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Abstract 1. Introduction

3D Morphable Models (3DMMs) are generative mod-
els for face shape and appearance. Recent works im-
pose face recognition constraints on 3DMM shape pa-
rameters so that the face shapes of the same person re-
main consistent. However, the shape parameters of tra-
ditional 3DMMs satisfy the multivariate Gaussian dis-
tribution. In contrast, the identity embeddings meet
the hypersphere distribution, and this conflict makes
it challenging for face reconstruction models to pre-
serve the faithfulness and the shape consistency simul-
taneously. In other words, recognition loss and recon-
struction loss can’t decrease jointly due to their con-
flict distribution. To address this issue, we propose the
Sphere Face Model(SFM), a novel 3DMM for monoc-
ular face reconstruction, preserving both shape fidelity
and identity consistency. The core of our SFM is the
basis matrix which can be used to reconstruct 3D face
shapes, and the basic matrix is learned by adopting a
two-stage training approach where 3D and 2D training
data are used in the first and second stages, respectively.
We design a novel loss to resolve the distribution mis-
match, enforcing the shape parameters have the hyper-
spherical distribution. Our model accepts 2D and 3D
data for constructing the sphere face models. Exten-
sive experiments show that SFM has high representa-
tion ability and clustering performance in its shape pa-
rameter space. Moreover, it produces high-fidelity face
shapes consistently in challenging conditions in monoc-
ular face reconstruction. The code will be released at
https://github.com/a686432/SIR.

The problem of face reconstruction from stills and videos
has been attracting considerable attention in the computer
vision and computer graphics community. It has a broad
range of applications, including AR/VR [14], animation
[28, 8], computer games [32], etc. In recent years, there is a
growing demand for customizing 3D virtual faces to create
game characters [32, 50] or personalized 3D facial editing
[66]. In such applications, images from common users usu-
ally come from a large diversity of conditions, including
occlusion, resolution, pose, expression, illumination, etc. It
is thus challenging to reconstruct a face from only a single
image requiring both shape faithfulness and identity preser-
vation.

Although previous works [70, ] claimed to have
achieved face reconstruction from a single image, their re-
constructed face shapes suffer from inconsistent identity
properties when the input images have varying conditions.
To address this problem, the follow-up works [44, 57, 33]
propose to aggregate shape parameters of the same identity
while separate those of different subjects to produce 3D face
shapes containing good identity-related features. However,
the conflict between the shape loss and the identity loss in
their reconstruction pipeline prevents them from achieving
both shape fidelity and identity consistency. That conflict
comes from the mismatch between the distribution of iden-
tity embeddings of face recognition and shape parameters
of the previous 3DMMs [39, 30, 21, 11], which maximize
their model expression ability while neglecting some distin-
guishable information of categories.

Therefore, this paper focuses on identity-consistent face
reconstruction in a linear model. Before introducing our
method, we first introduce the terminologies as well as sev-
eral key concepts: geometric space, shape parameter space,
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Figure 1. The overview of the sphere face model. (a) The identity parameter of the sphere face model distributed on the hypersphere
represents the identity information. The meshes are uniformly sampled from on the hypersphere using the first two dimensions of identity
parameters. (b)The scale parameter of the sphere face model is scalar, which controls the distinctiveness to the mean face. (c)The
distribution of the parameter. The shape parameter of the PCA-based model has an anisotropic multivariate Gaussian distribution. Our
identity parameters are distributed isotropically on the hypersphere and separated between different classes.

and identity latent space. Geometric space W is a set of
face meshes, which is formulated as ¥ € RNv. N, is the
number of vertices of a face mesh. Shape parameter space
® is a set of shape parameters of 3DMM, which is formu-
lated as ® € R"». N, is the dimension of shape parame-
ters. Identity latent space €2 is a set of identity embedding
which is formulated as Q@ € RM:. N; is the dimension of
identity embedding. To resolve the aforementioned distri-
bution mismatch problem, we propose a novel face gener-
ation model called the Sphere Face Model (SFM). We add
category information while building the basis of SFM and
constrain identity parameters over a hypersphere by nor-
malizing the shape parameters to make the shape parame-
ter space of SFM consistent with identity latent space. In
this way, we resolve the conflict between the two losses
and further improve the identifiability of 3D face models.
Moreover, SFM has an essential property that the discrim-
ination of the parameters is transferable to the geometry,
which means the Euclidean distance between two sets of
3DMM parameters in shape parameter space and between
corresponding mesh vertices in geometric space have a pos-
itive correlation. One notable challenge is when the identity
parameters are forced to be distributed over a hyperspheri-
cal surface, the L2 norm of the parameter vectors become
the same. In other words, the reconstructed faces would
have the same root mean square errors from the mean face,
leading to reduced varieties of generated faces. We use two
approaches to address that issue. Algorithmically we add

a parameter to control the scale of the shape parameters of
each face. While previous approaches mainly use 3D train-
ing data, which are limited, we propose a two-stage training
approach where we use 3D data only for pre-training and
adopt an unsupervised learning approach that can leverage
a sufficient amount of 2D face data. Figure | highlights
the differences between our face model and the previous
3DMMs. The parameter of SFM is composed of a shape
parameter and a scale parameter. The identity parameter is
the normalized shape parameter, which controls the face’s
identity attribute. It is distributed on the hypersphere with
good separation properties. The scale parameter controls
the distance to the average face.

