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Abstract A geometric mapping establishes the
correspondence between two domains. Since no realistic
object contains zero or even negative volume, the
mapping is required to be inversion-free. Computing
inversion-free mapping is a fundamental task in
numerous computer graphics and geometric processing
applications, such as deformation, texture mapping,
mesh generation, many more. This task is usually
formulated as a non-convex and nonlinear constrained
optimization problem. Various methods have been
developed to solve the optimization problem. Besides,
to be inversion-free, different applications have different
We expand the discussion in two
directions: (1) problems containing specific constraints
and (2) combinatorial problems. This report provides
a systematic overview of inversion-free mapping

requirements.

construction, a detailed discussion of the construction
methods, including their strengths and weaknesses, and
the open problems in this research field.

Keywords inversion-free mapping; Jacobian matrix;
distortion; first-order methods; second-
order methods.

1 Introduction

In computer graphics and geometric processing, a
geometric mapping f : Q@ C R™ — R" transforms its
domain €2 into another domain. The task of computing
geometric mappings is expected and essential. For

example, the difficulty of geometric processing tasks
can be significantly reduced in the mapped domains.
In texture mapping, the parameterization is used to
map an existing 2D image onto the 3D model. In
FEM simulation, the geometric mapping is optimized
to improve the mesh quality, thereby improving the
simulation accuracy.

Q

Fig. 1 [Illustration for the geometric mapping f.

There is no zero or even negative volume in any
natural material. Intuitively, any physical deformation
will not result in zero or even negative volume. Thus,
the determinant of the Jacobian matrix of f at any
x € ), which indicates the ratio between the original
volume and the transformed volume, must be positive.
This constraint is called an inversion-free condition. In
other literature, other names are used, such as flip-free
constraint, foldover-free constraint, and orientation-
preserving constraint. We are interested in surveying
the body of work that focuses on the active creation of
such mappings.
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Fig. 2 [Illustration for the piecewise linear mapping.

If not specified, the models we focus on are all the
d-dimensional simplicial meshes on R™, which will
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be introduced in Section 2.
with then will be the piecewise linear mapping on the

The mapping we deal

simplicial meshes:

f(x)=Jix+t;,Vx €s;
where x is a point on the simplex s; of a mesh, and J;
is the discrete Jacobian matrix, which is constant on
s;. t; is a transformation vector.

1.1 Common applications

An increasing number of computer graphics and
geometry processing methods rely on inversion-free
geometric mappings. Here, we first discuss three
typical applications, mesh
parameterizations, and mesh quality improvement [12].

including deformation,

Deformation Given the desired positions of the
manipulation handles in shape deformation, we seek a
new shape that satisfies the following properties:
e The shape distortion is small.
e The resulting model meets the
constraints of the handles.
e The deformation from the input shape to the result
is inversion-free.

positional

Parameterizations map 3D
triangular surfaces onto the plane. By building a local

coordinate frame on each triangle, the parameterization

Parameterizations

is a continuous piecewise affine map. The Jacobian
matrix on each triangle is constant and is a 2 x 2
In addition to satisfying the inversion-free
constraint, the parameterization is also required to
contain small distortion. As a consequence, the texture
image can be projected onto the 3D surface with small
distortion.

matrix.

Figure 3 shows a comparison between
parameterizations with and without inversion-free
constraints. The inverted triangles cause significantly

visual artifacts in texture mapping.

Without

Fig. 3 Parameterizations with/without inversion-free
constraints. The yellow triangles in the left image indicate the
inverted triangles. The color on triangles encodes the distortion,

with white being optimal.
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Mesh quality improvement To improve the accuracy
in FEM simulation, the mesh elements are required
to approach their ideal shapes. Since the element
degeneration threatens the robustness and realism of
FEM, the element should be with positive volume.
Thus, the mesh quality improvement problem can also
be treated as an inversion-free mapping construction

problem.
1.2 General formulation

Based on the introduction of the three common
problems, inversion-free geometric mappings can be
constructed by a computational model that optimizes
mapping objectives

while satisfying inversion-free

constraints.
min  E(u)
st detJ(x) >0, Vx e Q, (1)
Au = b,

where J(x) is the Jacobian matrix of f at x, u
indicates the vector representation of the optimization
variables, F(u) means the optimization objective, and
Au = b denotes the linear constraint, where J(x)
is the Jacobian matrix of f at x, u indicates the
vector representation of the optimization variables,
E(u) means the optimization objective, and Au = b
denotes the linear constraint.

For example, in shape deformation, F(u) represents
the shape distortion, and the linear constraint indicates
the positional constraint of handles.

1.3 Overview

To provide a comprehensive overview of the recent
contributions that have been made to this topic, we
study problem (1) in the following aspects:

Variables Different u  have
various algorithm performances.
positions are commonly used variables in geometric
mapping computation. However, a more appropriate
representation can significantly improve the algorithm’s
efficiency and robustness for dedicated geometric
process tasks.

representations  of
The mesh vertex

We introduce these representations in

Section 2.
Objectives Different applications have their own
goals. For example, shape deformation and mesh

parameterizations usually optimize the distortion from
the reference mesh. In general, a lot of distortion
metrics exist. Various optimization objective metrics

are covered in Section 3.
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The inversion-free
The method of handling
constraints determines the difficulty of the algorithm.
More mathematical analyses of the inversion-free
constraints and different approaches to realize the
inversion-free goal are described in Section 4.

Inversion-free constraints

constraint is nonlinear.

Methods
the problem (1) to construct inversion-free geometric
mappings. If the initial geometric mappings are
inversion-free, keeping the mappings always staying in
the inversion-free space can theoretically guarantee the
inversion-free constraint to be satisfied. Otherwise,
various methods are presented to push the invalid

Many methods have been proposed to solve

mappings into the inversion-free space. We analyze

their strengths and weaknesses in Section 5.

The formulation (1) is not suitable
For the special applications, it

More constraints
for all applications.
should be added with some other constrains that are
linear or non-linear. There are more specific constraints
demanded by applications. In Section 6, we outline the
bijective, bijective inter-surface, axis-aligned and global
seamless constraints. These constraints present more
difficulties in constructing geometric mappings, thereby
requiring the design of dedicated algorithms.

Combinatorial problems Discrete variables or
constraints may arise in geometric mapping
construction problems, such as cone singularity

detection, cut construction for parameterizations, and
hex mesh structure simplification. These combinatorial
problems are difficult to be resolved. We present these
problems and their existing solutions in Section 7.

By discussing open problems,
shortcomings, and remaining questions, we conclude in
Section 8.

Open questions

2 Variables

Many representations of the variable u have been
Each
strengths and weaknesses.

used for computing inversion-free mappings.
representation has its
Thus, given a geometric process task, an appropriate
representation can significantly improve algorithm
efficiency and robustness.

2.1 Mesh-based mappings

We first study mappings on simplicial meshes (2D
triangular meshes or 3D tetrahedral meshes). The
domain 2 of the mapping f is a d-dimensional simplicial

Fig. 4 [Illustration for the symbols

mesh M containing N, vertices {v;,i = 1,...,N,},
N, edges {e;,i = 1,...,N.} and N simplices {s;,i =
1,...,N}. The mapping f is a continuous piecewise
linear mapping. The Jacobian matrix of f on each
simplex s; is constant, denoted as J;. We denote the
image of the mesh, vertex, edge and simplex under the
mapping f as M\,V,é, 8, respectively.

2.1.1 Vertex positions

Manipulating mesh vertex positions v is a common
approach in mapping computation.

We denote the simplex s; with
(d 4+ 1) corresponding vertices as s; = Av;,---
and its image as §; = AV, 0, -

Jacobian matrices
y Viyd
,Vi.d- Then, we get a
simple form of the Jacobian matrix J;:
WVi0—Vidl[Vio—Vi1, - 7Vi,0_Vi,d]_1-
The Jacobian matrix J; is a linear function of the vertex
positions V.

Ji=[Vio—Vi1,

If the initial mapping is inversion-free,
vertex positions are very appropriate. We can use
the explicit checks in combination with line search

Discussions

to always satisfy the inversion-free constraint when
performing mapping distortion reduction. However,
the initializations with inverted simplices increase the
As the

inversion-free constraint concerning vertex positions

difficulty of creating inversion-free results.

is nonlinear and non-convex, eliminating the inverted
simplices is difficult and non-trivial.

2.1.2 Jacobian matrices

Motivation To effectively handle the inverted
initializations, Jacobian matrices are used [39]. Since
the Jacobian matrices become the variables, we can
easily project inverted Jacobian matrices of the initial
mapping into the inversion-free space. Then, the
explicit checks combined with line search can keep
inversion-free space
during the mapping construction process.

Jacobian matrices inside the

However, the individual

Jacobian matrices disassemble the input mesh into

Assembly constraints

{8) TSINGHUA &\ Springer
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disjoint simplices. To assemble disjoint simplices, two
assembly constraints should be satisfied [39]:
o Edge assembly any two
neighboring simplices s; and s; who share an edge
e, the mapping images of any end points of e; by
the individual mappings should be the same.

constraints. For

e Positional assembly constraints. For any simplex
s; which contains positional constraints, the
individual mapping should satisfy the positional
constraints.

Recover M When the optimal Jacobian matrices,
which satisfy the edge assembly constraints and
positional assembly constraints, are achieved, the
vertex positions of M can be recovered by solving the
following least squares problem:

Ne
min Y ([Ji(va —ve) — (Vo — D)3 +
Vi1,...,Vp k=1

19 (Va = vb) = (Va = 0)|3) -
Here the edge v,V is adjacent to simplices s; and s;,
and the positional constraints are fixed.
2.1.3 Angles
In addition to vertex positions, other geometric
concepts can also be used to compute inversion-free

mappings.  Triangle angles are used to compute
inversion-free parameterizations with small conformal
distortion [120, 122]. For tetrahedral meshes,

dihedral angles are used to compute inversion-free
mappings [104].

a valid
following

Angle-based flattening To reconstruct
parameterized mesh from angles, the
consistency conditions are required [120]:
o Triangle consistency. For each triangular face with
angles a, B, ~:
a+pB+7=m.
e Verter consistency. For each internal vertex v,
with central angles ay, ..., 4,:

n
E &Z = 2m.
=1

e Wheel consistency. For each internal vertex v with
left angles f31, ..., B, and right angles 71, ..., Vp:

ﬁ sin3; ]
i sin :Y\z '
To satisfy the inversion-free constraint, the angles
are required to be positive. There are two common
methods to recover a parameterized mesh from the

angles:

p ,
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e The ABF technique [120] proposes an unfolding
mechanism that constructs the parameterization
coordinates for one vertex at a time in a front
propagation procedure. This method suffers from
error accumulation that breaks the parameterized

mesh.
e The ABF++ technique [122] formulates the
reconstruction problem as a global linear

system and computes all the vertex coordinates
simultaneously by the least-square method.

