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Abstract

Many geometric optimization problems contain a ref-
erence constraint that restricts the optimized vertices
on a reference mesh. This constraint is highly non-
linear and non-convex. The existing methods usually
suffer from a breach of condition or low optimization
quality. In this paper, we present a novel framework
for geometric optimization problems with reference con-
straints. Central to our framework is using planar pa-
rameterizations that makes it unnecessary to deal with
the reference constraint. As a consequence, our opti-
mization is performed in the parameterized domains.
The parameterizations should possess very low isomet-
ric distortions to maintain the optimization results when
mapping them from the plane back to the reference sur-
face. Therefore, we iteratively select one patch from the
view of developability to ensure low isometric distortion,
compute a planar parameterization, perform geometric
optimization in the parameterized domain, and map the
optimized result back to the reference mesh. We demon-
strate the efficacy of our method through a variety of
geometric processing tasks. Compared to existing meth-
ods, we achieve much better optimization results while
satisfying the reference constraints.

1. Introduction

Geometric optimization plays a fundamental role in many
computer graphics and geometric processing tasks, such as
surface parameterizations, mesh deformation, mesh quality
improvement. These tasks are usually formulated as con-
strained optimization problems. This paper focuses on the
reference-constrained geometric optimization problem:

min
P

E(P)

s.t. pi ∈ R,∀pi ∈ P,
(1)

where P is the set of vertices to be optimized and is usually
initialized as the vertices of a mesh M, R is a reference
mesh, and E denotes the objective energy function. In the
problem, the optimized vertex pi is constrained on the ref-
erence mesh R. Many applications can be formulated as

this problem, such as compatible remeshing [1, 37, 26], sur-
face mesh quality optimization [12, 38, 36], and peeling art
design [16].

This problem is very challenging. The reasons are
twofold. First, it is almost impossible to calculate the deriva-
tives of the constraints, so the common numerical optimiza-
tion algorithms cannot be applied. Second, the curvature of
the reference meshR increases the difficulty of handling the
reference constraint.

To resolve this challenging problem, one common
methodology first converts the hard reference constraint to a
soft constraint that restricts the vertex updates in the tangen-
tial planes and then projects the updated vertices back on the
reference mesh using the closest point projection [7, 2, 21].
However, this methodology has two main limitations. First,
since the optimized energy combines the energy function
E with the soft constraint, the optimization process does
not only minimize E, thereby causing a side effect on the
optimization of E. Second, for different R and E, using a
fixed parameter to control the tradeoff between the energy
function E and the soft constraint is almost impossible.

We propose a novel optimization framework for the
reference-constrained geometric optimization problem (1).
The key observation of our approach is that if the reference
meshR is planar, the reference constraint can be converted
to a linear constraint, thereby significantly reducing the diffi-
culty of solving the problem. However, the reference mesh
R is not planar in general. To this end, the parameterized
domain is introduced to perform the geometric optimization
of E. This is our key idea.

Nevertheless, parameterizations are often computed for
disk-topology surfaces. Thus, each time one disk-topology
patch is selected from the reference meshR for being opti-
mized. Besides, parameterizations should possess low iso-
metric distortions to maintain the optimized results when
mapping them back to the reference meshR. To ensure low
isometric distortion, the disk-topology patch is selected from
the view of developability. In a world, we iteratively per-
form the following four steps until convergence: (1) select a
disk-topology patch, (2) parameterize the patch, (3) perform
geometric optimization in plane while fixing the boundary
to ease the fourth step, (4) map the optimized result back to
the reference mesh.
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Figure 1. Our optimization framework is applied to three reference-constrained geometric optimization problems (See more details in
Section 4). For compatible remeshing, the initial compatible meshes (left and middle) contains a high distortion that is optimized to generate
the resulting compatible meshes (left and right). For quadrilateral mesh optimization or minimum angle improvement, the left mesh is
the input , the right is the output. For quadrilateral mesh optimization, the left histogram shows the distribution of edge length, the right
histogram shows the distribution of the corner angle. From the zoomed-in views, our algorithm significantly improves the mesh quality.

Our method is capable of focusing on optimizing the
target energy function without parameter tuning. We demon-
strate the feasibility and efficacy of our method in various
applications, including compatible remeshing, quadrilateral
mesh optimization, minimum angle improvement (Figure 1).
Compared to state-of-the-art methods, our method achieves
better quality.

