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Fig. 1 Face view correction results (bottom) with our system for input videos (top). Our method produces natural-looking results across different scenarios, including
indoor and outdoor scenes, different lighting conditions, different skin tones, and users with glasses.

Abstract Face view is particularly important in person-
to-person communication. Disparity between the camera
location and the face orientation can result in undesirable
facial appearances of the participants during video
conferencing.  This phenomenon becomes particularly
notable on devices where the front-facing camera is placed
at unconventional locations such as below the display or
within the keyboard. In this paper, we takes the video stream
from a single RGB camera as input, and generates a video
stream that emulates the view from a virtual camera at a
designated location. The most challenging issue of this
problem is that the corrected view often needs out-of-plane
head rotations. To address this challenge, we reconstruct
3D face shape and re-render it into synthesized frames
according to the virtual camera location. To output the
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corrected video stream with natural appearance in real-time,
we propose several novel techniques including accurate
eyebrow reconstruction, high-quality blending between
corrected face image and background, and a template-based
3D reconstruction of glasses. Our system works well for
different lighting conditions and skin tones, and is able
to handle users wearing glasses. Extensive experiments
and user studies demonstrate that our proposed method can
achieve high-quality results.

1 Introduction

an essential role in human
It is desirable that natural

Face view plays
communication [14, 32, 33].
facial postures are preserved during video conferencing.
However, this requirement is not always satisfied with
existing consumer video conferencing systems.  For
example, for one-to-one video conferencing using a mobile
device or a laptop, a user tends to look at the screen area
where the other participant’s face is shown. At the same
time, the camera is placed at a location outside the screen.
As a result, it will appear that the person is not facing the
camera in the captured video, which can cause undesirable
facial appearances. This issue is becoming more noticeable
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in recent years with the popularity of thin-bezel displays on
laptops and mobile devices, as manufacturers start to place
the front-facing camera in unconventional locations rather
than above the display. For example, some laptops have a
camera at the bottom of the display or within the keyboard,
earning a nickname “nosecam” as it can lead to undesirable
exposure of the nostrils.

In the past, some methods based on custom-made
hardware setups have been proposed to improve the facial
appearance [2 1, 36]. However, they are often too expensive
for a consumer-level system. Another possibility is to
synthesize a facial image from the desired viewpoint based
on the input from the real camera(s). Some approaches
achieve reliable facial view synthesis using input from
multiple cameras [27, R ], but the high cost of
such a system limits its application for typical consumers.
Recently, some methods based on a single RGB-D or RGB
camera have been proposed. For example, Kuster et al. [26]
used the depth information from an RGB-D camera to
reconstruct 3D face geometry and generate a novel view.
However, its applicability is still limited, since most existing
laptops or smartphones are not equipped with such RGB-
D cameras. Later, Giger et al. [13] proposed a face view
correction method using a single webcam, reconstructing
the 3D face shape via Laplacian deformation based on the
detected face landmarks. However, it does not work well
for users who wear glasses, and its robustness is affected by
the accuracy of face landmarks detection. In recent years,
machine learning techniques have been applied to correct
or manipulate gazes in images or videos [19, 20, 25, 53],
which can be used to improve eye-to-eye contacts between
participants of video conferencing. However, they only
modify the eye regions and do not correct undesirable
appearance in other facial areas.

To reduce undesirable facial appearance caused by
camera locations, we need a method that can automatically
process the video captured by a camera to emulate the view
from a virtual camera placed at a designated location. To
make the solution practical, we prefer to use a system with
a simple hardware setup—ideally a single RGB camera—to
synthesize the novel view. There are a few challenges to
be addressed here. First, it is necessary to reconstruct the
3D face shape to accommodate the potentially large change
between the input view and the synthesized view. Despite
the recent success of monocular 3D face reconstruction [9,

, 43, 49], existing methods rely on parametric face models
and cannot recover the shapes of accessories such as glasses.
As face regions occluded by accessories in the original
view may be revealed in the novel view, the accessories
shapes must be considered during the novel view synthesis.
Secondly, the synthesized face view needs to replace the
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face in the original view. Due to the view discrepancy, the
boundaries of the two face views may not align. There
may be visual artifacts around the transition region between
the synthesized face and the original background. Finally,
for video conferencing applications, the system must be
efficient enough to generate the synthesized view in real-
time.