Dihedral angles of tetrahedral meshes Dihedral
angles are used to determine the shape of a tetrahedral
mesh [104]. To obtain this mappings for tetrahedral
meshes, three types of structural constraints and
some inequalities are needed. Then the dihedral
angle determination process is formulated as a
constrained nonlinear optimization problem. Finally,
a robust linear spectral reconstruction method, which
distributes numerical errors uniformly across the mesh,
is proposed to recover positions.

2.1.4 Metrics
Metric scaling, i.e., scalings of mesh edge lengths,

is another good representation for
embedding [9, 24, 34, 129].

conformal

Discrete conformality According to [92, 112], two
discrete metrics l: and l; on M are conformally
equivalent if the metrics are related by:

I, = etatl, e =V,
where u; € R is the conformal factor assigned for
v;. This metric is called piecewise linear metric (PL
metric). Actually, [; is the edge length of e;.
Conformal parameterizations via intrinsic flow
Since the parameterized mesh is planar, its curvature
is zero everywhere. From Gauss’s Theorema Egregium,
Gaussian curvature is an intrinsic invariance of a
surface determined by a metric.
parameterizations can be achieved by intrinsic flows
(e.g., Ricci flow, Calabi flow, Yamabe flow) that
The final
parametrization is obtained by embedding the surface
of the flat metric to the 2D plane.

The conformal

evolve the surface metric into a flat one.

After the convergence of the
intrinsic flows, we achieve a new length [; for each edge

Recovering vertices

e; = V,vp to reconstruct a parameterized mesh. The
first reconstruction method assembles the triangle one
by one [132]; however, it accumulates the numerical
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Handles AMIPS

Meshless-AMIPS

Fig. 5 3D meshless deformation of a spherical tet mesh using
AMIPS. Deformed meshes and their cut-views are shown. The
meshless deformation generates smooth results. Image courtesy
of [41].

error so that the resulting parameterized mesh breaks.
To distribute the numerical errors evenly, a novel
extrinsic shape optimization procedure is proposed
in [34]. Tt optimizes the edge length to the target and
minimizes the mean curvatures to zero by a local-global
Nevertheless, its solver cannot theoretically
guarantee no inverted triangles. To this end, we
propose a new optimization problem to recover vertices:

solver.

Ne N
min Y dj+ ) db. (2)
Vi,V = )
i=1 Jj=1
d: measures the length difference:
i Va3 i
R R
d? is a triangle inequality-based barrier function [131]
defined on the triangle §; = AV, V;1V;2 to avoid
inversion.
d° = 1
J |{’\i,l — Vil + |Vz‘,1 — Vi,s\ — Vi — Vi,3|
_ 1
[Vio — Vil + [Vi2 — Vig| — [Vi1 — Vi3]
_ 1
[Viz — Vil +[Vig — Vie| — Vi1 — Vi 2

Starting from an inversion-free parameterization,
solving (2) can achieve a desired result.

2.2 Meshless mappings

In general, the mesh-based mapping is C° and lacks
high-order smoothness. To this end, we then study
meshless mappings to achieve high-order smoothness
(Figure 5).

Mapping representation A meshless mapping f is
usually defined as:

Je =Y ¢;VyBj(x).
j=1

where B = {B;}}]L; is a set of basis functions and
the coefficients of basis functions ¢ = [cq,- - ,cy,] are

unknowns. For example, the uniform cubic tensor
product B-splines and RBF basis functions can be used
as the basis functions.

Jacobian matrices Then, the Jacobian matrix of f at

x has the form:
Jx =Y ¢;VyBj(x).
j=1

Based on [107], a meshless mapping is considered to be
inversion-free if the mapping is inversion-free on dense
sampling points. Without loss of generality, we denote
the sampling points as {p; € Q,i = 1,..., N} and the
Jp, as J;. J; is also a linear function of the unknown
coefficients c.
Discussions In shape deformation [21, 22, 42, 76,
107], the rest pose indicates an identity map that is
inversion-free and contains the least distortion. Then,
after the handles are moved to the desired positions, we
optimize ¢ to reduce shape distortion while satisfying
the inversion-free constraints. The size of c is usually
small enough to enable real-time interaction.

In  isogeometric  analysis [60], domain
parameterizations are generated by mapping
parametric domains (generally unit cubes) to

computational domains. Usually, the basis functions
of the parameterizations are formulated as spline
functions. Inversion-free parameterizations are
required to improve the subsequent accuracy and
computational robustness for solving partial differential
equations. However, the initial parameterizations often
contain inverted regions, so the challenges are to
eliminate them [83, 101].

Smooth mappings are used to seamlessly transform
the floor plan of a large virtual scene into a small
physical space for real walking in virtual reality [29,
30, 133]. The mapping is required to be inversion-free
for avoiding visual artifacts and be with low isometric

distortion for keeping the real sence of walking.

3 Objectives

The distortion of the input domain €2 under the
mapping f is expected to be as small as possible and
often treated as the optimization objective. To measure
the distortion, Jacobian matrices are commonly used
in the variable representations of vertex positions and
Jacobian matrices. Other representations have their

own methods to define the distortion objectives.

~ |
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3.1 Jacobian matrix-based energies

Except for three commonly used distortion metrics,
i.e., (1) conformal distortion, (2) area-preserving
distortion, and (3) isometric distortion, other types of
distortions still exist. These three types of distortion
energies are formulated by the singular values of the
Jacobian matrices.

Signed singular value decomposition The singular
value decomposition (SVD) of J; is denoted as:
Ji = UiSiVi',

where U; and V; are the orthogonal matrices, and S; =
diag(oi1,...,0i,4) is a diagonal matrix with singular
values on the diagonal. Without loss of generality,
we assume 0;; > 055, V1l < j < k < d. To define
inversion-free constraints and mapping distortions,
signed singular value decomposition (SSVD) [1] is
introduced. If detJ; < 0, U; and V; are modified to
be rotation matrices, and the smallest singular value
0;,3 becomes negative; otherwise, SSVD is the same as
SVD. Then, the squared Frobenius matrix norm ||.J;|%
of J; is equal to 2?21 O’ij and det J; = H?Zl Ti -

Conformal distortion
energies measure the deviation of the Jacobian matrices
Ji from similar transformations. When o;; = 0; 4, the

Conformal distortion metrics

energy reaches the optimal. Commonly used energies
are proposed in literature:

o Conformal distortion [28]: 0;1/0;.4.

o MIPS energy [56]:

d
Zj:l Uzz,j
—
d([ 1=, 0i,5)%4

o As-similar-as-possible energy [77, 87):

Z(O—i’j — Ui,k)2~

itk

p ,
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For 3D MIPS energy, Fu et al. [42] propose a different
formulation:

1<%+m) (02+03) <m+0u),
8\0i2 0i1 0i3  0i2 0i1l  0i3
Preserving area in mapping
important. As we know, the
determinant of the Jacobian matrix indicates the ratio
between the original volume and the mapped volume.
An area-preserving mapping requires the determinant

to be 1.
compute the difference from 1:

Area distortion metrics
construction is

There are three common approaches to

e Area distortion: max{H?i1 Cijs ra——— L1
. = [T5=1 064
* Ratio form [42]: [[;_, 0i; + T, oy

e Difference form: (H;l:l oi; —1)%
The ratio form penalizes degenerate simplices since it
goes to infinity when det J; approaches to zero. Thus,
the ratio form is more popular than the difference form.
Isometric distortion metrics A mapping is isometric
if and only if it is both conformal and area-preserving.
Thus, when 0;; = 0;4 = 1, the isometric energy
reaches the optimal.

o Isometric distortion: max{o; 1, ﬁ}

o Symmetric Dirichlet energy [117, 126]:

Z(U?J + Ui_,jz)'

o AMIPS energy [42]:

d 2 d
1 2i=10i; 1 1
[ # 3 (Mows + -

d H?:1 i) j=1 j=194.3
o As-rigid-as-possible energy [87]:
d
Z(Ji’j - 1)2
j=1
The AMIPS energy linearly combines the MIPS energy
and the ratio form of the area distortion metric.
Other energy metrics There are many other energy
metrics:

e Dirichlet energy: Z?Zl 0'7;2’j.

e Green-Lagrange energy: Z?Zl(ozj —1)2

e Hencky strain energy: ||log JI J;||%.

o The difference from a given mapping [1]:||.J; —
Jinit)|2, - where J™* is the Jacobian matrix of the
initial mapping.

For a mesh or all sampling points, the energy should

be added up over all elements.
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3.2 Energies without Jacobian matrices

For the angle-based
representations, the

and metric-based
distortion energy is usually

defined as the difference from the ideal reference.

Angle-based flattening As reported in [120], the
energy function is simply

ZZ

s; j=1

where @;; are the unknown planar angles, and o g
are the optimal angles. The weights w;; are set
to (ar;)72 to reflect relative rather than absolute
In general, o], is computed as

:,j)Qa

/L’

i,
angular distortion.

follows [120, 122]:

J

around an interior vertex

a:j _ ’J Ek 1 ao ’
' a? s around a boundary vertex
where o? ; is the angle in the input mesh. As shown

in [104], the objective function for dihedral angles in
the tetrahedral mesh is similarly defined.

The
conformal parameterizations output a metric to agree
with the input Gaussian curvature. For example,
the Calabi energy is squared difference between
current Gaussian curvature vector and target Gaussian
curvature:

Metric-based flattening intrinsic flows for

N,

D (K@) — K>,

i=1
where K (v;) is the Gaussian curvature at v; and K is
the target Gaussian curvature at v;. The Calabi energy
can be minimized by the Calabi flow [132].