2. Related Work

Geometric optimization Geometric processing tasks are
usually formulated as nonlinear minimization problems.
Many numerical optimization approaches have been devel-
oped to solve these problems. Most algorithms make ef-
fort to find suitable descent directions to efficiently reduce
the energy, such as the local-global solvers [23, 32, 19, 2],
quasi-Newton methods [41, 31], and second-order meth-
ods [29, 5, 35, 8, 30]. Besides the aforementioned solvers,
there are techniques [18, 13, 21] aimed at accelerating the
existing solvers. The above methods focus on solvers.

This paper considers one type of geometric optimization
problem that constrains the optimized vertices on a refer-
ence mesh. The core problems of many applications fall
into this category, such as compatible remeshing [1, 37, 26],
wire mesh design [7, 21], mesh quality improvement [9],
and quad-mesh based design [10, 17]. As the constraints
are not differentiable, one common solution is to relax the
hard constraints to the soft ones, and then optimize the
combined energy including optimization objectives and the
soft constraints. As shown in the aforementioned section,
the solution suffers from sophisticated parameters adjust-
ment and ambiguous optimization energy. We propose a
parameterization-based geometric processing method that
decouples the optimization and the hard constraints.

Parameterization-based geometric processing Parame-
terizations are useful tools and have been applied to many
problems, such as inter-surface mapping [1, 25], compatible
remeshing [37], triangular mesh remeshing [4, 34]. We use
parameterizations for solving the reference-constrained geo-
metric optimization problem. To adapt to the disk topology

requirement of computing parameterizations, we perform
the optimization one patch by one patch.

Mesh cutting for parameterizations The parameteriza-
tions of the selected patches should have low isometric dis-
tortions. Generally, three common strategies are proposed
to generate cuts for low parameterizations. First, the point-
to-cut methods [40, 3, 27, 28] first detect feature points and
then connect those points with a short path to construct cuts.
Second, the coupling optimization methods [15, 22] simulta-
neously optimizes the parameterization distortion and the cut
length. Those two strategies usually generate a single patch,
suffering from slightly high distortion or costly computation.
Third, segmentation-based methods [11, 14, 24, 39] adopt
some auxiliary guidance, such as crease lines and devel-
opability, to partition the input mesh into multiple patches.
Since only a fraction of the input mesh needs to be processed,
low distortion is easily available. Moreover, when the patch
is developable, an isometric parameterization can be eas-
ily achieved. We follow the third strategy to construct the
patches. Especially, similar to the D-Chart algorithm [11],
we employ a region-growing approach to generate the nearly
developable patches.

3. Method

3.1. Problem overview

Inputs and goals Given a reference mesh R and a trian-
gular meshM whose vertices lie onR, we seek to compute
a new shape represented by a discrete set of vertices P . Our
goal is to minimize an user-specified energy while being sub-
ject to the hard constraint, i.e., the vertices P should lie on
R. We call this problem a reference-constrained geometric
optimization problem. The vertices P is initialized by the
vertices ofM.

Formulation The reference-constrained geometric opti-
mization problem can be formulated as follows:

min
P

E(P)

s.t. pi ∈ R,∀pi ∈ P,
(2)
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(a1)Q (a2)M (a3) P0 (a4) P1 (a5) P

(b1) (b2) (b3) (b4)

Figure 2. Workflow of our method. The initial compatible meshes areQ andM. Pn represents the optimized mesh at the nth iteration. The
final result is P . During each iteration, we perform an inner loop (upper row). At each inner iteration, we first select a nearly-developable
patch (b1) that is bijectively parameterized to obtain a 2D patch (b2), then perform the geometric optimization on the parameterized domain
to produce a new mesh (b3), finally map the optimized mesh back to the reference mesh (b4). We repeat these the inner iterations until all
triangles inM are touched.

where E(P) is the energy function that is always related to
optimization objectives, design intent or fabrication require-
ments, such as low distortion, regularity and planarity.

Challenges The existing algorithms always employ an iter-
ative two-step strategy that alternately performs optimization
with relaxed soft constraints and projects back to the refer-
ence shape [7, 2, 21]. Since the projection operator is not
differentiable and the weight between the optimization ob-
jectives and the soft constraint is difficult to tune, it often
leads to inefficiency and unsatisfying results.