The main contributions of this paper lie in the following
three aspects:

* We propose Sphere Face Model (SFM) for 3D face re-
construction from single images with both shape faith-
fulness and identity consistency.

* We propose a new structure of 3DMMs, where the
shape parameter space follows a hyperspherical distri-
bution and the discrimination of shape parameter space
is transferable to the geometric space.

* To enable SFMs to reconstruct high-quality 3D face
models from single images, we present a learning
scheme to train SFMs with both 2D and 3D data.



2. Related Work

3D morphable models map the high-dimensional face
geometry space to the low-dimensional manifold space.
Based on 3DMMs, the previous works optimize the low-
dimensional 3DMM parameters from the input image to
reconstruct high-dimensional face geometries in monocu-
lar face reconstruction. Meanwhile, many works introduce
identity loss in the face reconstruction pipeline to keep the
face shape stable from the various input images.  This
section introduces the related works from three aspects:
3D morphable model, shape-consistent face reconstruction
from monocular images, and deep face recognition.

3D morphable models 3D morphable model is a statis-
tical model of the distribution of the faces, which maps the
low dimensional parameter vector to the high dimensional
graphic vertices. The groundbreaking work of 3DMMs
traces back to Blanz, and Vetter [10], who propose the 3D
morphable model using principal component analysis from
an example of 200 3D faces. Based on this idea, Paysan et
al. [39] provide the first public 3DMM model, BFM 2009
and others [9, 54, 2, 29, 12, 59] extend the model to intro-
duction emotive facial shapes information by adopting an
additional expression basis or using bilinear and multilin-
ear. [30] provides the whole head model, FLAME, which
introduces an articulated jaw, neck, and eyeballs in linear
shape space and global expression to make the model more
expressive. Yang et al. [65] present a large-scale detailed
3D face dataset and models the variation of detailed geom-
etry with it. Unlike the previous work, we consider identity
information while constructing the 3DMM model, and the
shape parameter can be inherently separated among each
identity. Blanz and Vetter [10] only use facial meshes of
200 subjects of similar ethnicity and age, which cannot rep-
resent the great diversity of the human faces. [ 1] train the
3DMM with the large scale of 3d data to overcome this lim-
itation, but the 3D data is also limited. [56, 53, 55] use
sufficient 2D data to training the 3DMM. However, training
with 2D data without 3D prior needs strong regular terms,
which leads to a lack of geometric details and diversity. Our
method training the model make full of 2D and 3D data.
In recent years, with the development of deep learning,
[56, 55, 4] propose nonlinear models with encoder-decoder
structure. Those nonlinear models do not consider the pa-
rameter separation and the property of propagating the dis-
crimination from shape parameter space to geometric space
when training the models.

Shape consistence monocular face reconstruction
Early works [1, 46, 6, 40, 47], reconstruct 3d face from
monocular RGB using the analysis-by-synthesis approach
with the prior knowledge of the 3DMM. They often ap-
ply the photometric and landmark consistency between the
input and the rendered image. In recent years, many re-
searches [22, 44, 17] have proposed the deep network to

regress the 3DMM parameters. Applying face recognition
loss to the rendered image mainly affects the recognizability
of the texture, which has a relatively small impact on shape
consistency reconstruction. Adversarial loss, perceptual
loss, and identity loss on the rendered image [3 1, 20, 55, 15]
are proposed to generate the high fidelity texture. However,
applying face recognition loss to the rendered image mainly
affects the recognizability of the texture, which has a rel-
atively small impact on shape consistency reconstruction.
Feng et al. [18] replace the shape parameter of the same
person and employ the photometric and identity loss on the
rendered images. However, it fails to distinguish shape pa-
rameters of different people. To reconstruct the stable face
shape geometry, Tran et al. [57] label a large number of
face images with 3DMM shape parameters using the op-
timization method, and utilize the deep CNN to learn the
mapping from images to shape parameters. But its perfor-
mance depends on the accuracy of the optimization method.
Liu et al. [33], and Sanyal et al. [44] use a face recognition
loss to push away the shape parameters of different people
while aggregating those of the same person. Jiang et al. [24]
propose that simply applying the face recognition loss func-
tion to the shape parameter does not guarantee shape con-
sistency. They explore the relationship of shape parameter
discrimination and geometric visual discrimination and pro-
pose the SIR loss, which increases discriminability in both
the shape parameter and shape geometry domain. Since
they use the PCA-based face model, it is challenging to pre-
serve faithfulness and shape consistency simultaneously.