In this paper, we propose a real-time face view correction
system using a single RGB camera. Given the input
video stream, our system synthesizes in real-time a video
stream from the view of a virtual camera with a designated
location and orientation. For each input video frame,
we first recover the 3D face shape and orientation using
a convolutional neural network (CNN), with a novel
landmark correspondence update strategy to improve the
reconstruction accuracy. Then the reconstructed face is
re-rendered according to the transformation between the
coordinate systems of the real camera and the virtual
camera to derive the face view from the virtual camera,
which will replace the face region from the original frame.
To reduce visual artifacts between the rendered face and
the background in the original frame, we perform seam
optimization and Laplacian blending to achieve a natural
transition between them. For users wearing glasses, we
also propose a method to reconstruct the 3D shape of
glasses based on the detected landmarks and semantic
segmentation mask, and this is the first automatic 3D glasses
reconstruction method as far as we know. By rendering the
reconstructed 3D glasses shape and face shape together and
handling the visible area which is invisible in the original
view, natural appearance can be achieved. Experimental
results demonstrate that our method works well for various
application scenarios.

2 Related Work

3D Face Reconstruction 3D face reconstruction from a
single image and facial performance capture from a
monocular video have made significant progress in recent
years [56]. Most existing methods are based on parametric
models such as 3D Morphable Model (3ADMM) [I],
FaceWarehouse [7] and FLAME [29], which learn a linear
or bilinear basis from scanned 3D face data to represent
general face shapes. Traditional methods reconstruct a
3D face model from an image via an analysis-by-synthesis
approach, optimizing shape parameters by minimizing the
difference between rendered reconstruction and the given
image [!, 23]. Recently, machine learning techniques have
been adopted to learn a mapping from the face image to
its shape parameters [8, 11, 12, 16, 22, 38, 39, 42, 45, 48,

, 55]. Due to the lack of training data, some methods
used synthetic data [16, 38, 42, 55] while others adopted
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(a) Input

(b) Overlayed

(c) Seam Optimization (d) Laplacian Blending

Fig. 2 The pipeline of our method. (a) For an input face image, we reconstruct the 3D geometry and orientation of the face (shown at the bottom right corner). (b) The
reconstructed face is rendered from the view of a virtual camera and overlayed onto the original image. (c) We optimize the seam between the rendered face and the
original image to reduce visual artifacts. The bottom-right corners of (b) and (c) show the rendered face region mask before and after seam optimization, respectively.
(d) We apply Laplacian blending to refine the transition and produce the final result. Visual artifacts are highlighted with red ellipses, while the improvements are

highlighted with blue ellipses.

unsupervised or weakly-supervised learning strategies [8,
12,45, 48, 50]. To recover 3D face shapes from a monocular
video, Garrido et al. [10] used a multi-layer approach and
extracted a high-fidelity parameterized 3D face rig that
contains a generative wrinkle formation model capturing the
person-specific idiosyncrasies. Cao et al. [0] presented a
learning-based regression approach to fit a generic identity
and expression model to an RGB face video on the fly. Thies
et al. [49] proposed a method to jointly fit a parametric
model for identity, expression, and skin reflectance to the
input color, which achieves real-time 3D face tracking and
facial reenactment.

Face View Correction To improve eye contact in video
conferencing, Kuster et al. [26] proposed a face view
correction method based on an RGB-D camera, which
directly performs a 3D transformation of the head geometry
and then blends the corrected face image with the
background. Later, Giger et al. [13] presented a shape
deformation based method for face view correction for a
single webcam. Zhai et al. [52] proposed a system that
utilizes an RGB-D camera for gaze correction and face
beautification. Other methods aim at gaze correction only,
using machine learning techniques to modify the appearance
of the eye regions [19, 20, 25, 53]. Although they can
improve eye contact, these methods do not modify other face
regions. They cannot correct their undesirable appearance
due to camera locations.

Face Normalization Another problem related to our work
is face normalization, which aims to remove perspective
distortions, relight the face to an evenly lit environment,
and predict a frontal and neutral face for an input “in-the-
wild” face image. Many existing works utilize the 3D

face geometry information to frontalize the face orientation.
Hassner et al. [17] proposed a simple approach using a
template 3D surface to estimate the intrinsic camera matrix,
and the 2D face image is “corrected” based on the recovered
information. Given a single portrait photo, Fried et al. [9]
proposed to modify the relative pose and distance between
the camera and the subject by first recovering the 3D head
model and then warping the 2D image to approximate the
effect of the desired change in 3D. In very recent work, Zhao
et al. [54] presented a learning-based approach to remove
perspective distortion artifacts from unconstrained portraits
by directly learning a distortion correction flow map. Ngano
et al. [35] proposed a deep learning-based method that can
fully normalize unconstrained face images for the above
tasks. Yin et al. [51] presented a generative adversarial
network for photo-realistic face frontalization by capturing
both contextual dependencies and local consistency during
training.