Methodology Our key observation is as follows: when the
reference R is a simple plane, the hard constraint can be
ignored by explicitly representing P as the points on the
plane R. When it comes to the general cases, i.e., R is a
free surface, the closed-form expression for the points on
R is unavailable. Fortunately, a planar parameterization is
an useful tool to transform a surface onto the plane. With
the assistance of the parameterizations, we can decouple
the optimization with the constraint and ignore the hard
constraint in the optimization phase. Thus, we propose a
parameterization-based method to solve this optimization
problem (2) (Section 3.2).

3.2. Parameteriaztion-based solution

Our algorithm is shown in Algorithm 1. Figure 2 shows an
example to illustrate our pipeline. Specifically, we iteratively
select nearly-developable patch (Section 3.3), parameterize
the patch bijectively, perform the geometric optimization on

ALGORITHM 1: Parameteriaztion-based geometric opti-
mization
Input :Triangular meshM∈ R3, Reference meshR ∈ R3

Output :Optimized shape P ∈ R3

Initialize P with the vertices ofM.
while the positions of P not convergence do

while exist untouch region ofM do
P ← PatchSelection(M) (3.3);
P p ← PatchParameterization(P );
P̂ ← GeometricOptimization(P p) (3.4);
P ← MappingBackToReference(P̂ );

end
end

the parameterized domain, map the optimized mesh back
toM by barycentric interpolation, and map the optimized
M back to the reference meshR by closest point projection
(Section 3.4).

3.3. Patch selection

Requirements The selected patch needs to satisfy two
conditions. First, the patch can be parameterized to the
plane with low isometric distortion, in which case the opti-
mized patch recovered by barycentric interpolation approx-
imates the source surface. Second, the patch should be
disk-topology, which is suitable for parameterizations.

Developable surfaces We achieve the low isometric dis-
tortion goal by selecting the nearly-developable patch, simi-
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Seed

Figure 3. The patch growing from the seed consists of two parts:
(1) the interior region (purple) is visited and (2) the 2-ring boundary
region (blue) is untouched. The seed of next patch is randomly
selected from the untouched triangles.

lar to [11]. Cone, cylinder, plane are three common types of
the developable surface. They can be represented by a proxy
(np, θp) where np is unit vector representing the axis direc-
tion and θp represents the angle between the surface normal
and the axis. Given a triangle t with normal nt, we define
the following cost term to measure how well the triangle fits
into the cone patch P :

E(P, t) = (< np, nt > −cosθp)2 (3)

For a given patch P , a simply connected region consisting
of a set of triangles, its proxy can be computed by solving
the following constrained optimization problem:

min
np,θp

∑
t∈P

AtE(P, t), s.t. ‖np‖2 = 1. (4)

where At is the area of the triangle t.

Patch growing process The cone patch selection process
is as follows:

1. Randomly choose a triangle t as the seed of the patch,
instead of directly employing (nt, 0) as the proxy, we
compute the proxies for three candidate patches—the
1-ring faces around each of the three vertices, and select
the proxy with minimal cost as our initialization. Push
the adjacent triangles of the seed into a priority queue
Q, which is sorted according to the fitting cost in ascent
order.

2. If the Q is not empty, pop the top triangle with minimal
cost; otherwise, the growing process terminates.

3. If the minimal cost is less than a threshold εd, add it
into the patch, push its adjacent triangles into Q, and
go to step 2; otherwise, stop the algorithm.

The threshold εd controls the developability of the patch.
The choice of this parameter is discussed in Section 5.1.

Q M P
Figure 4. Compatible remeshing. The initial compatible meshes
are Q and M. After reducing distortion by solving (5), M is
optimized to P .

3.4. Optimization on patches

Once a nearly-developable patch of M is generated,
we construct the bijective parameterizations for this patch
by [33]. Then, we perform the geometric optimization on
the parameterized domain. After the optimization finishes,
the optimized vertices are mapped back toM by barycentric
coordinates interpolation. Finally, the shapeM are mapped
to the reference meshR by closest point projection.

Details There is no well-defined mapping between the
unselected part ofM and the 2D region outside the boundary
of the parameterized domain. Moreover, the selected patch
after optimization should be compatible with the rest part of
M. Thus, we keep the boundary of the selected patch fixed
in the optimization for convenience.