Deep face recognition In recent years, many works have
achieved incredible face recognition accuracy with the pow-
erful deep convolutions neural network. Most of them focus
on cleaning and mining the training data or designing the
loss function to maximize the intraclass distance and min-
imize the interclass distance, which boosts the discrimina-
tion of deep feature identity embedding. There are mainly
three types of loss functions for face recognition. One uti-
lizes pair or triple training strategy, such as contrastive loss
[52] and the Triplet loss [48]. Another type of loss, like
the center loss [63], plays as the auxiliary loss to augment
the other loss functions. The aim of these loss functions
is aggregating features to minimize the inner-class distance.
The auxiliary loss can be directly added to the classifier net-
work and learn the discriminative features. The last type of
loss is modified softmax [36, 61, 37, 35, 16, 62]. Norm-
face [61] and Cocoloss [37] normalized the weights and
features and directly optimize the cosine similarity instead
of the inner product. L-softmax [36] and sphereface [35]
introduce the multiplicative cosine margin. Cosface [62]
and Am-softmax [60] introduce the additive cosine mar-
gin, and arcface [16] introduces the additive angular mar-
gin. [23, 67, 34] adapt the margin during the training. Cur-
rent SOTA deep face recognition methods mostly adopt the



last type of loss and softmax-based classification loss. Their
identity latent space is the hypersphere.

3. Space Distribution

This section elaborates the characteristics the identity la-
tent space needs to have for effective face representation
and reconstruction.

Previous 3DMM-based works suffer from the conflict
between the losses for face recognition and reconstruction
in the shape-consistent face reconstruction pipeline. Taking
PCA-based face models as an example, the shape parame-
ters for face reconstruction satisfy the anisotropic multivari-
ate Gaussian distribution [10].

p(a) ~ N(0,X%) (D)

where « is shape parameter, ¥ = {ej, e, ..., e, }, and the
e; is the 7th eigenvalue of shape basis. In contrast, the iden-
tity embeddings for face recognition are distributed isotrop-
ically on the hypersphere [61].

p(B) ~z/||z|[y;2 ~ N(0,1) (2)

where [ is identity embedding. The distribution mismatch
in the shape parameter space of face reconstruction and
identity latent space of face recognition makes the co-
convergence of these two loss functions (face recognition
loss and face reconstruction loss) very difficult to achieve.
More specifically, when conducting the intense face recog-
nition loss, the latent vectors are forced to distribute on a
hyper-spherical surface which do not follow the actual dis-
tribution of shape parameters and make the reconstruction
results inaccurate. On the contrary employing an intense
reconstruction loss would probably make the distribution of
latent vector to be no longer hyperspherical, resulting in less
identity-consistent reconstruction results. Note that nonlin-
ear face models [56, 55, 4], which also belongs to the family
of 3DMMs, are not guaranteed to transfer the discrimina-
tion of the shape parameter space to the geometric space as
explained in Section ?? thus cannot preserve identity infor-
mation while constructing face models.

To address the above issue, we propose to keep the
shape parameter space of SFMs consistent with identity la-
tent space of face recognition. Additionally, it should meet
the requirement that discriminability can be transferred be-
tween the shape parameter space and the geometric space.
Here, we first introduce the identity latent space distribution
of identity embeddings and then describe how we design
the structure of SFMs and the concrete constraints the SFM
should satisfy.

3.1. Hypersphere Manifold of Identity Embedding

Modern face recognition works always adopt the
softmax-based classification loss for metric learning, where

weights w and identity embeddings [ are normalized and the
concept of margin [62, 35, 16] is adopted to boost discrim-
ination of deep face features further. In particular, a loss
function with margin can be formulated as Equation 3:

L, =

ellzillcos(aby, +8)—

1 m
T m Z log ellzillcos(ady, +8) =7 4 Z" ellzillcos(6;)
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where cos(0;) = w;l;

3)
where z; € R? denotes the d dimensional deep feature of
i-th sample, y; denotes the label of x;. w; is ith column
the normalized weight before Softmax[61]. 6; is the an-
gle between vector x; and class vector w; in the identity
latent space. m and n denote the batch size and the class
number respectively. The parameter o, 8 and y encode the
margins of different kinds (see SphereFace [35], Cosface
[62] and Arcface [16]). The identity embedding trained
with softmax-based classification are distributed on a hy-
persphere. Previous works [33, 24] impose the softmax-
based loss on shape parameters. However, the face param-
eters constrained by the face recognition loss function will
make the face parameters tend to have a hyperspherical dis-
tribution. On the other hand, these parameters must meet
the distribution of PCA-based basis(the anisotropic multi-
variate Gaussian distribution) to have a better result of face
shape reconstruction. Therefore, for the face recognition
function to better affect the geometric separation, we must
reconstruct and establish a reconstruction base with a sim-
ilar distribution to identity embedding. However previous
works [30, 55] on conducting the shape basis did not em-
phasize this.

3.2. Shape Parameter Space of Sphere Face Models

As mentioned above, the established SFM should meet
the following criteria: (1) the discriminability of the shape
parameter space can be transferred to the discriminability of
the geometric space; (2) the distribution of the SFM param-
eters is consistent with the distribution of the face recogni-
tion identity embeddings, that is, the isotropic hyperspheri-
cal distribution. For the first criteria, SFM shape parameter
space have to meet the following conditions:

Yy, zo, x35if ||z — x2f| < [z — a3

then (o) = J(aa)l < W) = S
If f(x) is a linear function and the basis (mentioned later in
Section 4) is orthonormal, the above condition can be met
(The property is proved in [24]). Thus we use orthonormal
basis in SFM.