4 Inversion-free constraints

4.1 Relationship with volume

Here we study the mappings on simplicial meshes and
remind that no zero or negative volume exists in the real
world. For a transformed simplex 8; = Av, g, -+

its signed volume is computed as a determinant:

19—
Note that the signed volume may be negative. Thus,
the inversion-free constraint requires that the sign of
the signed volume before and after the transformation
is unchanged. The signed volume is a polynomial with

degree d and is non-convex.

7Vi,d7

Vi, 05y Vid — Vz‘,o\-

4.2 Relationship with singular values

Here we study the inversion-free constraints using the
Jacobian matrices.

Determinant and conformal distortion If detJ; >
0,i =1,
the view of SSVD, the inversion-free constraint requires
the smallest singular value of each Jacobian matrix
to be positive. If the conformal distortion 7(J;) =
0i1/0ia < 0,3i € [1,N], the map f has negative o; 4.
Thus, inversion-free property requires 7(J;) > 1,7 =
1 N.

,IN, the map f is inversion-free. From

St

Bounded conformal distortion Bounded conformal
distortion mappings require:

1<7(J)<k; i=1,---,N.
Here, k; denotes the upper bound of the conformal
distortion 7(J,
|oi.al, the bounded conformal distortion constraint 1 <

;). Since o; 1 is always positive and 0,1 >

7(J;) < k; is equivalent to require 0,1 < k;o;q. If
i1 < kio4 4, it means that o; 4 > 0 indicating the
mapping is inversion-free. If detJ; > 0, it is trivial
to choose k; that makes the constraint 7(J;) < k;
hold, for example, k; = 7(J;).
free constraints can be converted to bounded conformal
distortion constraints.

Accordingly, inversion-

More analyses for 2D case Similar to [81], we rewrite
the 2 x 2 Jacobian matrix J; as

a; +¢; di—bi
d; +b; .

Then, we have analytical expressions for the two

singular values:
\/ a? +b? + \/ ¢+ d?,

oia=Ja + b [ ¢

Then inversion-free condition can be rewritten as:

Vo + 0>\ 2. (3)

a; — C;

The bounded conformal distortion constraint is
similarly reformulated as [81]:
ki —1 \/ 5
i 102> [+ 2 4
kl + 1 a’L + 1 cl —"_ 1 ( )

These two constraints are nonlinear and non-convex.
For 3D case, the condition formulations are more
complicated due to the complex forms of roots of a cubic
equation.

5 Methods

In this section, we focus on the recent works
closely related to generating inversion-free geometric
mappings. Three main families of methods have been
proposed to deal with the challenging inversion-free
constraint: maintenance-based methods for inversion-
free initializations, elimination of foldovers for inverted

{8) TSINGHUA &\ Springer
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initializations and expanding the feasible region by
connectivity-updated methods.

5.1 Inversion-free initializations

If the initial geometric mappings are inversion-free,
keeping the mappings always staying in the inversion-
free space can theoretically guarantee the inversion-
free constraint to be satisfied. A few methods use
maintenance-based methods to optimize “barrier”-type
energies, in which the objective function includes
terms that grow asymptotically as an element becomes
degenerate.

5.1.1 Pipeline

Starting from initializations xg,
objective
functions The
optimization approach is very simple and is described

in Algorithm 1.

inversion-free

maintenance-based methods minimize
elements.

which avoid inverted

Algorithm 1 Maintenance-based methods

Input: inversion-free initialization xo;
Initialize: Set iteration number n = 0;
while not converged do
Compute descent direction pn;
Find max step size amax;
Perform line search to find step size «;
Xn41 < Xn + Q Pn;
n+<n+1;
end while

It is an iterative algorithm producing a sequence of
approximations x, to the optimal point x*. There are
three intermediate steps in each iteration: computing
descent direction (p,), finding max step size (umax),
and performing a line search to find step size ()

starting from aqpax.

Generating initializations Tutte’s embedding [138]
is guaranteed to create bijective mappings under the
minimal assumptions that both domains are simply
connected and the target planar domain is convex.
Since Tutte’s embedding guarantees inversion-free,
it has achieved great success in the field of mesh
parameterizations [25, 86, 124, 126]. Although several
works extended it [2, 36] to other specific classes
of mappings, its essential limitations remain:
only map injectively to a prescribed convex boundary,
without any interior constraints.

it can

Furthermore, it is very challenging to compute
inversion-free initializations in 3D. For example, a
tetrahedral mesh can be bijectively mapped to a cube or

a ball [17]; but it cannot be used for general boundary

& TSINGHUA &) Springer

shapes. For tetrahedral mesh deformation, they use the
meshes in the rest-pose as initializations and treat the
handle positions as soft constraints.

Barrier functions Barrier functions diverge to
infinity when elements become degenerate, thus
inhibiting inversion. [118] used the log of the
determinant as a barrier term and [89] followed a
similar path by solving a sequence of convex programs.
Instead of using an auxiliary injectivity barrier, several
methods directly optimize distortion metrics that
explode near degeneracies, such as, the MIPS energy,
the AMIPS energy and the symmetric Dirichlet energy
in Section 3.
Descent directions These non-linear energies are
difficult to minimize. Existing optimization algorithms
typically produce a sequence of approximations, X,
designed to converge to an optimal point x*. To
this end, most approaches use a local quadratic

approximation of the objective function, or proxy:
1

E,(x) = E(xn)+(x—xn)TVE(xn)+§(x—xn)THn(X—xn),

where F(x) is the objective function and H, is a

Thus,
E,(x) is an osculating convex quadric approximation

symmetric matrix, named the prozy matrizx.

to F at x, and its minimization determines the next
From this point of view, the
difference between the various methods lies in the
choice of FE,(x), or more precisely, the choice of
its proxy matrix H. Broadly, existing methods for

approximation Xy41.

the local energy approximation fall into three rough
categories that vary in the construction of proxy matrix
H.

o First-order methods (Section 5.1.2): the methods
use only first derivatives and do not directly use
second order derivatives of the energy;

o Quasi-Newton methods (Section 5.1.3):  the
methods iteratively update H to approximate
second derivatives using just differences in

gradients.

o Newton-type (Section 5.1.4): the

methods exploit expensive second-order derivative

methods
information;

Line search Consider a non-degenerate 2D triangle
with vertices uj,us,us with corresponding search
direction vectors vi,vs,vs. The triangle becomes
degenerate when its signed area becomes zero [126]:

det ( (112 +V2t> — (ul + Vlt) ) -0 (5)

(113 —+ Vgt) — (Ll1 + Vlt)
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Fortunately, (5) is quadratic in ¢ and the max step sizes
are simply given by the roots of this quadratic. Given
that we are only concerned with searches in the positive
direction, the smallest positive root gives the max step
size for this triangle. The max step size ty,ax for the line
search is given by computing the minimum parameter
over all triangles [126]. For a tetrahedron, it is also
easy to generalize by replacing the signed area with the
signed volume.

Termination conditions The iteration continues
until we are able to stop with a “good enough” solution,
but the termination requires a precise computational
definition. The common termination conditions are:

e The gradient is small |[VE| < e, for a specified
tolerance € > 0;

o A fixed number of iterations [110];

e The absolute or relative error in energy ||E,+1 —
E,| and/or position ||X,4+1 — X, | are small [71,
124].

However, an appropriate value of e for a given
highly dependent on the other
conditions, such as the mesh and the energy. To

application is

provide reassuring termination criteria in practice,
the Blended Cured Quasi-Newton (BCQN) method
develops a gradient-based stopping criterion [163]. The
proposed termination condition remains consistent for
optimization problems even as we vary scale, mesh
resolution and energy type:

IVE[ < eW)[[I(T)]] (6)
where (W) is the 2-norm of a matrix related to
W(-) and I(T) ia a vector. The specific definitions
can reference Section 6 in [163]. The gradient-
based stopping criterion allows users to set a default
convergence tolerance € in the solver once and leave it
unchanged, independent of scale, mesh and energy.

5.1.2 First-order methods

Block The Block
Coordinate Descent (BCD) method is a popular
optimization tool suitable for

coordinate descent solvers
solving large-scale
problems. Considering the optimization problem,

min E(By,--- ,By,-++ ,Bn),

where E' is the objective energy and the variables x is
partitioned into m blocks {B;,i = 1,--- ,m}. In each
iteration, for every I, [ € {1,---,m}, a subproblem is
solved by treating the block B; as the free variables
of the optimization problem while keeping the rest
variables fixed.

The BCD method is categorized into two types:
exact BCD and inexact BCD. The MIPS energy is

locally convex with respect to each vertex around its
The standard MIPS algorithm [55]
employs the exact BCD where each vertex forms a
block of variables and the Newton method is adopted
to solve each subproblem exactly. However, solving the
subproblem exactly is usually time-consuming, seeking
an approximate solution is a common way to accelerate
the algorithm. The inexact BCD method is employed to
optimize the AMIPS energy by applying only one step

1-ring region.

of gradient descent [42]. The experiment demonstrates
that exact BCD is easily trapped in local minimum
early while inexact BCD always yields lower energy.
Note that the BCD method can be accelerated using
parallel technology by partitioning the variables into
blocks where any two variables in the same block are
independent.

AQP Given the current iteration x,,, the Accelerated
Quadratic Proxy (AQP) method computed the next
iteration x,4; by an intermediate guess y,i1 [72].
AQP used an affine combination of current iteration
X, and previous iteration x,_; with a constant 6 > 0
to produce y, 41, namely,
Yn = (1 + Q)Xn_l — 9Xn_2.

An optimal choice 6 leads to an optimal convergence
rate, which is proved by Lemma 2 in [72]. Then,
AQP uses a quadratic polynomial proxy, whose Hessian
is taken to be the Laplacian, to compute a descent
direction py,.

AQP utilizes the common structure of optimization
problems over meshes to improve iteration efficiency
and incorporate acceleration in an almost universal way
(i.e., insensitive to different energy types and mesh
sizes). However, AQP does not have a principled way of
determining how effective the Laplacian approximation
for Hessian of arbitrary energy. Besides, the optimal
choice 6 requires the condition number of a matrix,
which is challenging to obtain.