Since the boundary is fixed during the optimization, we
set the patch faces other than the 2-ring faces of the boundary
as the touched state (Figure 3). Each iteration we randomly
select an untouched face as the seed of the new cone patch.
The inner loop of the Algorithm 1 terminates until all the
faces have been touched.

4. Applications

Based on our parameterization-based solution, we imple-
ment three common reference-constrained geometric pro-
cessing tasks:

• Compatible remeshing.

• Quadrilateral mesh optimization.

• Minimum angle improvement.

The only one step in the Algorithm 1 that needs to be modi-
fied to adapt to different applications is performing geometric
optimization in the parameterized domain. The other steps
remain the same in various applications. Thus, we focus on
the altered step in the subsequent sections.

4
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Figure 5. Quadrilateral mesh optimization. Left: the input quad
mesh. Right: the resulting quad mesh after optimizing problem (7).
The corner angles are concentrated at 90◦ and the edge lengths are
more uniform after optimization.

4.1. Compatible remeshing

Given two oriented and topologically equivalent surfaces
respectively represented byQ andR, we aim to seek a mesh
containing a set of vertices P that simultaneously satisfies
two requirements: possesses the same topology as Q and
represents a similar shape asR. The latter requires that the
vertices of P lie on R. To enable high-quality correspon-
dences between the two surface, the mapping distortion be-
tween Q and P should be low. The bijection lifting method
[1] is employed to generate an initial P , a mesh denoted by
Mmeets the above two requirements but possesses poor cor-
respondences to Q. The mapping quality can be improved
by solving the following optimization problem:

min
Pp

E(Q, P p) =
∑
f∈Pp

D(Jf )

s.t. the boundary of P p is fixed,
(5)

where P p is the parameterized mesh of a selected patch
P , Jf is the Jacobian matrix of the mapping between the
triangle f of P p and its corresponding triangle in Q. D(Jf )
is the symmetric Dirichlet energy [31]:

D(Jf ) =

{
‖Jf‖2F + ‖J−1f ‖2F , if det(Jf ) > 0

+∞, otherwise.
(6)

where ‖·‖F denotes the Frobenius norm. As shown in Figure
4, the mapping distortion is effectively reduced after opti-
mization. Note that the optimization is performed on each
selected patch. We transfer texture and color to visualize the
correspondence between compatible meshes, similar to [37].

4.2. Quadrilateral mesh optimization

A high-quality quadrilateral mesh should satisfy the fol-
lowing three geometric constraints in our view: (1) all the
edge lengths are almost equal; (2) all four corner angles
in each face are approximating 90◦; (3) the quadrilateral
mesh approximates the given reference surfaceR. Instead
of optimizing a combined energy that explicitly measures
the deviation of edge length and angle like previous meth-
ods, we drive each corner triangle to approach an isosceles
right triangle. Specifically, we introduce two virtual diagonal

Figure 6. Minimum angle improvement. Left: the input triangle
surface with the minimum angle 14.88◦. Right: the optimized
mesh with the minimum angle 28.72◦.

edges into each quadrilateral that virtually split the quadri-
lateral into four triangles. The resulting simplicial complex
mesh P p is optimized by driving each triangle to approach a
specified reference triangle t̂. The optimization problem is
as follows:

min
Pp

E(P p) =
∑
f∈Pp

D(Jf )

s.t. the boundary of P p is fixed,
(7)

where Jf is the Jacobian matrix of the mapping between
triangle f and t̂, the reference t̂ is an isosceles right triangle
with leg length l, and D(Jf ) is the same as (6). Figure 5
shows the comparisons on the statistics of the corner angle
and edge length before and after optimization. The compari-
son shows that the corner angles are concentrated at 90◦ and
the edge lengths are more uniform after optimization. The
leg length l has a significant influence on the output, which is
discussed in Section 5.1. Note that in the parameterizations
step, we first convert the quadrilateral mesh to triangle mesh
by connecting any diagonal in each quadrilateral and then
parameterize the resulting triangle mesh.