To meet the second criteria, we normalize the shape pa-
rameters in SFM. As a consequence, the vector of shape
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Figure 2. The framework of our method. The normalization of x generates the identity parameters distributing on a hypersphere. The
normalized identity parameter is multiplied by the scale parameter to get the shape parameter and goes through the basis to get the
corresponding mesh. When training on 3D data, we directly optimize s and . When training on 2D data, we use encoder-decoder because

it requires other parameters to render the image.

parameters will be constrained on the hypersphere, lead-
ing to the cosine angle between two vectors proportional
to their distance in the geometric space. This also brings up
a problem that the distance between the result of all human
faces and the average face become the same, since all hu-
man faces would have the same distance from the origin of
the coordinates. Our solution is to add a scalar to control the
norm of the face parameters. Similar as [38], we use scale-
normalized shape parameters, namely identity parameters,
since they are related to identity information. The scale pa-
rameter represents the difference with the mean face. Pre-
vious work [25] also proposes decomposition networks, but
their model did not consider the above situations, making it
impossible to use face recognition loss on shape parameters
to improve the degree of parameter separation further.

To summarize, our SFM consists of a scale parameter s
and a vector of shape parameters x to describe a face model.

4. Sphere Face Model

Given the shape parameters x and the scale parameter s,
our Sphere Face Model is able to reconstruct the 3D face
shape by:

- X

where M € R3" is a reconstructed 3D face shape with n

vertices and M € R3" is the mean face shape. The nor-

malized term x/||x|| represents the identity parameters. The

orthogonal matrix A represents the basis of SFM, which

is obtained by a 2D-3D joint learning framework based on
X

deep neural networks. This structure guarantees s * Tl lo-
cated on the hypersphere.

The previous works for constructing parameterized mod-
els mainly rely on 2D or 3D datasets. However, only train-
ing the model with 3D models would lack face variants be-
cause there is no publicly available large 3D face datasets.
Training only with a two-dimensional dataset is also diffi-
cult to get satisfying results since the large diversity of ex-
pressions and poses will affect the identity-related features
in the reconstructed face models without 3D shape guid-
ance. The regularization constraint used in these methods
[56, 55] also makes the generated mesh similar to with the
average face. Tran et al. [55] used the proxy strategy to
alleviate that issue but did not fully solve it. Therefore, we
propose an effective learning scheme to utilize 2D and 3D
data to learn face models with the aforementioned proper-
ties.

In the following sub-sections, we introduce the overall
framework and then describe how the deep model is trained
using 3D and 2D face data.



4.1. Learning Framework

Given the model defined in Equation 5, our goal is to
learn the basis matrix A from face datasets. To achieve
so, we adopt a two-stage training strategy as illustrated in
Figure 2. In the first stage, we feed the model with scale
and shape parameters and force the model to reconstruct the
3D face. We optimize the basis matrix, scale parameters,
and shape parameters by minimizing the objective function
as shown in Equation 9. After this step, we obtain a basis
matrix, which is rough due to the scarcity of the 3D training
data. In the second stage, we make use of the large 2D face
datasets and train an encoder-decoder style model similar
to [55, 53, 68]. The pre-trained SFM can be regarded as
a decoder module that can reconstruct the 2D face image
along with other decoder modules using the latent vector
from the encoder. By optimizing the encoder and decoder,
our SFM is finetuned.

More specifically, the encoder regresses the scale, shape,
expression, and other rendering parameters, such as albedo,
illumination, pose, and camera parameters. In the decoder
part, we have four components, each of which is to be
trained in this stage: (1) The trained shape basis of SFM,
(2) The expression basis D, from bfm2017 [21], (3)the
albedo basis Dgipeqo from [51], (4) the rendering layer
takes the geometric, albedo, illumination, pose parameter,
and camera parameter and renders 224 x224 RGB images,
which is based on Pytorch3d [42]. The illumination model
is a spherical harmonic illumination model.

In previous works, [55] did not use 3d prior when con-
structing face models from 2D data; [53] creates a new basis
besides the 3DMM to correct face shape; [68] directly re-
gresses the residual displacement in geometric space to cor-
rect the face shape. In contrast, our work directly corrects
the 3d prior basis by decoupling the expression and appear-
ance information in 2D data, which is able to learn better
identity-related features for face reconstruction.

4.2. Data Preparation

3D data. FRGC v2.0 database [41] contains 4007 3D
face scans of 466 subjects and is acquired by a Minolta
Vivid 900/910 series sensor under controlled illumination
conditions. In the preprocessing, we use a non-rigid itera-
tive closest point algorithm [3] to register the 3D face raw
scans to the topology of BFM2017 [21] and remove the
sample with radical expressions. The registered 3D mod-
els face the positive direction of the z-axis, and their centers
are coincident with the origin. Note that the unit of the reg-
istered 3D model is the millimeter.

