provides an accept-
able result, especially using the backbone VGG, the mean
detection error (MDE) of SSD is quite small. However, it
provides relatively poor fingertip detection accuracy, i.e.,
precision, recall and F1-score, compared to our method. Al-
though obtaining acceptable performance, SSD can not de-
termine the number of fingertips in a testing image (e.g., the
detected results may exceed 5 points) nor distinguish the
order (i.e., from the thumb to little finger) of the detected
fingertips.

We also compare the proposed method with YOLSE as
shown in the third row of Table 1. Specifically, ‘YOLSE’
denotes the performance at the position error in default dis-
tance error threshold. We can see that neither the F1-score
nor the MDE is good enough. We increase the error thresh-
old into 30 and 45 pixels and evaluate the performance as
shown in the fourth and fifth rows in Table 1. We can see
that the F1-score gets better as the error threshold increases.
However, we can also see that the MDE score gradually gets
worse. The comparison results show that YOLSE is not
suitable for accurate fingertip localization. On the contrary,
the proposed method has a good tradeoff between detection
accuracy and localization precision.
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Figure 5: Fingertip detection performance under different distance error thresholds. We use precision, recall, F1-score and mean distance
error (MDE) for performance evaluation. The value in the legend indicates the area under the curve (AUC) scores, the larger scores in (a-c)
while smaller scores in (d) indicate the better performance.

Table 2: Ablation study of the proposed method using dif-
ferent feature extraction network, network architecture and
regression loss.

Type Precision Recall F1-score MDE
w VGG 95.4% 86.5% 90.7% 4.49

w/o Lbox 94.5% 84.9% 89.4% 4.11

w/o DRL 35.8% 31.7% 33.7% 6.14

w L1 96.5% 86.6% 91.3% 3.94

w L2 62.4% 56.2% 59.1% 6.17

w Smooth L1 96.7% 87.2% 91.7% 4.05

Ours 97.4% 87.7% 92.3% 3.85

4.3. Ablation Study

4.3.1 Feature extraction network

We first study the influence of the feature extraction net-
work. We compare two popular networks, i.e., VGG-16
and MobileNet, in our experiments. The VGG-16 is the
backbone network used in the SSD framework. We use
the VGG-16 network in our framework, i.e., ‘w VGG’,
and evaluate the fingertip detection performance as shown

2We set the threshold as 20 pixels in our experiments referring the target
center localization error (CLE) threshold defined and used in [43].

in the first row in Table 2. We can see that the proposed
method using MobileNet as the feature extraction network,
i.e., ‘Ours’, generates better detection results.

4.3.2 Network component

We also evaluate the effectiveness of the hand detection
branch in the proposed method. As shown in Table 2, ‘w/o
Lbox’ denotes that we remove the hand bounding box re-
gression loss in our framework. We can see that both the
F1-score and the MDE score get worse without the box re-
gression loss. The ablation experiment verifies that the inte-
gration of hand region regression can not only generate the
hand detection results but also promote the performance of
fingertip detection. We further verify the validity of the pro-
posed multiple fingertip regression strategy. Specifically,
we remove the dummy regression label (DRL), i.e., the sec-
ond term in Eq. (3), for null points regression. We can see
that ‘w/o DRL’ provides a very poor precision score, which
is because the invisible fingertips can not be identified by
an unified regressed localization (i.e., the upper-left corner
in our method). It also negatively affects the performance
of visible fingertip detection therefore provides a low recall
score. This indicates the effectiveness of the multiple fin-
gertip regression strategy for number-variant fingertip de-
tection.



Table 3: Results by varying values of w and φ. We evaluate fingertip detection results by varying one of these two parameters
while fixing another parameter, i.e., w = 3, φ = 2.

w Precision Recall F1-score MDE φ Precision Recall F1-score MDE
2 97.1% 88.0% 92.3% 3.94 1 96.1% 86.6% 91.1% 4.00

3 97.4% 87.7% 92.3% 3.85 2 97.4% 87.7% 92.3% 3.85
5 95.8% 86.1% 90.7% 4.36 3 96.6% 87.1% 91.7% 3.98

Table 4: The running speed and fingertip detection performance of different methods. SSD V, SSD M and Ours V, Ours M
denote SSD detector and the proposed method with VGG-16 and MobileNet as the feature extraction network, respectively.
The speed of YOLSE is only for the fingertip detection in the given hand area.