4.3. Minimum angle improvement

Mesh quality has a significant impact on the downstream
applications, such as CAE, simulation. Minimum angle im-
provement is an essential technique to improve mesh quality.
In this application, the triangular meshM and the reference
mesh R are the same in the beginning. We minimize the
exponential MIPS energy [6], which can efficiently penalize
the worst elements. The reference for each triangle is an
equilateral triangle, whose edge length is set as the average
edge length. The optimization problem for each selected
patch is formulated as follows:

min
Pp

E(P p) =
∑
f∈Pp

exp
(
‖Jf‖2F
det(Jf )

)
s.t. the boundary of P p is fixed,

(8)

where Jf is the Jacobian matrix of the mapping between the
triangle f in P p and the equilateral triangle. We show an
example in Figure 6.
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(a) (b1) (b2) (c1) (c2) (d1) (d2)
Figure 7. Different initial meshesM for compatible remeshing. Given a surfaceQ (a) and three differentM (b1), (c1), and (d1), we obtain
similar results (b2), (c2) and (d2), respectively.

(a1) (a2) (b1) (b2) (c1) (c2)
Figure 8. Different inputs for minimum angle improvement. The minimum angles of three different inputs (a1), (b1) and (c1) are 17.76◦,
0.81◦ and 1.49◦, respectively. After optimization, the results are (a2), (b2) and (c2) with the minimum angles 29.92◦, 22.33◦ and 17.16◦.

(a) (b1) (b2) (c1) (c2) (d1) (d2)
Figure 9. Different Parameter εd. For the mesh (a), the optimized compatible meshes are computed by setting threshold εd = 0.1 (b2),
εd = 0.25 (c2), εd = 0.6 (d2). One selected patch is shown in (b1), (c1) and (d1), respectively.

5. Experiments

We have tested our algorithm on various pairs of 3D mod-
els to evaluate its performance. Our method is implemented
in C++, and all the experiments are performed on a desk-
top PC with a 3.60 GHz Intel Core i7-4790 and 16 GB of
RAM. We adopt the solver proposed by [30] to solve the
optimization problem. The linear systems are solved using
the Intelr Math Kernel Library. Statistics and timings for all
the demonstrated examples in three applications are reported
in Table 1, 2, and 3, respectively.

Quality metrics The mapping distortion between the two
compatible meshes before, after optimization are denoted
as Eb, Ea, respectively. The correspondence quality im-
provement can be observed from both the texture and the
reduction of the mapping distortion.

In quadrilateral mesh optimization, a quadrilateral mesh
with uniform edge length and perpendicular corner edge
directions is expected. We denote the relevant quality metrics
of the edge length divided by the average length and corner
angle as e†∗ and θ†∗, respectively. The subscript ∗ includes the
minimum min, maximum max, and standard deviation std.
We use the superscript b and a to represented the metrics
before and after the optimization.

For minimum angle improvement, we compute the min-

imum angles of each face, and report its minimum θmin,
average θavg, and standard deviation θstd.

5.1. Evaluations

Various initial meshes In the compatible remeshing ap-
plication, three initial meshesM with different quality of
correspondences are tested in Figure 7, where the two sur-
face meshQ andR are fixed. The first two initial meshes are
generated by the functional maps method [20] and bijection
lifting method [1], respectively. The third M is obtained
by randomly relocating the initial mesh of [20], respectively.
The mapping distortion is significantly reduced after the op-
timization in all the different inputs, which demonstrates the
robustness of our algorithm.

Various triangulations In the minimum angle improve-
ment application, three types of tessellations representing
the same surface are tested to demonstrates the robustness
of our method. As shown in Figure 8, the minimum angles
of all meshes are effectively improved.

Parameter εd The threshold εd controls the developability
level of the selected patch. In general, the larger εd, the
larger the size of the selected patch and the poorer developa-
bility. When εd is large, on one hand, only fewer patches are
needed to cover the entire surface. On the other hand, poor
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(a) (b1) (b2) (b3)
Figure 10. Different target edge lengths for quadrilateral mesh
optimization. From the input quadrilateral mesh (a), the optimizing
results are computed by setting target edge lengths l = 0.2ē (b1),
l = ē (b2), l = 5ē (b3).

Q P [37] P Ours
Figure 11. Comparison to [37] on a bust, an armadillo and an owl.

developability leads to slightly high parameterizations distor-
tion. Thus, there is a tradeoff in the choice of εd (Figure 9).
We set εd as 0.25 by default.