SLIM The local/global method is used in
minimizes the ARAP energy:

Darar(J) = |7 — R|%,
where R is the closest rotation to J in the Frobenius
norm and || - || denotes the Frobenius norm. The

[87] to

local/global algorithm iteratively alternates between a
local step and a global step. In the local step, each
element is individually perfectly mapped (without any
distortion), and in the global step, a linear system is
solved to stitch all elements back together.

{8) TSINGHUA &\ Springer



10

X. Fu et al.

The Scalable Locally Injective Mappings (SLIM)
method extends the local-global strategy to a
wide range of distortion energies [110].
the local/global paradigm and enriches it with a
reweighting scheme to efficiently minimize nonlinear
and flip-preventing energies. The proxy functions is:

Pw(J) =W (J - R)|I%,
where W is the weighted matrix.

SLIM is a scalable approach for optimizing flip-
preventing energies in the general context of simplicial
mappings. The central theoretical limitation and
advantage of SLIM are both inherited from the
local/global method. The algorithm is high-speed
while approaching a local minimum, but it requires
many iterations to converge to a numerical minimum.
Besides, the proxy energy definition only works for the
rotation invariant distortion energies.

It uses

AKVF The Approximate Killing Vector Fields
(AKVF) method formulates a new preconditioner
specifically designed for parameterization problems,
using the language of vector field design [25]. The
Killing operator K(x) measures the deviation of a
vector field on x from being a rigid motion, and AKVF
applies the Moore—Penrose pseudoinverse K (x)* of
Killing vector field operator K (x) as the proxy matrix.
Then the descent direction —VxE(x) is transformed
into an approximately rigid motion — K (x)*VxE(x) by
the proxy matrix K (x)™ when possible.

For planar case and volumetric case, K(x) can be
computed as Equation (6) and Equation (10) in [25],
respectively.

SLIM and AKAP converge faster than AQP.
However, they require re-assembly and factorization
of their proxies for each iteration. Besides, they do
not match the convergence quality of the second-order
methods, such as CM and PN.

5.1.3 Quasi-Newton method

L-BFGS L-BFGS directly approximates the inverse
of the Hessian, requiring only the position and gradient
information of a few previous iterations. While L-
BFGS iterations are fast, they typically require many
iterations to converge. L-BFGS convergence can be
improved with the choice of a preconditioner, such
as the diagonal of the Hessian [102], application-
specific structure [62] or even the Laplacian [88].
However, so far, for distortion optimization problems,
L-BFGS has consistently and surprisingly failed to
perform competitively irrespective of the choice of
preconditioner [72, 110]. Moreover, [102] points out

Fa "
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Fig. 7 Comparison for four competing methods, including
CM [124], PP [86], AKVF [25], SLIM [110]. Image courtesy
of [86].

that the secant approximation can implicitly create a
dense proxy, unlike the sparse true Hessian, directly
and incorrectly coupling distant vertices.

BCQN For the aforementioned issue of a dense
proxy incorrectly coupling distant vertices in L-BFGS,
the Laplacian provides the correct structure for the
proxy essentially. It only directly couples neighboring
elements in the mesh and is well-behaved initially
when far from the solution. However, the Laplacian
is constant, thus it ignores valuable local curvature
information, thereby leading to prohibitively slow
convergence.

Fortunately, the L-BFGS superlinear
convergence near solutions, [163] develop a new
quasi-Newton method, which adaptively blends
gradient information with the matrix Laplacian at
each iteration.
robust convergence with efficient per-iterated storage
and computation across scales while avoiding the
current pitfalls of L-BFGS methods.

5.1.4 Second-order methods

Overview Second-order methods generally can
achieve the most rapid convergence but require the
costly assembly, factorization and backsolve of new
linear systems per step. At each iteration, second-order

offers

Then, it can regain improved and

methods use the energy Hessian, V2E, to form a proxy
matrix H. This works well for convex energies, but it
requires modification for non-convex energies [103] to
ensure that H is at least positive semi-definite (PSD).

A general solution is to add small multiples of the
identity and project the Hessian to the PSD cone, but
this generally damps convergence too much [103, 124].
The global Hessian matrix of the objective function is
constructed from the element Hessian matrix, which
is based on locally individual elements (triangle or
tetrahedra). As long as the Hessian matrices of all
elements are PSD, then the global Hessian matrix is
PSD. Thus, most second-order methods locally modify
the element Hessian matrices, whose dimensions are far
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lower than the global Hessian matrix.
Locally modifying Hessian matrices Projected
Newton (PN) does eigendecomposition on per-element
Hessian and clamps all negative eigenvalues to zero,
to project per-element Hessian to the PSD [136].
PN is an effective and general purpose for 2D and
3D problems. However, PN introduces a significant
computational overhead on eigendecomposition and
becomes computationally prohibitive.

The Composite Majorization (CM) method provides
an analytic formula to modify element Hessian [124].
Composite majorization, a tight convex majorizer, was
recently proposed as an analytic PSD approximation
of the Hessian. CM method is concerned with
objective functions that can be represented as the
composition of simpler functions for which convex-

concave decompositions are known.
fx) =hg(x) = hg:1(x),-- ., 9r(x)),

: RF — R and gj(x) : R* — R are C?
functions with convex-concave decompositions. That
is, they each decompose as

h=h"+h",9; =g/ +g;,

with A* and g;' convex and, respectively, h~ and g;

where h

concave.
CM’s strategy for picking a convex osculating quadric
at 2, is based on: (i) exploiting the composite structure
for constructing a convex majorizer to f centered at x,,
and (ii) computing its Hessian at z,. The majorizer
provides a tight convex upper bound to f and therefore
provides a well justified choice of a PSD proxy matrix
H at x,:
_ 0lgl" 2, + Olg]
H = Wv h B
M v 3 vy
;o ;o
(-)+ keeps only positive numbers
rectifier), (-)_ only negative numbers. CM is efficient
and is even better relative performance improvement

over PN. However, it is limited to two-dimensional

where (linear

problems.

The KP-Newton method [45] has applied the complex
view to the piecewise linear mapping. It shows that
simple analytic expressions of the Hessian are obtained,
which allows simple and close to optimal analytic
PSD projection. Based on the complex view of the
linear mapping, KP-Newton speed-ups the numerical
projection for PN by reducing the matrix size (reducing
the full 6 x 6 projection to the 4 x 4 case).

CM needs to
decomposition of the objective function. The choice of
this decomposition is not unique and is likely to result
in different PSD matrices and consequently affects the
convergence behavior. In contrast, KP-Newton only
requires the partial derivatives of a simple-to-obtain
energy formulation. Additionally, KP-Newton has the
property that the element Hessians are not modified
if they are already PSD, which is not necessarily the

construct a convex-concave

case for CM. However, KP-Newton is also limited to
two-dimensional problems.

Analytic Eigensystems (AE) provides compact
expressions to optimize problems both in 2D and 3D,
and does not introduce spurious degeneracies [125].
At its core, AE utilizes the invariants of the stretch
tensor S that arises from the polar decomposition of
the deformation gradient J = RS:

Il :t’l"(S) = ZO’j
J

I =|S|? :Z(’? .
J

I3 = det(S) = HO‘j
J

The majority of distortion energies used in geometry
optimization are isotropic and can be expressed in
terms of invariants, such as, the ARAP energy
Darap(J) = Z;l:l(aj —1)? = I, —2I; +d. AE provide
closed-form expressions for the eigensystems for all
these invariants, and use them to systematically derive
the eigensystems of any isotropic energy. Then these
systems can then be used to project energy Hessian to
PSD analytically.

Different from the aforementioned methods, PP [86]
observes that when the
parameterized triangle and its corresponding reference
triangle is below a threshold K, only a few iterations
are needed to reach a result that is comparable with
Based on this key observation,
PP iteratively update the optimization objective by

distortion between each

the convergent one.

constructing the new reference triangles, which makes
distortion between the new reference and the current
parameterizations bounded. Combined with a hybrid
solver, PP outperforms the competitors.

5.2 Inverted initializations

5.2.1

A quasi-conformal mappings (QC mapping) is an
extension of conformal mapping. For conformal
mappings, there is no angular distortion. For QC
mappings, the angular distortion is bounded and is

Quasi-conformal mappings

{8) TSINGHUA &\ Springer
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introduced by the Beltrami coefficient or Beltrami
differentials.

QC mappings of plane domains For conformal
mapping f from the complex plane C to C, the Cauchy-
Riemann equation df = 0 is satisfied. Correspondingly,
f is called a QC mapping, if f satisfies the following
Beltrami equation:

of _ . \90f
Z M(Z)$~
Here, p is called the Beltrami coefﬁcient of f. In this
case, the Jacobbi of f : J(f) = |8 12(1 — |u[?). Thus
the Beltrami coefficient ||p||oc < 1 must hold for f to
be orientation-preserving.

surfaces QC
mapping can also be defined on Riemann surfaces. For
two surfaces Si, So embedded in R3, let ¢1 : U C
S1 = C, ¢ : V C Sy — C be two local conformal
parameterization, ¢1(U) or ¢2(V') forms the isothermal
coordinate chart of S; or S;. Then f : S; — Ss is
quasi-conformal if for any ¢1, ¢q,
frz=d20 fodr':p1(U) = ¢a(V)

is quasi-conformal. Instead of Beltrami coefficient,
the Beltrami differential u% is used, which is
kept unchanged under different coordinate charts.
According to Teichmiiller theory, there is a one-

QC mapping between Riemann

to-one correspondence between the set of Beltrami
differentials and the set of QC surface mappings under
normalization conditions.

QC mapping has been widely used
in computer graphics, such as parameterization,
deformation and shape registration [53, 93, 142, 154].
The research focuses on two main areas:

Applications

e How to calculate QC mapping under boundary and
landmark constraints?

¢ How to find a QC map that satisfies the described
Beltrami coefficients?