2D data. The second stage is trained with 300W-LP
[69] and VGGFace2 [13]. VGGface2 contains 3.31 million
images of 9131 subjects covering a large range of poses,
ages, and ethnicities. 300W-LP is a synthetically gener-
ated dataset based on the 300-W database [43] containing

61,255 samples across various poses. In our preprocessing
stage, the faces are aligned using similarity transformation
and cropped to 224 x224 in the RGB format with its land-
mark of 300W-LP.

4.3. Training Sphere Face Model with 3D Data

SFMs are first trained with 3D data to learn the shape
basis using the following loss function:

Loss function. To assemble the identity parameters of
the same identity and separate those of different identities
in cosine distance, we apply the modified-Softmax loss with
normalized shape parameters and normalized weight, which
is introduced by the Normface [61]:

Xy, " wy,
& o |
Ly =—— log 5 —7; (6)
(i A o AT
J=1

where n is the number of classes and m is the number of
samples of the batch. y; the groundtruth label. w; repre-
sents the jth row of the basis A. At the same time, we
aggregate the scaled identity parameters s x ﬁ of the same
identity to its center ¢ and separate the centers of different

identities in Euclidean distance:

2
Xy,
S* L — ¢,
P o
c = 2
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where c; represents the center of the ¢th class. Finally, we
minimize the reconstruction error with basis regularization:

L= HMfMHerw,,,HATAfIHQ )

where M is the ground-truth mesh and M is the recon-
structed mesh. [ is the identity matrix and w, is the weight
of the loss function. Finally, we optimize the following ob-
jective function and solve the target basis A:

min Wy, Ly, + wele + wsLg 9
Hyperparameter setting. We use the Adam optimizer,
where the initial learning rate of x and s is 0.02 and that
of the learning rate of A is 0.005. The batch size is 512,
and the learning rate is reduced to one-tenth for every 20
epochs.

4.4. Training Sphere Face Model with 2D Data

In the second stage, we train a model to reconstruct the
2D face image. Here, the decoder is initialized by the first
stage and will be finetuned during this stage. Here, ¢ de-
notes the weight of a loss term.

loss function The loss function consists of three com-
ponents: landmark loss, photometric loss, and recognition



loss. The landmark loss and recognition loss would take
effect according to the label of training data as follows:

I = Lpiz (IT; I) + 6lLland + ErLreg
Lpiz(Ir7 I) + 55Lid + Z':7"Lreg

1 S Srecon
ISy
(10)

where L,;, is the photometric loss, Ljqnq is the landmark
loss, and L4 is the recognition loss. I, is the rendered im-
age and I is the input image. The set Syc.oq represents the
training data with landmark annotations and S;4 is the the
training data with identity annotations. We explain these
losses in detail below.

The landmark term L, 4 uses the L loss between pro-
jected landmarks Vzd and ground-truth landmarks V54:

1 ~
Ligna = N HVQd — Vde2 (11)

where N is the number of landmarks.

Face recognition loss includes three components as
shown in Equation(12): a softmax-based loss, a centerness
loss, and a Kullback-Leibler loss.

Lid = Lsoft + EcenterLcenter + Ek',lLkl (12)

We use cosloss [62] L, : as the softmax-based loss, which
applies to the identity parameters. The Kullback-Leibler
loss [27] Ly and Lgepter center loss [63] are applied to the
scale parameter.

Photometric loss measures the difference between the
rendered image and the input image using pixel-wise dif-
ferences to measure the absolute errors between each corre-
sponding pixel pair with the weights of a confidence map
[64], which aims to deal with occlusions or other chal-
lenging appearance variations such as beard and hair. The
weighted pixel-wise loss is defined as follows:

\/iel,u'u
Z n \[qu - (13)

me (Iry I

uv

where £y , = |I* — I"?| is the L; distance between the
intensity of input image I and the reconstructed image I, at
location (u, v) and o € RYXH is the confidence map. €2 is
the 2D image space.

As shown in Equation 14, the regularization term L,
consists of two parts: parameter-level regularity 10ss L ¢q
and mesh-level regularity 10SS Ly, reg.

Lreg = Lpreg + 5mrengreg (14)

The regularization term of L,,.., for 3DMM coefficients is
defined as:

Mid mGCEP malb lb
2 p] a
Lpreg = &id E aidj + Eexp § + €aib §
j=1 j=1 ezpy j=1 alb

15)

where o), is an eigenvalue of the expression basis and o4,
is an eigenvalue of the albedo basis. cv;q, tesp and agyy are
the 3DMM parameters which are regressed by the encoder
network as shown in Figure 2; m;q, Meyp and myy, are the
dimensions of the shape, expression and albedo parameters
respectively.

The mesh-level regular loss consists of the smooth loss,
the symmetrical loss and the residual loss.

Lmreg = Lsmooth + Lsym + Lres (16)

1 N
Lamootn(G N; i INI > Gyl an

G eN;

where G is the reconstructed face shape, AV; denotes a set of
a neighboring vertices G; and NV is the number of vertices.

We assume that the human faces in natural expressions
are symmetric about the center axis and add the face shape
geometry symmetrical loss:

Lsym(G) =G~ filp(G)||1 (18)

where flip() is the operation to flip the face shape geome-

try.
The residual loss is:

Les(G) = |G = G|, (19)

where G is the mean face geometry.