Various leg lengths In the quadrilateral mesh optimization
application, the leg length l of the isosceles right triangle
controls the output quadrilateral mesh edge length, and have
an influence on the final result in our experiment. In Figure
10, three different ls are tested: (1) l = 0.2ē, (2) l = ē, (3)
l = 5ē, where ē is the average edge length of the input mesh.
When l is set no more than ē, the regions around the singular
vertices and the regions with high mean curvature can not be
optimized effectively. When l is larger than ē, the optimized
edges approach a large target. Since the boundary is fixed
during the geometric optimization in 2D, approaching the
large target leads to a more uniform mesh. In our experiment,
we set l = 5ē by default.

5.2. Comparisons

In the compatible remeshing application, given the initial
meshM generated by the bijection lifting method [1], [37]

Input [21] Ours
Figure 12. Comparison to [21] on an edypt women, a jercy and a
garland.

optimizes a combined energy including the as-rigid-as-
possible energy and the soft constraints to reduce the map-
ping distortion. Figure 11 shows the comparison on three
models between our method and [37]. Judging from the
texture mapping, our method achieves lower distortion
than [37].

The wire mesh design problem [7] shares a similar goal
as ours to optimize the quad mesh. It treats the reference
constraint as a soft energy. [21] uses an Anderson acceler-
ation based solver for the wire mesh design problem. We
compare our method with [21] on three models in Figure 12.
As shown in Figure 12, our results are more uniform than
the results of [21]. In practice, [21] surfers from poor per-
formance when the quality of the input mesh is bad.

5.3. Testing on various models

More models are tested to demonstrated the robustness
and effectiveness of our algorithm. The results of the three
applications are shown in Figure 13, 14, and 15, respectively.
The statistics are included in Table 1, 2, and 3, respectively.

6. Conclusion

In this paper, we present a novel framework for geometric
optimization problems with reference constraints. To de-
couple the geometric optimization from the hard constraints,
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(a) (b) (c)

(d) (e)

(f) (g)
Figure 13. Gallery of our compatible meshes for seven selected pairs.

(a) (b) (c)

(d) (e)

(f) (g)
Figure 14. Gallery of quadrilateral mesh optimization for seven models. For each pair of models, the left model is the input and the right is
the output.
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(a)
(b)

(c) (d)

(e) (f)
Figure 15. Gallery of minimum angle improvement for six models. For each pair of models, we show the input model on the left and the
output on the right.

we iteratively select the nearly-developable patch, parame-
terize the patch, perform the geometric optimization on the
parameterized domain, and map the optimized mesh back to
the reference surface. Besides, our parameterization-based
solutions are successfully employed in three common appli-
cations: compatible remeshing, quadrilateral mesh optimiza-
tion, minimum angle improvement. A lot of experiments
show that our algorithm outperforms the previous methods.

Fixed topology Since only the positions of the vertices
are optimized and the topology keeps fixed during the opti-
mization, it limits the space for optimization and may lead to
limited improvement in the quadrilateral mesh optimization
and the minimum angle improvement applications. Thus,
simultaneously changing the topology and relocating the
position is a possible way to obtain a result with higher
quality.

High computational cost Our method is not dominant in
time. Since we process the mesh piece by piece, it costs

more time than the previous methods. Due to the locality of
our method, one interesting future work is to explore parallel
strategies to speed up our algorithm.
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Model #Vin/#Fin ebmin/e
b
max/e

b
std eamin/e

a
max/e

a
std θbmin/θ

b
max/θ

b
avg/θ

b
std θamin/θ

a
max/θ

a
avg/θ

a
std Nin/Nout time(s)

Fig.5 2086/4186 0.475/1.697/0.081 0.667/1.625/0.071 19.32/146.32/88.46/16.53 48.81/132.55/88.76/9.90 37 / 7 80.66

Fig.10 (b1) 3344/6594 0.154/4.615/0.010 0.158/3.158/0.008 12.94/175.40/89.75/13.28 24.71/170.35/89.86/8.71 36 / 6 100.65

Fig.10 (b2) 3344/6594 0.154/4.615/0.010 0.158/2.895/0.007 12.94/175.40/89.75/13.28 15.77/162.37/89.86/8.98 35 / 7 123.68