Boundary and landmark constraints The most
popular method is to optimize the angular distortion
energy instead, when there is no restriction on Beltrami
If the QC
mapping is specified to Teichmiiller mapping with
uniform conformality distortion over the whole domain,
[93] locally projected Beltrami coefficient p into the
one with constant norm after computing a global
harmonic mapping and iterated until convergence. An
alternating-descent algorithm is proposed in [142] to
minimize the difference error of the Beltrami equation

coefficients or Beltrami differentials.

1%}@3 'Emsnilr:n:nvlily:é @ Springer

efficiently, although there is no theoretical guarantee to
reach the global minimum.

There are different
algorithms to compute QC maps on planar domains
[27, 51, 94]. For arbitrary Riemann surfaces, [143]
and [91] establish a discrete Beltrami flow to evolve
an identity map to the desired QC mapping. An

Described Beltrami coefficients

auxiliary metric is proposed in [155], and the original
QC mapping becomes conformal under the auxiliary
metric. Then, the desired QC mapping can be obtained
by using the conformal mapping method.

5.2.2 Bounded distortion mappings

Bounded distortion mapping methods [1, 21, 69, 76,
81, 107] tries to bound the distortion of the mappings.
Different from the aforementioned quasi-conformal
mappings, these methods study the mappings from
the discrete view. Namely, the bounded distortion
constraint is enforced on each Jacobian matrix. Then,
a constrained optimization problem with non-convex
To this end, some elegant
methods are proposed. Based on the strategies
processing the bounded distortion constraints, these
methods can be classified into two categories: (1)

constraints is achieved.

extracting convex subspace and (2) linearizing the
constraints.

Maximal convex subspace For triangular meshes,
the bounded distortion constraint (4) and inversion-
free constraint (3) are nonlinear and non-convex. By
introducing a new variable r; € R, they can be
simplified as [81]:

ki —1
\/cf—l-dfgriki_'_r
\Jaz + b7 >y,

r; > 0.
Then, the maximal convex subspace can be achieved as
follows (see more details in [81]):
\/c?—kdf < riZZ—i—i’
a;cosb; + b;sinf; > r; 6; € [0,2m),

r; > 0.
0; is a parameter and is adaptively adjusted during the
optimization. Then, a convex problem is built and can
be solved effectively. The linear matrix inequality [69]
is used to extend this idea to the tetrahedral meshes.

Quadratic SSVD J;, =
Uq;SlvViT, if U; and V; are known, then the singular

programming For the
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values is linear functions with respect to the vertex
positions. Based on this fact, Aigerman et al. [1] uses
U; and V; in the last iteration as the estimator in the
current iteration. Then, the non-convex constrained
problem becomes a quadratic programming problem
that can be effectively solved. By iteratively performing
these two steps, the method [1] usually converges within
a small number of iterations. This method work for

both 2D and 3D.

Bounded distortion mapping methods
ensure no inversion if the resulting mappings fall into
the bounded distortion space;
appropriate distortion bound remains an open problem.

5.2.3 Projection-based methods

Motivation Our goal is to project the inverted
initializations into the inversion-free mapping space.

Discussions

however, setting an

As mentioned before, inversion-free constraints can be
converted to bounded conformal distortion constraints.
In practice, we can try to minimize the distance
from the mapping to the bounded conformal distortion
mapping space.

be formulated as:

N
> I = Hill
1=1

s.t. H; € HZ',
Au=Db

Here, H; = {H;|1 < 7(H;) < k;} denotes the bounded

Then, the optimization problem can

. (7)
i=1,- N,

conformal distortion space with bound k;. k; is a
variable in the optimization. Next, we first fix it and

then discuss the updating cases.

Given distortion bounds k;, it is difficult
to solve the problem (7) due to the nonlinear
bounded distortion constraints H; € H;. Thus
the projection-based methods decouple the bounded
distortion constraints from the problem (7) and devise
an alternating pipeline. Generally, the methods can be
classified based on different projection approaches: (1)
tangential projection and (2) closest point projection.

Algorithms

Closest point projection The most
projection method is the closest point projection [130].
Given fixed J;, we want to solve H;. H; is separated,

and we compute it one by one through solving the

comimon

following problem (local step):
i = Hill%,

min
H;

s.t. H; € H;.

13
This problem has a closed-form solution [70]. Then,
given fixed H;, we solve p as follows (global step):
N
min  Ey = Z IJ; — Hil|%,
: i=1
s.t. Ap=Db.
This problem can also be easily solved. Although

the local-global method monotonically decreases the
objective function, it converges slowly [106]. Then,
the Anderson acceleration method [106] is used for
acceleration.
Tangential projection In the global step, the
tangential projection method [70] restricts the Jacobian
matrix to belong to a single hyperplane locally
supporting H; at the closest point projection. However
this method may oscillate due to an inappropriate k;; as
a result, the distance from the mapping to the bounded
distortion space may not consistently decrease. Thus,
it works poorly in practice.

Updating bounds Su et al. [130] devise a simple
method to update the distortion bound. It gradually
increases the distortion bound after one pass of the
accelerated local-global solver converges.
has no theoretical guarantee of success for any model.

5.2.4 Area-based methods

As observed by [146], the Total Unsigned Area
(TUA) is an upper bound to the sum of signed areas,
which is constant for a fixed boundary, and equal
if and only if the triangulation is injective. When
the triangular mesh is inversion-free, it minimizes
the sum of the unsigned triangle areas among all
the triangulations of the given boundary. However,
as [31] points out, directly minimizing TUA suffers
from three deficiencies: (1) the triangulation containing

However, it

degenerate elements is a global minimum of TUA but a
non-injective embedding. (2) derivative discontinuity:
TUA is not C! continuous when a vertex moves across
the supporting line of its opposite edge. (3) vanishing
gradient: TUA has zero gradients with respect to any
vertex surrounded by a ring of consistently oriented
elements. Based on those observations, [31] proposes a
novel energy form, called Total Lifted Content (TLC),
that lifts the simplices of the mesh into a higher
dimension and then measures their contents,

1 —
TLCs o(s) = a\/det(XTX +aXTX)

where s is a d-dimensional simplex, § is the auxiliary
simplex, and X (X) is a d x d matrix whose column

vectors are edge vectors of the simplex s (§). TLC

@@? 'EN$VIE§SITYI-I£IEIIE§AS @ Springer
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reduces to TUA when parameter « = 0. TLC is
smooth over the entire space and has only injective
global minima for sufficiently small values of a. This
simple energy can be efficiently minimized using Quasi-
Newton or Projected-Newton solver.

5.2.5 Penalty-based methods

A simple idea for inversion elimination is to devise a
penalty function having two main properties:
e it is very large to penalize the inverted Jacobian
matrices;
e it is very small to accept inversion-free Jacobian

matrices.
After designing a suitable penalty function,
optimization solvers are then the challenges.

This idea has been applied to many untangling
problems [33, 137].
Here we discuss a popular penalty function as

follows [33]:

N
(A

E ena = )
penalty ; det J; + /(det J;)2 + €

where € is a small positive number

P+ Vet e
that makes FEpenaity very large
when inversion exists (see the right
inset). This penalty function works
for both 2D and 3D domains. The Ve
key to this penalty function is the 0 P

setting of e. In [33], a detailed
setting method is provided.

Then, two common methods for optimizing Epenalty

are proposed.

o Block coordinate descent method [33] updates one
block of variables each time.

e Monotone preconditioned conjugate  gradient
method [147] monotonically and efficiently reduces
the objective function.

The block coordinate descent method is a local method.
When the number of inverted elements is very large, it
may be struggled and trapped by the local minimum.
In the monotone preconditioned conjugate gradient
method, the linear systems for computing descent
directions have a fixed left-hand side; thus, it is
pre-factorized once during the preprocessing, thereby
making the solver efficient. This solver can eliminate
most inverted elements, but its result often contains
Thus, a practical
solver can be devised as a hybrid one that first uses the
monotone preconditioned conjugate gradient method

a small set of inverted elements.

and then uses the block coordinate descent method.

Fa "
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5.2.6 Representation-based methods

Simplex assembly [39] Using the Jacobian matrices
as the variables, the problem (1) is converted to a non-

constrained optimization problem:

min 1% Em + Ec + A Eassemblya

s N
where F,, is the mapping energy, E. is a barrier
function to keep each Jacobian matrix inside the
feasible space, and Fagembly is the summation of
squares of all the left sides of the two assembly
constraints. Given an inverted initialization, it projects
the Jacobian matrices associated with each simplex
into the inversion-free and distortion-bounded space.
The projected Newton’s method is used to solve the
optimization problem. A is adaptively adjusted to

enforce Eagsembly t0 approach zero.

Angle-based methods For ABF-based conformal
parameterizations, three solvers are proposed to solve
the constrained problem:
e ABF [120] uses Newton’s method to solve an
augmented objective function that formulates the
constrained minimization problem using Lagrange

multipliers.

o ABF++ [122] wuses the sequential linearly
constrained programming.

o Linear ABF [153] linearizes the mnon-linear

constraint and solve a linear system to obtain the
resulting angles.
In practice, inverted
demonstrated in [81].

triangles still arise, as

Metric-based methods
be formulated as designing a Riemannian metric of
the surface, such that all the interior points are
with zero Gaussian curvatures, namely a flat metric.
Discrete intrinsic flows were studied in recent decades.
These methods evolve the curvature of the triangular
meshes [26], or the piecewise linear metric of triangular

Surface parameterization can

meshes independent of embedding or immersion, such
as discrete Ricci flow [64], Yamabe flow [92] and Calabi
flow [44]. Based on these methods, powerful tools for
conformal parameterization has been developed [141,
159].

5.3 Connectivity-updated methods

For highly non-linear optimization problems, the
fixed connectivity may impose a strong restriction on
the solution. As a consequence, the feasible region may
be too small to contain an ideal solution. This leads
to slow convergence, poor solution, or even that no
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Fig. 8 Parameterizations with/without bijective constraints.
Without bijective constraints, a 2D point may be mapped to
more than one point on the surface.

solution can be found because of the nearly degenerated
triangles generated during the iterations [65]. Thus,
some methods are proposed to integrate connectivity-
update into vertex optimization to solve this issue.
Here, we introduce two connectivity-update techniques:
adaptive refinement and hierarchical meshes.