3 Our Method

Our system takes the captured video as input and
generates a video that shows the view from a virtual camera
with a prescribed location and orientation in real-time.
We assume that the virtual camera has the same intrinsic
parameters as the real camera, so that the virtual camera
can be considered as moving the real camera to a different
location and/or orientation.
relative orientation between the two cameras is fixed during
the whole process, which is a common scenario in real-
world applications. To generate the view from the virtual
camera, we first use CNN to recover the shape, location, and
orientation of the 3D face with respect to the real camera.
The 3D face shape is then transformed into the camera
coordinate system of the virtual camera and rendered to
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We further assume that the
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derive a new face image that replaces the face in the original
frame. Finally, the rendered face image is blended with the
original frame to generate the final output. The algorithm
pipeline is shown in Fig. 2.

3.1 3D Face Reconstruction

Parametric Face Model We use a bilinear face model
based on FaceWarehouse [7] to encode facial identity and
expression. To facilitate the correction in the later step, we
follow [13] and only keep the face and neck parts of the
head model, as shown in Fig. 3 (right). We collect the
vertex coordinates of all face meshes from FaceWarehouse
into a third-order tensor and perform 2-mode singular value
decomposition (SVD) reduction along the identity mode
and the expression mode to generate a bilinear model that
approximates the original dataset:

F=C; x;09 %3 Oexp, (1
where C, is the reduced core tensor computed from the SVD
reduction, @;q, Qexp are identity and expression coefficients
that control the face shape, x; and X3 represent the
multiplication in the 2nd mode (identity) and the 3rd mode
(expression) respectively. Following [1], the facial albedo b
is represented with principal component analysis (PCA):

b =b+ AypQap, 2

where b is the average facial albedo, A, is the principle
axes extracted from a set of textured face meshes, and o,
is the albedo coefficient vector. The albedo basis is obtained
by transforming from the Basel Face Model (BFM) [37] to
the FaceWarehouse model via nonrigid registration [44].

Camera and Illumination Model We render the facial image
using the weak perspective projection model:

p, =IIRp, +t, (3)
where p, € R? and p, € R? are the locations of vertex

v in the world coordinate system and in the image plane
respectively, R € SO(3) is a rotation matrix, t = [t,,#,]7

1 0
is a translation vector, and IT = s 0 1 0} is the scaled

projection matrix with s being the scaling factor.

To model the lighting condition, we approximate the
global illumination using the spherical harmonics (SH) [34]
basis functions under the assumption that the face is a
Lambertian surface. The irradiance of a vertex v is
determined by its normal n,, and albedo b, via

(¢+1)?
I(n,,b,|y) = Z Vi (ny), )
where ¢, are the SH ba51s functions, and Yy =
(Y1 Y H)z]T are the SH coefficients with ¢ being the

maximal order of SH basis (¢ = 2 in this paper).

Learning-based 3D Face Reconstruction To recover the 3D
face shape, we use ResNet-18 [18] to directly regress the
parameters ¥ = {@d, Oexp, Cain, s, R, t, Y, ¢} from an input
image. Here c is a vector that describes the characteristics
of the image, including the occlusion ratio of the face region
and whether the subject wears glasses. Such characteristics
will be used for glasses reconstruction and validity judgment
in the correction step, as explained in Sections 3.4 and
3.5. Following recent self-supervised CNNs for 3D face
reconstruction [8, 48], we guide the CNN training using the
following loss function for each training image:

E(X) = Epho +wiEjan + W2Ereg +w3Echa. )

Here the photometric loss

pho Z ||Isyn

real( )||2
mE///

measures the con51stency between the input image and the
face image resulting from the regressed parameters, where
A denotes the set of pixels in the visible face regions, and
Loyn(m), Ireq1(m) are the synthetic color and the real color at
pixel m, respectively The landmark loss

Ex. ,— (TIRp, +t) |5
lan = |$| VEZ_L/)Hq py+ )”2

evaluates the distance between the detected landmarks in
the input image and the projections of the corresponding
landmark vertices from the 3D face model, where .Z is the
set of landmark vertices, and p,,q, denote 3D coordinates
of a landmark vertex v and the 2D coordinates of its
corresponding detected landmark, respectively. The term
g (22 (52 ()
=1 \ Oid,i =1 \ Oab,i i=1 \ Oexp,i

regularizes the parameters for the face shape and albedo,
where Gjq, Oecxp and Oy, are the corresponding singular
values obtained from the 2-mode SVD reduction or PCA.
E.p, is a loss function for the characteristics of the image,
and its definition will be explained in Section 3.5. Scalars
w1, wo and w3 are tuning weights and we set them to 3, 0.01
and 0.5 respectively. To train the network, we construct a
large-scale training dataset consisting of nearly 900K face
images from 500 subjects. The images are captured using
RGB cameras in different consumer laptops, smartphones,
and tablets. During the acquisition, the subjects sit or stand
in a variety of environments and perform various actions
such as scratching head, gesturing, making phone calls, and
so on. To improve the robustness of reconstruction, we
capture the face images from a variety of angles. We use the
method from [4] to detect facial landmarks for all images.

Landmark Correspondence Update The landmark vertices
on the face mesh are labeled based on the frontal pose.