Method SSD V SSD M YOLSE (w Hand) Ours V Ours

Speed (fps) 50.1 66.7 357.1 33.3 66.9

F1-score 77.2% 85.2% 45.9% 90.7% 92.3%

MDE 3.29 5.30 12.54 4.49 3.85

4.3.3 Fingertip regression loss

Next, we compare the results using different loss functions
in the fingertip regression branch. We replace the root loss
with three popular loss functions, i.e., L1 loss, L2 loss and
smooth L1 loss. The comparative results are shown in the
last four rows in Table 2. We can see that the L2 loss pro-
vides poor results in fingertip detection. It is because L2

loss is very sensitive to the large distance errors, i.e., the loss
value has large difference with other losses when the error
increases as shown in Figure 3 (a), and it is insensitive to the
small errors. This characteristic leads to that L2 loss is not
appropriate in our task. We can also see that the L1 loss and
smooth L1 loss provide much better results, which are more
suitable for precise fingertip detection. Compared to the
above three loss functions, the proposed root loss provides
the best performance in both F1-score and MDE score. The
comparison results verify the effectiveness of the root loss
in keypoint detection.

4.4. Algorithm Analysis

4.4.1 Parameter analysis

As described in Section 3.5, there are two free parameters
ω and φ in Eq. (4). We select different values for them and
see their influence on the final detection accuracy of finger-
tips detection. The illustration of the function curves using
different parameters are shown in Figure 3 (b)(c). Table 3
shows the detection results by varying one of these two pa-
rameters while fixing another parameter. We can see that the
final detection results are not sensitive to the selected values
of ω and φ, either the fingertip detection accuracy metrics,
i.e., Precision, Recall and F1-score or the localization error

metric, i.e., MDE. We can see that the parameters setting of
ω = 3 and φ = 2 provides the best detection results.

4.4.2 Speed analysis

We analyze the speed efficiency of our proposed method.
Since different methods use different data processing meth-
ods, the time we calculate is only the running time of in-
ference phase. We run our method and all the comparison
methods on the same environment – NVIDIA GTX 2080Ti
GPU. From Table 4, we can see that our approach using
MobileNet as the backbone network runs faster than our
approach with VGG. This is mainly because the VGG net-
work is significantly more complicated than the MobileNet.
We can also see that our approach using MobileNet runs
faster than SSD algorithm using MobileNet/VGG. We no-
tice that our method is much slower than YOLSE. There are
two main reasons for this. The first reason is that YOLSE
takes the hand area as input, so the search region is smaller
than the other methods. The second reason is that YOLSE
has fewer network layers and the size of all convolution ker-
nels is 3 × 3 in our reproduced network, which makes the
inference of the network very fast. However, YOLSE pro-
duces very poor detection performance compared to other
methods.

4.4.3 Qualitative analysis

To further evaluate the advantages of our algorithm, we take
some representative cases to qualitatively analyze the re-
sults as shown in Figure 6. There are five different ges-
tures with the detection results using three methods, i.e.,
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Figure 6: Qualitative analysis and failure case analysis. The first two rows and third row (left) illustrate the comparison
results of three methods in five cases. The third row (right) shows three failure cases of the proposed method.

Ours, SSD V and YOLSE. Each group containing three im-
ages represents a kind of gesture, and each image illustrates
the detection result of Ours, SSD V and YOLSE, respec-
tively. The first row (left) shows the scenario where the
light is dark, and we can see that the SSD V shows a poor
result while YOLSE detects several wrong points. The first
row (right) and the second row show another situation: the
background is cluttered, which frequently occurs in the real
world. We can notice that all the fingertip points are not
detected by SSD V and YOLSE. SSD V also gets poor de-
tection results when the background is complexed, e.g., the
images shown in the left of the second row. The third row
(left) shows another case: there is a mirrored hand in the
image. We can notice that SSD V redundantly detects the
points in the mirror, and YOLSE also provides poor results
under the influence of the mirror. In contrast, our approach
provides the more robust results in these cases. It can be
seen from the figure that our method can accurately localize
the tip of the finger while detecting the hand region.

4.4.4 Failure case analysis

At last, we present three failure cases, as shown in the third
row (right) of Figure 6. We can see that the ambient light
is very dark (the first case), and there is only a part of the
hand visible in the image (the second case). The proposed
method fails to detect the fingertip because the hand is not
successfully detected in the first two cases. The last failure
case shows a hand with serious deformation. In this case,
our method can directly detect the hand area. However, the
positions of fingertips can not be accurately detected be-

cause most of the fingers are blocked due to serious defor-
mation.

5. Conclusion

In this paper, we have developed a new multi-task learn-
ing based framework to detect the fingertip without de-
pending on the pre-given hand region and the number of
fingertips. Our approach constructs three branches using
the classification loss, box regression loss and point regres-
sion loss, respectively, to obtain the hand region and fin-
gertip localization simultaneously. In the fingertip detec-
tion, we propose a new loss for more precise point local-
ization and a multiple fingertip detection strategy to handle
the number-variant fingertips. On the benchmark dataset
EgoGesture, we validates the superiority of our approach
over the state-of-the-art competitors. The ablation study
verifies the effectiveness of each proposed component. In
the future, we consider integrating the network compres-
sion and multithreading acceleration strategy to the pro-
posed model, which makes our framework efficiently ap-
plied to the mobile device.
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