More Training Details Currently, there are no large
public databases that contain both face identity labels and
landmark labels. Moreover, since the results of existing
face detectors are unsatisfactory in challenging conditions,
we do not automatically generate landmarks in the face
recognition dataset. Therefore, we use the mixed data from
300W-LP [69] and VGGFace2 [13]. To successfully train
our model with the mixed dataset, we use the following
strategy to achieve convergence:

(1)Switch the loss function:  Because the labels in
the mixed database are deficient, we determine which loss
terms take effect according to the labels of the training sam-
ples. For example, if the training sample is from VGGface2,
we enable face recognition loss and photometric loss. Oth-
erwise, the landmark loss and photometric loss take effect
as shown in Equation 10.

(2) Warm up the network: To warm up the network, we
train our network on the 300W-LP [69] database only us-
ing Specon, then train the mixed database with the full loss
function shown in 10.

(3) Balance the data from different datasets: Because
the VGGface2 contains 3.31 million images while 300W-
LP [43] contains 61,255 samples, which are extremely un-



Model PCA Linear  Sphere-Linear =~ SFM
RMSE | 0.2777 0.2916 0.2808 0.2827
SCE -0.0490 -0.0492 -0.0490 0.1193
SCC -0.1068 -0.1073 -0.1068 0.2038
CH 15.86 15.89 15.86 25.81

Table 1. The results of model representation ability and its shape
parameter separability in FRGCv2 database.

Model ‘ PCA  Linear Sphere-Linear = SFM

RMSE | 0.3747 0.3924 0.3790 0.3863
SCE 0.1061 0.1059 0.1061 0.2236
SCC 0.1474  0.1470 0.1473 0.3513
CH 9.01 9.03 9.01 10.28

Table 2. The results of model representation ability and its shape
parameter separability in Bosphorus database.

Model | BEFM17 FLAME SFM = SEM*
RMSE | 0.6137  0.4820 0.3501 0.4355
SCE 0.1674  0.0928  0.2247 0.2953
SCC 0.2451  0.1700 0.3616 0.4514
CH 6.87 3.85 9.50 11.04

Table 3. Compare the model representation ability and its shape
parameter separability with BFM17 [21] and FLAME [30] in
Bosphorus database.The SFM* is the SFM finetuned with 2d data.

balanced, we design a sampling scheme where the proba-
bility of selecting samples from the VGGFace?2 is given by:
Nrecon
P=——— 20

NTECO_(] + Nrecon ( )
Here, N, ccon 1s the number of samples in 300W-LP dataset
and N,.ccoq4 is that in VGGFace2 dataset. The probability of
selecting samples from 300W-LP database is 1 — P.

5. Experiment

Comparing with the previous methods, SFMs have the
following properties: (1) The shape parameter space of
SFMs has inherent separation property between the vari-
ous classes; (2) The shape parameter space distribution of
SFM is similar to that of identity embeddings, so that the
losses for face recognition and face reconstruction can be
easily optimized together in the pipeline of shape-consistent
face reconstruction; (3) SFM has better capabilities for
face representation. Therefore, in this section, we evaluate
SFMs from the following three aspects: model representa-
tion ability, shape parameter space separability, and shape-
consistent monocular reconstruction performance.

5.1. Model Representation Ability

To validate the expressive ability of face representation
models, we reconstruct 3D meshes on the training and test-

ing database, respectively, with the same dimension of the
latent vector(all of 199 dimensions in this paper). Evalua-
tion of the training database shows the ability of the models
to recover the meshes of the training data. We also verify
the generalizability of our model by fitting meshes for the
testing database. We also present the result of the parameter
interpolation.

Our training dataset is FRGCv2 [41], and the testing
dataset is the Bosphorus Database [45], which contains
4666 3D face models of 105 people. The models for each
person have various expressions, poses, and occlusions. In
our experiment, we select the face with a frontal natural ex-
pression for each person, and register all the data on the
BFM 2017 [4] template. We first use rigid registration [7]
to align the template with the point cloud roughly and then
use non-rigid ICP [3]. When performing non-rigid registra-
tion, we first register with strong, rigid regular parameters
and then use smaller regular parameters to perform more
delicate meshes registration.

In our experiment, we select the face with a natural
frontal expression for each person and register all the data
on the BFM 2017 [4] template using non-rigid ICPs [3]. We
use the Adam optimizer to optimize the face parameters of
the model. The initial learning rate is 0.02 and reduced by
a factor of 0.5 for every 128th iteration. The total optimiza-
tion iteration number is 1000.

The Root Mean Square Error(RMSE) between the recon-
structed meshes and the ground truth for the training dataset
is shown in Table 1, and that for the testing dataset is in Ta-
ble 2. We use the face model trained with FRGCv2 but
use different methods when generating the above results.
“PCA” means the face model is directly established by the
PCA method. “Linear” means the face model is established
by optimizing an orthogonal linear basis. “Sphere-Linear”
refers to using the structure of SFM without the loss of face
recognition when constructing the face shape. The expres-
sion ability of our SFM basis is slightly better than that
of the linear basis but worse than PCA. Because when the
face model has a linear orthogonal basis, the basis solved
by PCA has the smallest reconstruction error, which is the
optimal solution. Our reconstruction accuracy is slightly
lower than PCA’s, but has a better separation in the shape
parameter space.