Fig.10 (b3) 3344/6594 0.154/4.615/0.010 0.078/5.000/0.009 12.94/175.40/89.75/13.28 10.60/162.37/89.87/10.91 33 / 7 120.40

Fig.12 Top 42010/84012 0.066/3.200/0.001 0.472/3.010/0.001 4.58/179.96/89.88/10.70 36.86/141.22/89.92/6.56 79 / 10 2103.44

Fig.12 Mid 70439/140874 0.111/3.889/0.002 0.333/3.000/0.002 2.64/179.42/89.62/18.32 8.39/151.65/89.79/9.70 261 / 18 7034.68

Fig.12 Bot 28882/57848 0.145/5.000/0.005 0.500/4.050/0.004 4.39/179.25/89.81/15.83 33.07/133.48/89.86/7.92 104 / 14 3469.21

Fig.14 (a) 3591/7182 0.495/1.505/0.040 0.604/1.594/0.075 28.12/155.66/89.36/16.99 43.78/125.21/89.56/6.25 30 / 6 75.36

Fig.14 (b) 2669/5334 0.265/1.633/0.002 0.583/1.417/0.004 18.53/157.65/89.31/18.27 50.6/127.22/89.58/6.93 19 / 8 58.24

Fig.14 (c) 2209/4414 0.632/1.823/0.047 0.652/1.500/0.061 30.71/147.52/89.21/18.65 55.80/126.79/89.44/7.49 35 / 5 98.72

Fig.14 (d) 2200/4396 0.508/1.564/0.190 0.628/1.764/0.340 33.37/160.48/89.13/21.58 42.48/128.4/89.41/9.40 33 / 9 83.98

Fig.14 (e) 2705/5406 0.281/3.253/0.470 0.674/1.927/0.450 10.56/175.15/88.89/27.74 50.46/127.16/89.34/10.22 45 / 8 90.39

Fig.14 (f) 2996/5996 0.389/1.951/0.204 0.560/1.725/0.248 21.58/166.36/88.78/20.84 41.10/134.96/89.19/9.56 52/6 40.82

Fig.14 (g) 3030/6056 0.508/1.864/0.003 0.509/2.000/0.007 15.91/157.95/89.08/26.01 39.44/136.68/89.51/11.62 48 / 9 71.50

Table 2. Statistics for quad mesh optimization. The table records the number of vertices and faces of the input mesh (”#Vin/#Fin ”),
related measures, the number of average inner iterations and outer iterations (”#Nin/#Nout ”), and the running time in seconds for all the
models.

Model #Vin/#Fin θbmin/θ
b
avg/θ

b
std θamin/θ

a
avg/θ

a
std Nin/Nout time(s)

Fig.1 (c) 4460/8916 9.15/50.28/10.06 39.09/52.43/7.89 27 / 9 98.54

Fig.6 10887/21770 14.88/50.82/9.50 28.72/ 52.03/8.29 36 / 7 125.22

Fig.8 (a2) 7536/15068 17.76/51.65/8.73 29.92/52.62/7.78 69 / 5 92.11

Fig.8 (b2) 5626/11848 0.81/45.73/19.09 22.33/47.19/18.36 66 / 6 98.33

Fig.8 (c2) 4457/8910 1.49/39.86/25.26 17.16/42.57/18.36 66 / 9 150.86

Fig.15 (a) 5724 / 11444 2.72/35.72/25.81 14.27/45.04/16.06 19 / 8 145.74

Fig.15 (b) 9279/18554 8.14/41.97/25.86 16.24/41.72/19.70 46 / 10 334.957

Fig.15 (c) 49988/100000 1.48/37.69/24.15 20.85/44.91/15.99 90 / 10 1042.51

Fig.15 (d) 41158/82332 17.33/53.67/6.81 35.34/53.70/6.83 79 /10 1042.51

Fig.15 (e) 12694/25392 9.47/51.58/8.74 35.78/52.61/7.73 78 / 10 200.69

Fig.15 (f) 6306/12608 16.97/52.53/8.30 32.36/53.43/7.09 29 / 7 93.95

Table 3. Statistics for minimum angle improvement. The ta-
ble records the number of vertices and faces of the input mesh
(”#Vin/#Fin ”), related measures, the number of average inner
iterations and outer iterations (”#Nin/#Nout ”), and the running
time in seconds for all the models.
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