For non-frontal face images, the detected 2D landmarks
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Fig. 3 The detected 2D landmarks on an input face image (left) and the
corresponding 3D landmarks on the face mesh (right).

Fig. 4 For a non-frontal face image (left), we dynamically update the 3D face
silhouette landmarks (shown in red) according to the current estimated rotation
for better correspondence with the detected 2D silhouette landmarks (shown in
cyan on the left).

along the face contour may not correspond well with the
We update the silhouette landmark
vertices according to the current rotation matrix R during
training.  Specifically, we pre-process the original face
mesh to derive a dense set of horizontal lines covering the

landmark vertices.

potential silhouette region from a rotated view (see Fig. 4).

For each face model in every mini-batch during training, we
choose the vertex with the smallest value of [N - V| from
each horizontal line to construct the estimated silhouette,
where N and V are the vertex normal and view direction,
respectively. Then for each 2D contour landmark, we update
its corresponding landmark vertex to the silhouette vertex
whose projection computed with Eq. (3) is the most nearby
(see Fig. 4).

Unlike other facial features, the shape of the eyebrows

can vary greatly between different persons (see Fig. 5).

Therefore, a fixed eyebrow landmark template as shown
in Fig. 3 (right) may not fit well to the detected eyebrow
landmarks in the input image, due to the limited number of
parameters for the 3D face shape. Inaccurate eyebrow shape
estimation will cause visual artifacts after view correction
due to depth ambiguity. To solve this problem, we propose
a novel strategy that can adaptively adjust the eyebrow
shape according to the input face image. We first label a
set of default eyebrow landmark vertices on the template
mesh. During training, the actual landmark vertices are

dynamically updated according to the current 3D face shape.

Specifically, we compute a tangential correction vector 8,

Fig. 5 Some eyebrows in different shapes, and the detected landmarks for the
eyebrow and the eye.

for each default eyebrow landmark vertex v (parameterized
using local coordinates in its tangent plane on the face
mesh), so that the projection p, + &, gets closer to its
corresponding 2D eyebrow landmark. Afterward, the mesh
vertex closest to the corrected position p, + 8, is chosen
as the updated landmark vertex. The correction vectors are
computed simultaneously via:

min ). ([TIR(p,+8,) +t— a3 +wen |A8,]3), (6)

vELy

where %, denotes the set of default eyebrow landmark
vertices. The second term in the target function is a
smoothness energy for the tangential corrections with a
weight wep,, which is set to 0.01. We first connect the default
eyebrow landmark vertices to form a closed polyline that
outlines the eyebrow boundary. Then A8, = 8, — %(8:“ +
8, ) is the discrete Laplacian operator of the tangential
corrections along the polyline at vertex v, where 83 ,8, are
the tangential corrections at its preceding and succeeding
landmark vertices, respectively.
regularizes the tangential corrections so that the updated
landmarks form a reasonable outline of the eyebrow shape.

The Laplacian energy

3.2 Pose Correction

With the learned parameters described above, Rp, in
Eq. (3) represents the learned position of a face vertex
v (up to a common translation for all vertices) using the
camera coordinate system of the real camera. Recall that
the relative orientation between the real camera and the
virtual camera is fixed. Therefore, we can pre-compute the
rotation R. between their camera coordinate systems, and
derive the position of v (up to a common translation for all
vertices) in the virtual camera’s coordinate system as R.Rp,.
Recall further that the two cameras have the same intrinsic
parameters, so the mapping II in Eq. (3) also describes the
scaled projection matrix of the virtual camera. Therefore,
we can derive the following image coordinates for v from
the view of the virtual camera:

p(;l =TIIR.Rp, + t”a (7
where t” € R? is a common translation for all vertices, and
its determination will be explained later. Based on this
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Fig. 6 More examples of seam optimization and Laplacian blending. For each example, we show from left to right the original image, the corrected image after seam
optimization, and the final image after Laplacian blending. The red ellipses highlight visual artifacts, and the blue ellipses highlight the improvement with Laplacian

blending.

relation, we render the face image from the view of the
virtual camera and use it to replace the face region in the
video frame from the real camera, while retaining the other
parts of the frame. To determine the texture of the rendered
face, we use the weak perspective projection of the real
camera to assign color information from the input video
frame to the texture of the face model, and reuse the texture
for the rendering from the virtual camera view. Since we
will use the rendered face to replace the original face, we
determine the common translation t” so that the two faces
overlap. Specifically, t” is determined by minimizing the £,
distance from the projected landmark locations {p/ | v € £}
of the rendered face to the detected landmarks {q, | v € £}
in the original frame:

min ) |Ip} —av3. ®)

ve&

An example is shown in Fig. 2(b).