[65] proposes a connectivity-
updated optimization method for locally injective

Adaptive refinement

mappings of 2D triangular meshes with position
constraints.  Their algorithm iteratively solves the
vertex position and updates the connectivity according
to the criteria based on residual, gradient and condition
number of the energy. The connectivity-updated
operators include edge-flip and edge-split. [158] applies
adaptive refinement to the 3D deformation problem.

[58] focuses on computing high-
quality spherical parameterizations with bijection and
The method first simplifies
the mesh until the model becomes a tetrahedron. After
mapping the tetrahedron onto the sphere, The method
alternately inserts vertices and do global distortion
optimization to distribute the vertices uniformly on the
sphere. Inspired by the similar idea, the progressive
embedding is proposed in [123] with similar theoretical
guarantees to Tutte’s embedding, but it is more resilient
to the rounding error of floating point arithmetic.

Hierarchical meshes

low isometric distortion.

[123] collapses edges on an invalid embedding to a
valid, simplified mesh, then insert points back while
maintaining validity.

6 More constraints

Inversion-free constraint is not the only one
in many applications. This
introduces the applications with other four constraints:
(1) bijective mappings, (2) bijective inter-surface
mappings, (3) axis-aligned structure construction, and

constraint section

(4) global scamless parameterizations.

6.1 Bijective constraints

In addition to being inversion-free, applications may
ask for intersection-free boundaries [63, 78, 126, 131].
An inversion-free and intersection-free mapping is
bijective.
can establish a one-to-one correspondence between the

For example, bijective parameterizations

input surface and the parameterized mesh (Figure 8).
In fact, except for the negative or zero volume,
physical objects also do not contain global overlaps.
Thus the physical deformation/simulation should avoid
intersecting boundaries and only contain positive
volume. Here, we focus on the mesh-based mappings.
Constraint overview This intersection-free
constraint is more complicated than the inversion-free
Preventing overlaps for the boundary
Besides,
boundary collisions may occur everywhere on the

constraint.
leads to non-linear collision constraints.

boundary. Thus for a simplicial mesh, the number
of potential collisions is quadratic in the number of
boundary elements, thereby significantly increasing
the computational cost.

There are two common strategies to handle the
bijective constraints: (1) barrier functions and (2)
Both of these approaches start
from an intersection-free shape and avoid any overlap
during the optimization process. For example, Tutte’s
embedding method [138] generates a bijective initial
parameterization, and the rest shape in deformation is
usually free of overlaps.

scaffold meshes.

6.1.1 Barrier functions

Using barrier functions to avoid overlaps is a
commonly used technique. Barrier functions for
intersection-free constraints should satisfy a property:
when the overlap is about to occur, the function goes
to infinity. Thus, we need to answer the following
questions: (1) how to use mathematical language to
describe the occurrence of collisions and (2) what the
concrete barrier function is?

Distance-based approach When a boundary vertex
approaches a boundary element (edge in 2D and
triangle in 3D), the collision is about to occur. In
3D, when two boundary edges are close to each other,
they will collide. For the first question, the distance
from a boundary vertex to a boundary element or the
distance between two boundary edges is used, denoted
as dinter [78, 126].
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Triangle inequality approach For 2D triangular
mesh, Su et al. [131] propose a triangle inequality
approach. A boundary vertex v and two end points
of a boundary edge € = v,v, form a triangle. Based

on the triangle inequality, we have
IV =Vall2 + IV = Veoll2 = [[Va = Vb]l2-

The equality holds when v is on €. Thus, dipger =
(¥ =Vall2 + [V = Vp|l2 — [[Va — Vb]|2) is used to answer
the first question.
Concrete barrier functions Given a distance
threshold €inter, the barrier function is zero when
dinter > €inter- Lwo barrier functions are commonly
used when dinter < €inter:

e Reciprocal-based barrier [126]: (€inter/dinter — 1)

o Log-based barrier [78]: —In(dinter/€inter)(Einter —

dinter)2~

They go to infinity when diyter approaches zero.

Computational cost The barrier functions are at
least C? when dinger < €inter- Thus quasi-Newton
solvers [126] and second-order solvers [78, 131] can be
used. However, the number of potential collisions is
quadratic in the number of boundary elements, thus the
density of the Hessian matrix in second-order solvers
significantly increases, thereby causing much more time
for optimization. For 2D triangular mesh, a coarse shell
mesh is used [131] to reduce the computational cost;
however, it extends this idea to 3D case.

6.1.2 Scaffold-based methods

Another idea to avoid overlaps is the use of a scaffold
mesh. The scaffold mesh is introduced to convert the
globally overlap-free constraint to a locally flip-free
condition [63, 95, 96, 157].

Updating connectivity During the optimization,
the boundary of the scaffold mesh is fixed. To
efficiently reduce distortion and prevent possible
locking situations, the scaffold mesh must be frequently
updated and optimized during the optimization [63].
This updating connectivity leads to a changed size and
an updated nonzero structure of the sparse Hessian
matrices for computing descent directions. Then,
solving linear systems become more time-consuming,
as observed by [131]. In addition, efficiently performing
connectivity updates for tetrahedral meshes is difficult.

Very-Large-scale bijective parameterizations As

high-precision 3D scanners become more and more
widespread, it is easy to obtain very-large-scale meshes
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containing at least millions of vertices. However, due
to the memory limitation of the used computer, the
commonly developed methods for creating inversion-
free mappings may fail for these models. Ye et al. [15]1]
use the scaffold-based method to compute bijective
parameterizations for very-large-scale models. Instead
of computing descent directions using the mesh vertices
as variables, they estimate descent directions for each
vertex by optimizing a proxy energy defined in spline
spaces. Since the spline functions contain a small
set of control points, it significantly decreases memory
requirement.

6.2 Bijective inter-surface mappings

Computing inter-surface mappings is a hot research
topic [57, 80, 139]. Here, we focus on bijective
inter-surface mappings that provide one-to-one
correspondences between two shapes. Besides,
inter-surface mappings can be used to generate
compatible meshes that possess the same connectivity
structures [73, 147, 149].
Common domain-based methods Many approaches
compute bijective inter-surface mappings via common
domains, such as spheres [6, 58], coarse triangular
meshes [73, 74, 117], and planar domains [3-5].
The algorithm workflow usually contains three steps:
(1) constructing a common domain, (2) bijectively
mapping the input models onto the common domain,
and (3) determining the inter-surface mapping by
composing one mapping with the inverse of the other.

Domain construction Spheres are standard domains
and only suitable for genus-zero shapes. In general,
mapping the input shapes onto spheres (i.e., spherical
parameterizations) contains very large distortion, thus
the resulting inter-surface mappings may be distorted
severely [58, 109, 140]. In addition, robustly computing
bijective spherical parameterizations without numerical
issues still deserves more research.

Constructing coarse triangular meshes is non-trivial
for arbitrary inputs. For example, progressive
meshes [54] are used to define the base domain [117].
In [73, 74], common domains are built by consistently
connecting feature points with equivalent paths over
the two meshes.

The common planar automatically
obtained by computing bijective parameterizations
The
parameterizations require the two input meshes to be

domain is
with common boundary constraints [3-5].

cut to disk topology. Thus, consistent cuts on two
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Hex mesh

PolyCube

Input

Fig. 9 PolyCubes for all-hex remeshing. It contains three

steps: (1) constructing a PolyCube, (2) performing hex mesh
generation of the PolyCube domain, and (3) mapping the hex
mesh back to the input model.

meshes are needed. However, it is difficult to construct
them that will always lead to low distortion inter-
surface mappings.

Distortions optimization Since the inter-surface
mapping is computed by composing one mapping with
the inverse of the other, it is difficult to reduce the
distortion. When two mappings are with low distortion,
the final inter-surface mapping has a high probability
of being low distortion; however, this is not absolute.
Then, an end-to-end method is proposed to reduce
the distortion of the final inter-surface mapping [115—
117].
a mutual tessellation and optimize the symmetric
Dirichlet energy.

They represent the inter-surface mapping via

6.3 Axis-aligned constraints

If the boundary of a closed shape is axis-aligned, it
is an awis-aligned structure. Axis-aligned structures
(PolyCubes in 3D and PolySquares in 2D) provide
compact representations for closed complex shapes.
They have been proved to be very useful to many
computer graphics applications, such as texture
mapping [20, 135, 150], hex/quad meshing [35, 38, 46,
49, 59, 82, 90, 145, 152] (Figure 9), and GPU-based
subdivision [144], and atlas refinement [85, 156].

Constraints Generally, closed complex shapes are
not axis-aligned. Thus, the goal of the axis-aligned
structure construction method is to automatically and
efficiently compute an axis-aligned structure.
view, a high-quality construction algorithm usually
satisfies the following properties:

In our

o Inversion-free  constraint: the axis-aligned
structure contains no degenerate or inverted
elements;

e Distortion constraint: the mapping distortion is as
low as possible;

o Corner constraint: the number of corners of the
axis-aligned structure is small.

Since the rest shape serves as the initialization, the

initial mapping is an identity map. Thus, we can

keep the axis-aligned map inversion-free by performing
explicit checks combined with line search. Then, the
left challenge is to strictly satisfy the axis-aligned

constraint while reducing as many corners as possible.

Deformation-based methods The deformation-
based methods [38, 46, 59] contains three main
steps:

o Pre-axis-aligned deformation: it deforms the input
closed mesh to a pre-axis-aligned shape, whose face
normals are almost aligned with the coordinate
axes;

e Boundary segmentation: it determines whether the
boundary surface is sufficient to form a valid axis-
aligned structure [32];

e Boundary flattening:
strictly axis-aligned.

Many axis-aligned energy terms are proposed and

it maps the input to be

optimized to drive the input shape to be pre-axis-
aligned. There are three common strategies:
strategy  [46]: it
deformation gradients as the minimal rotation

e Rotation-driven computes
necessary to align each surface vertex normal with
one of +X,+Y, +7, and then uses the computed
deformation gradients to deform the shape.

o Li-based energy [59]: if normals are along axes,
their L norms reach the optimal.

e Normal-smooth energy [38]: it first computes
target normals by Gaussian smoothing and closest
axis projection, and then measure the difference
between the current normals and the target
normals as the objective energy.