Table 3 shows the comparison between SFMs with the
shape models of BFM2017 and FLAME on the Bosphorus
database. We crop the face area for fitting because other ar-
eas (ears, neck) are irrelevant to our task and can largely in-
fluence the RMSE. We use the point-to-plane error to calcu-
late RMSE. The results show that our face model has fewer
reconstruction errors than others. Figure 3 shows some fit-
ting results on the Bosphorus database. SFMs are competi-
tive among all the validated 3DMMs in terms of expressive
ability, with the best visual quality of the generated recon-
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Figure 3. The fitting results of BEM17 [21], FLAME [30] and
ours. The first row is the fitted mesh and the second row is the
error map with ground truth. SEM* is the SFM fine-tuned with 2d
data.
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Figure 4. On the left and right are two different scanning models.
We first find their identity parameters and scale parameters. Then
we perform the interpolation of the identity parameters on the hy-
persphere and perform linear interpolation on the scale parameter.
Columns 2-5 are the result of interpolation.

struction results.

Figure 4 shows that the parameters of our basis have an
excellent interpolation performance. We use the geodesic
distance to interpolate the identity parameters and directly
interpolate the scale parameters linearly.

5.2. Separability of Shape Parameter Space

After fitting all the 3D scans of a database, we get
the parameters of the corresponding 3DMM model in this
database. We can evaluate the clustering properties of these
parameters to estimate the degree of separation of shape pa-
rameter space. The performance of clustering can be eval-
uated with the following metrics: the Silhouette Coefficient
score with Euclidean distance(SCE), Silhouette Coefficient
with Cosine distance(SCC), and Calinski-Harabasz score
indicators(CH). The Silhouette Coefficients are given as:

n

a; — bi
o= Z max(a;, b;)

=1

21

where a; is the mean distance between ¢th sample and all
other points of the same class and b; is the mean distance

BFM2017

SFM

SFM*

Figure 5. The latent vector distributions of different methods. We
select 20 people on FRGCv2, fitting the shape parameter, and then
use t-SNE to reduce the shape parameter to two dimensions and
display it on this figure. Different colors represent different peo-
ple.The SFM* is the SFM fine-tuned with 2d data.

Method \ LFW \ CFP-FP | YTF
Cosine similarity
3DMM-CNN | 90.53 - 88.28
Lui et al. 94.40 - 88.74
D3FR 88.98 | 66.58 | 81.00
TDDFA 64.90 | 57.57 | 58.50
MGCNet 82.10 | 70.87 | 75.58
RingNet 7940 | 7141 | 71.02
DECA 81.70 | 6598 | 78.64
Jiang et al 95.36 | 83.34 | 89.07
SFM 9723 | 89.12 | 91.35
SFM* 98.23 | 91.12 | 93.86
Euclidean similarity
D3FR 87.63 | 66.50 | 81.10
TDDFA 6345 | 5549 | 58.16
MGCNet 80.87 | 66.01 | 72.36
RingNet 80.05 | 69.46 | 72.40
DECA 80.32 | 63.49 | 76.46
Jiang et al 94.47 | 80.78 | 86.40
SFM 97.07 | 87.12 | 90.43
SFM* 98.03 | 90.79 | 92.60

Table 4. Face verification accuracy(%) on the LFW, CFP-FP and
YTF datasets. Our results are obtained using the weighted center
loss. We compare our results with 3DMM-CNN [57], Liu et al.
33], D3FR [17], TDDFA [22], MGCNet [49], Jiang et al [24],
RingNet [44] and DECA [18]. SFM* is the SFM fine-tuned with
2d data.

between ¢th sample and all other points of the nearest clus-
ter. n is the number of the sample. The score is the ratio of
the sum of between-cluster dispersion and of within-cluster
dispersion for all clusters (where dispersion is defined as
the sum of squared distances ). The Calinski-Harabasz
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Figure 6. Ablation experimentson samples from MICC [5] dataset.
SFM* is the SFM fine-tuned with 2d data.

score(CH) is defined as the ratio of the between-clusters dis-
persion mean and the within-cluster dispersion:

tr(By) np—k

T We k-1 (22)

where By, is the trace of the between-cluster dispersion ma-
trix and W, is the trace of the within-cluster dispersion ma-
trix defined by:

k
:ZZ z—cg)(x—cy)T
e (23)

T

q — Ce )(c q_cE)

HM»

with C; the set of points in cluster g, ¢, the center of cluster
g, cg the center of I/, and n,, the number of points in cluster
q.