3.3 Background Blending

Directly overlaying the corrected rendered face onto the
original image may result in unnatural transition around the
boundary of the face region, as the rendered face and the
original face may not fully align (see Fig. 2 (b)). Therefore,
we apply a blending operation between the rendered face
and the original image to improve the appearance. We
first optimize a seam between the original image and the

rendered face to reduce the visual artifact across the seam.

Afterward, we further refine the result using Laplacian
blending [5].

@ TIINGHYA @ Springer

Seam Optimization The goal of seam optimization is to
find a seam between the rendered face image and the
original image, such that the image content outside the seam
(which comes from the original image) is as consistent as
possible with the content inside the seam (which comes
from the rendered face). Similar to [28], we formulate the
seam optimization as a graph cut problem over a fusion area
that is a region of the rendered face around its boundary.
To determine the fusion region, we first take the optimized
seam from the previous frame and apply a translation that
best aligns the detected landmarks in the two frames (which
is computed by optimization similar to Eq. (8)) to derive
a closed curve B. Then we perform a breadth-first search
from B, and derive the fusion area as the union of any
pixel location x that lies within the rendered face region and
satisfies dg(x) < 10, where dp(x) is the BFS distance from
x to B. Then similar with [28], we search for a seam that
lies in the fusion area and minimizes the following target
function
Eseam = Z
(xy)eZ
where & denotes the set of adjacent pixels across the
seam, and I(-), J(-) denote the pixel color in the original
image and the rendered face, respectively. Here the term
[IX(x) — J(x)||2 + [[I(y) — J(¥)||> indicates the consistency
of color between the two images across the seam [28],
with the weight o(x,y) = exp (min(dp(x),dp(y))) favoring
a seam that has a similar shape as the optimized seam
from the previous frame. Similar to [28], we solve the
optimization problem via graph cut [3]. An example of seam
optimization is shown in Fig. 2 (c), showing a more natural

o (x,y) - (J1(x) =J) |2+ [[L(y) = I (¥)ll2),
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appearance than directly overlaying the corrected rendered
face (Fig. 2 (b)).

Laplacian Blending After seam optimization, the result
may still contain artifacts if there is a large difference
between the face poses in the original image and the
rendered image. Thus we further refine the result via
Laplacian blending [5], using the rendered face within the
seam as the foreground. One example is shown in Fig. 2 (d).
For Laplacian blending, we set the level of the pyramid
to 5 in all our experiments. Fig. 6 shows more examples
of the effectiveness of Laplacian blending in improving
the appearance. A comparison between generated video
sequences with and without Laplacian blending can be
found in the supplementary video.

3.4 Face with Glasses

Using the characteristic vector ¢ returned by the neural
network in Section 3.1, we can determine whether the user
is wearing glasses. For a face with glasses, reconstructing
only the 3D face shape may produce unnatural results: since
we reuse the texture information from the real camera to
render the face for the virtual camera, the texture for the
glasses may appear distorted due to the view discrepancy
between the two cameras (see Fig. 9 (middle)). For a
more natural appearance, we reconstruct the 3D shape of
the glasses, which is then
transformed and rendered
together with the face.
The 3D glasses shape is
reconstructed by deforming
a template mesh (see the inset) to align its 2D projection
with the glasses area from the input frame. We prescribe 12
landmarks (shown in red in the inset) on the template mesh
to facilitate the alignment: four around the boundary of each
lens, one at each hinge between the lens and the temples,
and one at the end of each temple. For the reconstruction,
we first use neural networks to detect the landmarks and
determine a segmentation mask for the glasses from the
input frame. Then we deform the template model to align
its 2D projection with the 2D glasses image, to obtain the
3D shape of the glasses. Finally, we rotate the face together
with the glasses, and render them to the 2D plane. As
glasses shape and its position relative to the face are usually
fixed, for efficiency we only perform its reconstruction once
at the beginning. In the following, we provide algorithmic
details for each step.

3D Glasses Reconstruction From the input frame, we use
U-Net [40] to segment the glasses, and ResNet-18 [18] to
regress the landmark positions and determine whether the

Fig. 7 Examples of manually labeled landmarks and segmentation masks for
glasses.

user wears glasses. The two networks are trained using 2600
images with manually labeled landmarks and segmentation
masks (see Fig. 7 for some examples from the training set).

To reconstruct the shape of the glasses, we first optimize
a similarity transformation of the template mesh to align
the projection of 10 landmarks (eight around the boundaries
of lenses and two at the hinges) with their corresponding
detected landmarks. Then we fix the lens regions of the
mesh and rotate each template region around its hinge to
align the projections of the two landmarks at the end of each
temple with their corresponding detected landmarks. The
whole mesh is further deformed in a non-rigid way to match
the segmentation mask of the glasses. Specifically, we use
the iterative solver from [2] to optimize a mesh deformation
that aligns its projected boundary with the boundary of the
segmentation mask, while enforcing the smoothness of the
deformation using a Laplacian energy. Fig. 8 (b) shows an
example of 3D glasses shape reconstruction.