In practice, high-quality results are usually achieved.
However, these deformation-based methods have no
theoretical guarantee that the wvalid axis-aligned
topology can always be achieved under the inversion-
free constraints.

Segmentation-based method This method [90] first
segments the input shape with wvalid axis-aligned
topology and then deforms the input to be strictly axis-
aligned. For the first step, a graph-cut based approach

) |
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is proposed to control the corner counts. However, it
contains two main limitations: (1) their algorithm could
be time-consuming due to its local and greedy search
and (2) their method cannot always achieve valid axis-
aligned topology, as demonstrated in [148].

Given a closed mesh
and a pre-axis-aligned shape, the construction-based
methods first construct a valid axis-aligned structure

Construction-based methods

and then compute a bijective correspondence between
the constructed structure and the input mesh [145, 148,
152]. The pre-axis-aligned shape can be generated by
the aforementioned deformation methods [38, 46, 59].

The goal of axis-aligned structure construction is
to reduce the number of corners and generate low
distortion mappings. However, axis-aligned structures
are not determined during the construction process,
and the distortion of the final mapping cannot be
computed. Therefore, the distortion metric should
be replaced with the approximation error between
the pre-axis-aligned shape and the constructed axis-
aligned structure. Morphological operations [152] and
an erasing-and-filling solver [148] are proposed for
To build a bijective correspondence
between the axis-aligned structure and the input mesh,
Yang et al. [148] use a quad mesh optimization
algorithm.

These construction-based methods can theoretically
guarantee a valid axis-aligned structure. They have two

construction.

main limitations: (1) they are unable to handle the pre-
axis-aligned shapes containing global overlaps and (2)
they do not adequately align the sharp features of the
models.

Sharp features Aligning the sharp features of the
input models to the edges of the axis-aligned structures
To align most of sharp features,
Guo et al. [49] use a feature-aware energy into
the aforementioned deformation processes.
strictly preserving sharp features remains a challenge.

is non-trivial.

However,

6.4 Global seamless parameterizations

The global seamless parametrization is
widely used in some specific applications, such as
conforming quadrangulation and seamless texturing.

Problems

For the seamless mapping f : M — €, two kinds of
constraints should be satisfied. The one is the inversion-
free constraint in (1), the other one is the seamless
constraints of the parametrization [97):

() ) e
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Without With

Fig. 10 Global seamless parameterizations.

where t;; € R? and (u,v); (u,v); are the
parameterization positions of any point on the the edge

e;; adjacent to simplices s; and s;, and

0o 1\
Hij = <—1 0)

is a rotation matrix with a seam rotation angle w;; =
kijm/2,k;; € Z. It can also be written as follow [39, 99]:
Jieij = Riijeij7 (9)
where J;,J; are the Jacobian matrix mentioned in
Section 2, e;; is the edge adjacent to simplices s; and
sj. Figure 10 shows an example with and without the
seamless constraint (8).
There are mainly three kinds of methods, which
are metric-based, field-based, and harmonic-based, to
generate global seamless parameterizations.

Metric-based methods
also be regarded as the metric of surfaces, so the direct
way to get the seamless mappings is to construct an
optimization problem with the constraints (9) [40].
However, there are many other methods with
different representations of the metric. Based on the
notion of the PL metric in Section 2.1.4, a precise
notion of discrete conformal equivalence is presented
in [129]. The parametrization is generated by finding a
flat mesh that is discretely conformally equivalent to a
given mesh. The problem is convex, and the seamless
condition is transformed into the angle defect condition
on the vertices. Different from [129], another conformal
method, called BFF (boundary first flattening), is
presented in [114]. The method is based on the Cauchy-
Riemann equation, and the final parametrization is
obtained by a linear system, so it is computed in real-
time. The seamless condition is also transformed into

The Jacobian matrix J; can

the cone condition.
Recently, some methods firstly cut the surface to
topological disk(s), then modify the cone metric so
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that the parametrization with the modified metric
The fact is demonstrated in [16] that,
for (almost) any choice of cones, a corresponding
global parametrization can be constructed without
introducing additional cones. Based on this fact,
their algorithm firstly cut the surface to topological
disk(s), then compute a cone metric on with prescribed
boundary curvature, and the boundary is rectilinear.

is seamless.

With map padding, the metric is modified into a
seamless one. However, the nonlinear optimization
convergence is not sure to the prescribed singularities,
and there are some numerical issues such as precision
limit, which affect the discrete conformal map
computation.  The method in [160] is a general
combinatorial method, which eliminates the potential
numerical issues in [16]. Similar to [16], the surface is
cut firstly. Then the metapolygon will be constructed
and modified to satisfy the seamless condition of each
piece. The construction of the cone metric is explicit
combinatorial, and numerical optimization is taken
Finally,
the parametrization over the cut surface can then be
obtained by existing techniques. Their method is
reliable to generate the validity, seamlessness, and local
injectivity parametrization with the expense of more
time cost on the process of padding.

Most of the metric-based methods are based on
conformal mapping so that these methods may be with
large area distortion. Recent popular distortion metrics

into account only for non-crucial decisions.

are considered in [75] to achieve low metric distortion
directly.

The field-based methods are
often computing the guiding field firstly. Then
the parametrizations are from the field. The
first field-based approach in  [48] is also based
on the conformal map. Their method computes
seamless parametrizations of nonzero genus surfaces
with boundaries. Since all conformal gradient fields
(holomorphic 1-forms) form a linear space, the gradient
field of the mapping can be got by solving a linear
system with some constraints on the field. However, the
final parametrization is not guaranteed to be injective,
and the conformal mapping will also bring a large area
distortion.

Field-based methods

The methods based on two-direction field are more
common than one-direction field. Based on cross-fields
[11] and conformal map ideas [98], [100] proposes a
feature-aligned method to reduce the metric distortion
of parametrization. The seamless cone metric describes
the seamless condition. In [97], a quad patch partition

of the mesh is constructed by tracing the cross-field,
and then the partition is modified to satisfy the
global parametrization constraints, including seamless.
With the partition, the problem to find a final
parametrization is reduced to linear programs, i.e.,
an optimization problem with convex constraints, so
the existence of a solution is always guaranteed.
This method enforces a local bijective and feature-
aligned, but singularities should be added during the
modification of partition. These methods allow the
feature-alignment, but the generation of the fields is
also a complex problem.

In [15], the author presents a novel method to
perform the quantization that satisfies the seamless
condition. The quantization is performed efficiently
by formulating the problem in alternative degrees of
freedom. [98] describes a method to produce seamless
parametrizations with low distortion. They prove that
the parametrization f with a cone metric g is seamless
if and only if the metric is also seamless, so the seamless
condition is transformed into the seamless condition
Then, by evolving the surface’s
metric and finding a new metric g with zero Gaussian
curvature almost everywhere.
low-distortion, locally injective parametrization for
surfaces of arbitrary topology, but the intrinsic method
does not allow for feature alignment.

of cone metric g.

The method produces

Harmonic-based methods Given desired cone points
and rational holonomy angles, [13] propose a method,
which called HGP (harmonic global parametrization),
to compute seamless parametrization of surfaces with
It is stated that if the cone

and boundary triangles are positively oriented and

arbitrary topology.

achieve the correct cone and turning angles, the final
parametrization is locally injective. By this result, the
parametrization can be generated by solving the linear
system, and the seamless condition is converted into
the linear complex equations. In [52], an algorithm
based on [13] is presented for low-distortion locally
injective harmonic mappings. They construct a linear
subspace from the solutions of the HGP system [13].
Then, the mapping is obtained by a nonlinear non-
convex optimization from the reduced subspace. Their
method achieves significant acceleration over HGP. The
above two methods are fast and robust, but the local
injectivity through convexification [13] will exclude the
Also, [52] can only deal with the
surfaces with genus zero.

valid solutions.
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Fig. 11
distortion.

Conformal parameterizations with

large area

7 Combinatorial problems

7.1 Cone singularity detection

Conformal parameterizations are easily computed.
The main advantage of conformal parameterizations
is free of angle distortion and inversions. However,
conformal parameterizations suffer from severe area
distortion (Figure 11). Cone singularities [67] provide

a way to mitigate area distortion.

Problem overview In fact, the area distortion can
always be reduced by adding more cones; however,
too many cones usually result in a long cut for final
parametrization. Thus, the goal of the cone singularity
detection algorithm is to achieve a desired tradeoff
between cone number, cone position and the area
distortion. The number and placement of cones are
discrete, thus this problem is combinatorial. Therefore,
computing the best configuration (number, placement,
and size) of cones is notoriously difficult. Many
methods have been proposed to solve this challenging

problem [9, 98, 127, 129].

Greedy methods Cones are detected via a simple
greedy algorithm [129].
iteratively computes a conformal parameterization and
places a new cone at the point with the greatest
area distortion.

In each iteration, it

The subsequent iterations treat
cone points as punctures in the domain and can
automatically determine cone angles by the conformal
parameterization process. In [9], a parameterization
algorithm is devised and cone locations are determined
by the same greedy strategy. Different from [129],
it develops a diffusion process involving Gaussian
curvature to compute the cone angles.

Cones are determined by
incrementally flattening the surface [98]. Starting
with the original metric, a fraction of the surface
is incrementally constrained to have zero Gaussian

Incremental methods
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Fig. 12 In general,

Cut construction for parameterizations.
the longer the cut seam, the smaller the distortion.

curvature. Then, only a small set of vertices, i.e., cones,
have non-zero curvature. However, there is no direct
or explicit relationship between curvatures and cone
configurations, as shown in [127].

Optimization methods Below a fixed total cone
angle bound, the method in [127] computes the cone
configuration with the least total area distortion.
the bound is not explicitly given in the
optimization, whereas it is implicitly controlled by a

However,

weight for balancing its two energy terms. There is no
intuitive nor direct mapping between the controlling
parameter and the total cone angle bound. Judging
from the results in [127], some important cones are not
captured with default parameters, leading to high area
distortion.

7.2 Cut construction for parameterizations

Parameterized 2D meshes are commonly used to
store surface signals, such as colors,
Before being parameterized to the
plane, a closed mesh needs to be cut to a disk topology.

normals, and

displacements.