Tablel and Table 2 show the results of shape parameter
space separation of SFMs and the shape basis constructed
by other methods. We add the face recognition loss while
establishing the SFM basis, significantly improving shape
parameter space separation. Table 3 shows the comparison
between our basis and other basis. The separability of our
shape parameter space is also higher than other models. In
order to present the distribution of shape parameter space
more intuitively, we use t-SNE [58] to project the shape pa-
rameters of different bases to two dimensions. As shown
in Figure 5, the intra-class distance of the shape parameter
space of SFM is small, and the inter-class distance is large.
Compared with other methods, the shape parameter space
of our basis shows a much better separation.

5.3. Monocular Reconstruction

To test the face monocular reconstruction, we use the
same encoder-decoder network in the second training stage

Lui et al. D3FR DECA Ours

Ringnet

Figure 7. Comparison with liu et al. [33], Ringnet [44], D3FR[17]
and DECA [18] on three MICC [5] subjects. Our reconstruction
results capture more face details.

D3FR MGCNet  Ours 4mm

Omm

Figure 8. Comparison with D3FR [17], MGCNet [49] on LFW
samples The reconstruction results are the same person under dif-
ferent conditions. The third and sixth rows are the error between
two meshes in the same column.

as the shape-consistent face reconstruction pipeline. Unlike
the training phase, when performing inference for monocu-



Figure 9. The visualization results on ALFW2000 dataset. The first row: images from ALFW2000 dataset. The second row: the result of
3DDFA v2 [22]. The third row: the results of ringnet [44]. The forth row: the results of DECA [18]. The last row: the results of ours.

——

Figure 10. Some samples of user study, The first row: samples from ALFW2000 dataset. The second row: our results. The third row: the
results of ringnet [44]. The forth row: the results of D3FR [17]. The fifth row: the results of MGCNet [49]. The last row: the results of
DECA [18].



lar reconstruction, we fix the weight of the shape basis and
retrain the encoder to regress the parameters. In this sec-
tion, we evaluate the faithfulness and shape consistency of
monocular face reconstruction results using SFM. In terms
of faithfulness, we compared the visual results with other
face reconstruction methods. Moreover, we compare the ac-
curacy of 3D face alignment. In terms of shape consistency,
we compare the accuracy of the face recognition using the
shape parameters and the visual results of the same person
reconstructed in different environments. In this subsection,
when comparing with methods, “ours” means that we use
the SFM finetuned with 2D data.

Face shape consistency evaluation. We use the cosine
distance and Euclidean distance as the similarity measure-
ments between two groups of shape parameters, when eval-
uating the face recognition accuracy. The result of face
recognition performance is shown in Table 4. The accu-
racy of our face recognition parameters is higher than other
methods. The results get better after SFM is finetuned with
2D data because finetuning with 2D face data results in a
more robust generalization model. Figure 8 shows the vi-
sualization results of the 3D face reconstructed by the same
person in different environments. We have smaller errors
among the meshes reconstructed for the same person.

Face faithfulness evaluation. As shown in Figure 6,
finetuning with 2d data can improve the expression ability
of the model and generate faces with more details. Figure 7
shows that our reconstruction results capture more face de-
tails compared to other face reconstruction methods. Figure
11 shows the cumulative errors distribution curve of 3D face
alignment compared with other methods, Figure 9 shows
the visual results of face alignment and Figure 10 shows
the visual results of face shape. Both quantitative and vi-
sual evaluations show that in terms of face faithfulness our
method has better performance than previous methods.

User study. We conducted a user study to compare the
visual diversity and the degree of retention of the recon-
structed face shape on the identity information. We ran-
domly selected 20 face images from ALFW2000 and re-
constructed 3D face models using the following methods:
RingNet [44], D3FR [17], MGCNet [49] and our SFM, and
in turn asked 5 participants to evaluate the reconstructed
faces’ diversity and the retention of identity information of
the reconstructed faces from the input image with a score
from O to 10. Participants were told that the reconstruc-
tion results with more identity information maintained or
more diversity of different people should be scored higher.
The average scores of the results from different methods are
shown in the Figure 12. The “identity” means the degree of
identity preservation, and the “diversity” means the diver-
sity among the 3D faces reconstructed from different peo-
ple. Results and comparisons vividly show the advantages
of our method.

Alignment Accuracy on AFLW2000 Dataset(68 points)

80
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Number of images (%)
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MNME normalized by bounding box size

T
0.02

Figure 11. The cumulative errors distribution curve of 3d face
alignment accuracy on the ALFW2000 Dataset. Compared with
PRNet [19], 3ddfa [70], our method produces better results.

User Study

10
Ours
D3FR
MGCNet
Ringnet
DECA

6.42 631 6.33

Score

Identity
The types of evaluation

Diversity

Figure 12. The results of user study. We compare our SFM with
RingNet [44], D3FR [17], MGCNet [49] and DECA [18] in terms
of identity and diversity, and our results are more satisfactory.

6. Conclusion

We have proposed a novel 3D morphable model with a
hypersphere manifold shape parameter space for face gen-
eration. We have also proposed a two-stage training frame-
work where both 3D and 2D data were utilized. Our model
outperformed previous models on the consistency and the
fidelity of the reconstructed faces. Experimental results val-
idated that our method is superior to previous methods ob-
jectively, and user study showed that our model can provide
visually better face reconstruction results.
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