Rendering Glasses with Face The relative position between
the glasses and the face is fixed and can be pre-computed
using the initial frame of the video sequence. For each
frame afterward, we directly use the learned face pose to
determine the location of the glasses within the real camera’s
coordinate system, and render the face together with the
glasses from the virtual camera view in the same way as
in Eq. (7). The texture information from the input frame is
assigned to the visible regions of the face and the glasses
and reused for their rendering. Due to the view discrepancy
between the real camera and the virtual camera, a face
region occluded by the glasses in the real camera view may
become visible in the virtual camera view. One example is
shown in Fig. 8 (c), where the virtual camera is placed above
the real camera and exposes an occluded region from the real
camera view. In this case, the exposed region appears in the
virtual camera view as a gap without texture information,
located between the top boundary of the glasses (shown in
cyan) and the face region above the glasses that is visible
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|
(a) l (b)
(d) l (e)

Fig. 8 One example of reconstruction and rendering of glasses. (a) The input
face image. (b) The reconstructed face and glasses mesh from the real camera
view. The top boundary of the glasses is shown in cyan. (c) The reconstructed
face and glasses from the virtual camera view. The red curve shows the bottom
boundary of the face region above the glasses that is visible from the real camera.
(d) Directly rendering the face and the glasses from the virtual camera view
produces an unnatural result, as the face region between the red and cyan curves
in (c) is occluded in the real camera view and does not have reliable texture
information. (e) To remove the texture gap between the red and cyan curves, we
slide each column of pixels in the face region above the red curve downwards to
meet the cyan curve. (f) Final result after merging the modified rendered image
with the original image using seam optimization and Laplacian blending.

from the real camera (its bottom boundary is shown in
red). To determine the texture of the exposed region for its
rendering, we could potentially use image in-painting [15],
but this is computationally involved. Since the rendered face
still needs to be merged with the original frame, we adopt
a simple approach to handle the gap without texture. For
the face region above the red curve, we go through each
column of its pixels and slide the whole column downwards
vertically to until it meets the top of the glasses region (i.e.,
the cyan curve). This effectively fills up the gap while
removing some pixels from the top of the face. Afterward,
we perform Laplacian smoothing on each horizontal row
of pixels within the original gap region to create a smooth
transition. This modified rendered face image is then
merged with the original frame via seam optimization and
Laplacian blending, similar to a face without glasses. In
this way, the removed top region of the rendered face will
be replaced by face pixels from the original frame, and
the merging afterward produces a natural appearance in our
experiments. Fig. 8 (f) shows an example of the final merged
image. Fig. 9 further compares between correction results
with and without the reconstruction of 3D glasses shapes,
and clearly shows the benefit of such reconstruction for
reducing the distortion of the glasses. More examples are
available in the supplementary video.

3.5 Validity Judgment

When there is slight occlusion around the face boundary
in the input frame (e.g., occlusion by hairs), some of

@ TIINGHYA @ Springer

Fig. 9 Correction results for users wearing glasses. The top row shows the input
frames. The middle row shows the results without reconstructing the 3D shapes
of the glasses. The glasses region in the input is assigned as the texture on the
face model, resulting in a distortion from the virtual camera view. The bottom
row shows the correction results using the reconstructed glasses shapes.

the occluding object’s color information may be assigned
as the texture on the face model. In this case, seam
optimization and Laplacian blending helps to create a
natural transition between the occlusion texture and the
part of the occluding object that lies outside the face
region. On the other hand, when a larger part of the face
is occluded by an object that lies across the face region
and the background, the correction result may still look
unnatural after the blending. In addition, if the face in an
input frame is severely occluded, learning-based 3D face
reconstruction may produce inaccurate results. Therefore,
for each input frame, we check the face occlusion ratio from
the characteristic vector returned by the neural network in
Sec. 3.1, and apply face view correction only if the threshold
is below a pre-defined threshold. We set the threshold to
25% in all experiments. When training the network, we
manually label the occluded face region in each training
image to compute its ground-truth ratio of face occlusion.
We also label each image to indicate whether the subject is
wearing glasses. The loss function term E.p, for a training
image is defined as a combination of two quantities: (1)
the squared difference between the predicted face occlusion
ratio and the ground-truth ratio; (2) a softmax classification
loss for glasses. Fig. 10 shows examples of occlusion ratios
predicted by our network.

Furthermore, we do not apply correction if the face pose
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Fig. 10 Example images with occlusion. Our 3D face reconstruction network
in Sec. 3.1 also outputs the face occlusion ratio for validity judgment. The
predicted occlusion ratios of these three face images are 8.5%, 14.3% and 13.5%,
respectively.