The feasibility and practicality of parameterizations
are affected by two major factors: (1) distortion
and (2) cut length. Short cuts and low isometric
distortion are both required for high-quality inversion-
free parameterizations. Usually, these two requirements
are contradictory (Figure 12). Besides, cut generation
can be used for more applications, such as peeling art
design [84].

Combinatorial problem Solving this problem is
very challenging. First, since a cut is discretely
represented as mesh edges, it is a combinatorial

problem. It is highly complex to reduce the length
using combinatorial optimization techniques. Second,
cut construction and parameterization generation are
coupled. Parameterizations are usually computed after
cuts are determined, and the distortion heavily depends
on the cut location.
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Method classification Three types of methods are
mainly proposed:

o Segmentation-based methods partition an input
mesh into multiple charts [66, 77, 113, 161].

o Optimization-based  methods simultaneously
optimize the parameterization distortion and the
cut length [79, 108].

e Point-to-cut methods first detect feature points
where the distortion is usually concentrated and
then connect these feature points to construct
cuts [18, 19, 119, 121, 162].

Since the segmentation-based methods do not explicitly
minimize cut lengths, we discuss other two methods
in details. In addition, some greedy methods are
developed. Gu et al. [47] alternately parameterize the
mesh and connect the maximum distortion vertex to the
existing cut via the shortest path. As observed by [18],
this algorithm often terminates early, resulting in large
isometric distortion. Triangles are parameterized one-
by-one in [128] without violating the user-provided
distortion bound. In general, the one-by-one way is too
local to produce a shorter cut than the cut required to
achieve a given bound, as observed by [57, 108].

7.2.1 Optimization-based methods

AutoCuts [108] The energy function of AutoCuts
is the weighted sum of the cut-penalty energy and
the symmetric-Dirichlet distortion energy. During
optimization, the parameterized mesh is treated as
a fixed topology triangle soup, and the cut-penalty
energy is optimized to pull separate triangles together.
A balancing weight between the cut-penalty energy and
the symmetric-Dirichlet distortion energy is required.
However, it is non-trivial to determine the weight
so that the desired tradeoff between cut length and
parameterization distortion is obtained.

OptCuts [79]
length under bounded distortion constraint. Since the
optimization problem is combinatorial, they propose
local topological operations, including boundary vertex
The
local operations lead to early entrapment by local

OptCuts directly optimizes the cut

split, interior vertex split, and corner merge.

minimum, thereby resulting in long cuts, as shown
in [162]. Besides, local operations also cause a high
computational cost.

Simultaneous optimization of the
parameterization distortion and the cut length [79, 108]
is a combinatorial problem. Since the nonlinear and

Discussions

non-convex optimization problem is very complicated,

these methods are time-consuming and usually

generate long cuts. Besides, they heavily rely on the
initializations.
7.2.2 Point-to-cut methods

Detecting points Since parameterizations are not
determined during the feature point detection process,
proxy metrics, such as the Gaussian curvature [119, 121]
and distortion from spherical parameterizations [18],
are used as predictors of anticipated parameterization
distortion.

High curvature vertices have a high probability
of producing high isometric distortion. However as
observed by [127], the relationship between curvatures
and distortions is not direct or clear.

A hierarchical clustering method uses distortion
metrics from spherical parameterizations [18]. Since the
spherical parameterization method [58] used in [18] may
fail to generate bijective spherical parameterizations,
distortion metrics from planar parameterizations are
used [19]. However, the voting strategy requires ten
times of planar parameterization. Similar to [19],
Zhu et al. [162] also use planar parameterizations to
To detect necessary feature
points to achieve low isometric distortion and prevent

generate proxy metrics.

too many feature points, a greedy filtering process is
proposed [162].

Conformal cone singularities [9, 98, 127, 129] can also
be treated as feature points.

Given a graph and a set of
terminal vertices in the graph, the Steiner tree problem

Connecting points

seeks to find the minimum cost tree connecting all the
terminal vertices. This is an NP-hard problem [61].

Algorithms for computing an exact solution to the
Steiner tree problem have been proposed [8, 37, 50].
However, they cannot generate the exact solution in
a reasonable amount of time for large-scale graphs or
when there are many terminal vertices. In this problem,
if the number of feature points is small and the size
of the input mesh is moderate, the exact solution for
the Steiner tree problem can be achieved within an
acceptable time.

On this account, some approximation methods have
been proposed [10, 14, 105, 111].
used approaches are based on the minimal spanning
tree (MST) [68] and the shortest paths heuristic
(SPH) [134]. The algorithm in [68] is used by [18, 119,
121]. A greedy algorithm [162] is proposed to compute
an approximate solution driven by auxiliary points. As
shown in [162], the greedy algorithm outperforms MST
and SPH, and approximate the optimal solution better

Two commonly
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in the sense of relative error.

In practice, the relationship between
proxy metrics and parameterization distortion is not
clear and direct, and the configuration (number and
locations) of generated feature points is not always
appropriate. For example, large distortions can occur

Discussions

if feature points are missing, whereas too many points
produce long cuts.

7.3 Hex mesh simplification

Remehsing Given a 3D mesh, the remeshing process
computes another mesh so that its elements satisfy
some quality requirements and approximate the input
acceptably [7]. The mesh topology and vertex
positions are the variables. Since the topology
is discrete, the remeshing can be regarded as a
combinatorial problem. In general, the inversion-
free constraint is not explicitly enforced during the
remeshing process. However, to improve the robustness
and reality of FEM, the generated elements should not
be inverted. For triangular and tetrahedral meshes,
the Delaunay triangulation theoretically guarantees no
inverted elements (triangles or tetrahedrons). For
quad and hex meshes, it is challenging to achieve an

inversion-free result.

Hex mesh simplification Here we focus on the hex
mesh simplification. A high-quality hex mesh should
satisfy the following properties:

e Local regularity: each hex element approaches a
cuboid and is free of negative scaled Jacobian.

o Singularity complezity: the singularity graph is
simple and the number of patches in the hex layout
is small.

The input of hex mesh simplification is an inversion-free
hex mesh that contains no negative scaled Jacobian.
The goal is to reduce the number of patches in
the hex layout while avoiding any inverted hex and
Obviously,
this is a combinatorial problem with inversion-free

maintaining the input surface shape.
constraints.

Gao et al. [43]
propose a robust structure simplification algorithm.

Two robust collapse operations

The main idea is to greedily perform simplification
operations, inducing sheet collapse and chord collapse,
to reduce the complexity of the base complex of the
input mesh. To keep the inversion-free property, they
formulate the simplification operation as a deformation
process that uses explicit checks in combination with

S "
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line search to avoid inversions. In addition, the
topological validity and geometrical fidelity are also
guaranteed by explicit checks.
explicit checks limit the simplification operation space,
thereby leaving room in reducing the singularity
complexity.

In practice, these

8 Conclusion

We have presented the state-of-the-art in inversion-
free geometric mapping construction. In this section,
we discuss possible generalizations of existing methods,
and interesting unsolved problems.

Theoretical guarantee If the initial mapping is not
inversion-free, no method has a theoretical guarantee
that the result is always inversion-free. This is the
most fundamental problem in studying and computing
inversion-free mappings.  More theoretical studies
should be provided to achieve the inversion-free goal.

Bijective mappings in 3D Bijective mappings in
3D are essential for many geometric processing tasks.
In the future, it is worthwhile to study how to
reduce computational costs in computing 3D bijective
mappings. However, the cases of boundary collision in
3D are more complicated than 2D cases.

Time sequence data Most geometric data in the
aforementioned applications are single and static. One
interesting future work is to explore optimization
algorithms on the time sequence data,
widely used in the reconstruction of the dynamic
Combined with the semantic information, the
collaborative optimization for time sequence models is
a possible research direction.

which is

scene.

Generalization Many methods or  thoughts
mentioned above can be generalized into a unified
framework. For example, the parameter o used in
TLC (Total Lifted Content) is fixed; but it can be
modified to be a changing parameter a — 0, similar to
the idea of homotopy optimization. Moreover, similar
to the local-global method, these methods can be
generalized into a framework that can be used in more

applications.

The distortion in the mesh cutting
algorithm [79] bounded; however, it usually generates
long cuts to achieve this goal. The greedy method [162]
often produces short cuts; but the distortion is not

Mesh cutting
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explicitly bounded. It is interesting to study the cut
generation problem to achieve as short cut as possible
while bounding the distortion.
Feature-preserving PolyCube construction
Although most features are aligned in [49], there
are still some features that are not aligned. As shown
in [148], a PolyCube corner, whose valence is equal to
five, is always non-manifold. Thus, to match a feature
point where five feature lines converge, a PolyCube
corner with the valence of six is required. Preserving
sharp features in the PolyCube construction is an
intriguing direction for future research.

Quasi-Conformal mappings in 3D Conformal and
Quasi-conformal mappings are powerful tools for
parameterizations or flattening of Riemann surfaces.
Meanwhile, very little work to study
3D cases. According to Liouville’s theorem, the
conformal mappings in R"(n > 3) are only Moébius
Quasi-
conformal mappings are sufficiently flexiable and still
To study 3D
quasi-Conformal mappings, [23] decouples the scaling
and rotation in conformal deformation to generate
a close-to-conformal mapping.

there is

transformations which is not flexible at all.

close to conformal in a suitable sense.

However, generally
measuring and optimizing the conformal quality of 3D
quasi-conformal mappings are still open problem and
need more research.

The
computation process for intrinsic flows is affected by

Poor triangulations for intrinsic flows
the triangulations. Poor triangulation will severely slow
the convergence or even result in non-convergence of
the discrete intrinsic flow. Even if an edge flip strategy
is applied to improve the quality of triangulation, the
process may terminate when extreme poor triangular

meshes are used as inputs.

Hex mesh improvement Improving the quality of a
hex mesh requires optimizing the structure and vertex
positions at the same time. There are several problems
worth studying. First, if the input mesh contains
inverted hex elements, how to effectively and efficiently
eliminate them? Second, how to robustly compute a
coarser structure while satisfying the geometric fidelity
constraint and the topological constraint? Third, can
we use the structure optimization technique to help us
to eliminate inversion?
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