Fig. 11 Correction results for a user with horizontal head rotation. Top: the
input frames. Bottom: the correction results.

captured by the real camera is too large. We check the
rotation matrix R returned by the neural network for face
reconstruction. If the magnitude of a rotation angle exceeds
its threshold, we gradually reduce the correction to identity
in the following four frames to avoid abrupt changes in the
output video. Specifically, we replace the pre-computed
rotation R. in Eq. (7) by another rotation R., with R
transitioning from R; to identity. Similarly, if the captured
face rotation falls back to within the threshold, we gradually

change the rotation R, back to R in the next four frames.

In all our experiments, we set the thresholds for the yaw, the
pitch and the roll to 20 degrees, 35 degrees and 14 degrees,
respectively.

4 Results

In this section, we evaluate the performance of our
method, and compare it with state-of-the-art methods. Our
evaluation is done on a laptop with an Intel Core 17-8565U,
8GB of RAM, an Nvidia GeForce MX250, and a webcam
located within the keyboard. Unless stated otherwise, the
input video is captured using the webcam of the laptop, and
the virtual camera is at the center of the display with a view
direction orthogonal to the screen.

Fig. 12 Correction results (bottom row) for a user quickly approaching the
camera. The top row shows the input frames.

Efficiency Our system is fully automatic and runs in real-
time, achieving 20fps for 1280 x 720 input videos with
our un-optimized implementation. For an input frame, it
typically takes 26 ms for 3D face reconstruction, 8 ms for
re-rendering, and 13 ms for seam optimization and blending.
For a user with glasses, we need a pre-processing step to
reconstruct the 3D glasses shape, and an additional step
for each frame to handle the gap due to exposed occluded
regions. These two steps typically take 63 ms and 2
ms, respectively. As the glasses reconstruction is only
performed once, it has little impact on the efficiency of the
system.
Robustness We test the robustness of our system to
different lighting conditions, poses, glasses, and the user’s
motion such as head rotation and movement. Some
video results are included in the supplementary video.
Fig. 1 demonstrates that our system is robust under various
environments, including indoor and outdoor scenes and
different lighting conditions, and works well for different
skin tones. Fig. 11 shows that our system can correctly
handle horizontal rotations of the user’s head. Fig. 12 shows
an example where the user quickly approaches the camera,
and our method is robust to such fast movements. Further
examples can be found in and the supplementary video. We
also evaluate our system on users wearing different types
of glasses. As shown in Fig. 9 and the supplementary
video, our system can correctly handle different glasses and
produce natural-looking results.

Face Reconstruction Accuracy We evaluate the accuracy
of our 3D face reconstruction network by conducting
quantitative comparisons with state-of-the-art learning-
based methods [8, 24, 46-48]. With the same setting
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10 First A. Author et al.
Ours [8] [46] [47] [48] [24]
Mean (mm) | 1.76 1.81 | 2.01 1.84 | 2.19 | 2.11
SD (mm) 035 | 050 | 0.41 | 0.38 | 0.54 | 0.46
Tab. 1 Mean reconstruction error on 180 meshes of 9 subjects from

FaceWarehouse. Our geometric error is the lowest among all methods.

l'

Fig. 13 Reconstruction results with RGB inputs (top row) on FaceWarehouse
of the method of Deng et al. [8] and ours. From left to right: input images and
ground-truth meshes, results of [8], results of our method.

10mm

e

Omm

as [47], we compare our results on 180 meshes of 9 subjects
from FaceWarehouse. Following the evaluation protocol
of [8], we compute the point-to-point distances between
the reconstructed meshes and the ground-truth meshes after
alignment by running ICP with uniform scaling. The point-
to-point errors are listed in Tab. 1. We also show the
reconstruction results and error maps in Fig. 13. It can be
seen that our method outperforms the method of Deng et
al. [8] in terms of shape and expression reconstruction.

Visual Quality We conduct a user study on 50 participants
to evaluate the visual quality of the results from our
system. We collect 10 video sequences covering different
scenarios, including indoor and outdoor scenes, different
light conditions, for subjects of different skin tones, with
and without glasses. Each participant watches the original
videos and the corrected videos and is asked to rate their
satisfaction to the results in three aspects: how natural the
results look, consistency of the facial appearances between
the two videos, and the accuracy of view correction. Each
aspect is rated with a score between 1 and 5, with 1 being the
worst and 5 being the best. The average scores for the three
aspects are 4.35, 4.25 and 4.41, respectively, demonstrating
that our method can generate a natural-looking corrected
view of faces.

Comparisons with State-of-the-Art Method A method
particularly relevant to our work is the webcam-based

(@ TRINGHYA &) Springer
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(a) Input

(b) [Giger et al. 2014] (c) Ours

Fig. 14 Comparisons between [13] and our method. The method from [13] does
not utilize the shape priors of human faces and may produce unnatural results, as
shown in the first row.

approach from [I13]. For a fair comparison, we only
replace our 3D face reconstruction component with the
deformation based method in their paper, while all other
steps remain unchanged. Some comparison examples are
shown in Fig. 14 and in the accompanying video. We can
observe that our method produces more natural results due
to our learning-based 3D face reconstruction that utilizes the
face shape priors and our landmark update strategies that
correctly handles large discrepancy between the real camera
and the virtual camera. In comparison, the method from [13]
only deforms a 3D face template to match the detected
2D landmarks, and the lack of facial shape priors can lead
to distortions. Besides, the correspondences between 2D
and 3D landmarks are fixed in their method to allow pre-
factorization of the deformation matrix for fast computation,
which may introduce errors due to large pose changes.
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Although it is possible to improve the accuracy for [13] by
adopting a landmark update strategy similar to ours, this
would result in a deformation matrix that may need to be
frequently re-factorized and increase the computational cost.
Finally, unlike our method, the deformation approach [13]
does not take the glasses’ shape into account and may
produce unnatural results, as stated in the limitation part of
their paper.

For qualitative and quantitative comparison, we also
compare the results of the two methods with the video
captured using a camera at the same location as the virtual
camera. We first place a webcam at a position well below the
face to capture videos as input for the correction algorithms,
with the virtual camera located in front of the user’s face
(see Fig. 15 for the setup using our correction method).
Then we place a webcam of the same model at the location
of the virtual camera to capture a frontal reference video
simultaneously for comparison. We collect 10 pairs of input
and reference video sequences using this setup and apply our
method and [13] to correct the input video. Fig. 16 shows
some examples of the frontal reference videos together with
the correction results using the two methods. We can see that
our method produces more natural results with appearances
closer to the reference videos. For further verification, we
evaluate the perceptual similarity between the correction
results and the reference videos using deep face recognition
features. Specifically, for each frame from the input camera,
we take the corresponding frame in the reference video as
well as the corrected frames using the two methods and
evaluate their facial recognition feature according to [41].
We then compute the cosine distance from the feature of
each corrected frame to the feature of the reference frame,
with a larger value indicating higher perceptual similarity.
We repeat this process for all frames of all 10 input videos
and compute the average cosine distance for each method.
Our method achieves an average value 0.91, whereas the
average value for [13] is 0.84, indicating that our results
have higher perceptual similarity with the reference video.
We also conduct a user study on the same 50 participants
mentioned previously to compare the visual quality of
results from our method and [ 3]. Each participant is shown
the 10 pairs of corrected videos and is asked to choose the
better one among each pair. For a fair comparison, each
participant is first shown the input video, followed by the
two corrected videos in random order, without information
about the correction method used for each video. Overall,
our result is chosen to be the better one in 89.6% of the pairs,
showing that our method produces more visually convincing
results.

We also compare our method with one face reenactment
method [49]. Although the method is not directed targeted

subject

Fig. 15 A setup of our system for correcting videos captured from a webcam
well below the face. The real-time results are shown in the accompanying video.

(a) Input

(b) Frontal (c) [Giger et al. 2014] (d) Ours

Fig. 16 Comparisons between captured real frontal videos, [ 3] and our method.
Our results are closer to the real frontal videos.

for face view correction, the pipeline could be adopted for
this task. We show the qualitative comparison results in
Fig. 17. It can be seen that our method produces more
frontal facial images and more natural glasses correction.

4.1 Limitations and Future Work

Our system has several limitations that need to be
addressed as future work. First, we reuse the facial texture
from the real camera view to render a facial image for the
virtual camera view. If the view discrepancy between the
two cameras is too large, there might be face areas that are
visible from the virtual camera but invisible from the real
camera, and our method cannot handle such cases. This
issue can potentially be resolved by running a short pre-
calibration session to capture the full facial texture from
different views. Second, we directly use the glasses texture
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First A. Author et al.

T

Fig. 17 Comparisons between our method and [49]. From left to right: input
images, correction results of [49], correction results of our method.

from the real camera to render glasses for the virtual camera
view, which does not correctly capture the optical effects of
the lenses such as refraction. One possible solution is to
further refine the corrected results by generative adversarial
network.

5 Conclusion

We proposed a fully automatic face view correction
system based on a single RGB camera. We trained a neural
network to reconstruct 3D face shape using the video input
from the camera and generate a video that imitates the novel
view from a virtual camera. Our method can also correct
face videos where the users wear glasses by reconstructing
the 3D shape of the glasses. Our system is robust to different
conditions, including lighting conditions, skin tones, and
glasses. It operates in real-time on a consumer laptop and
produces visually appealing and convincing results. With
its robustness and efficiency, our system can potentially be
applied to various devices to improve the user experience of
video conferencing applications.
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