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Abstract The technique of face attribute

manipulation has found increasing applications,

but remains challenging with the restriction of

editing the attributes while preserving its unique

details. In this paper, we introduce our method

named the Mask-Adversarial AutoEncoder (M-AAE)

which combines the Variational AutoEncoder (VAE)

and Generative Adversarial Network (GAN) for

photorealistic image generation. We propose the

partial dilated layers to modify a modest amount of

pixels in the feature maps of an encoder, changing

the attribute strength continuously without hindering

global information. Our training objectives of VAE

and GAN are reinforced by the supervision of face

recognition loss and cycle consistency loss for faithful

preservation of face details. Moreover, we generate

facial masks to enforce background consistency, which

allows our training to focus on foreground face rather

than background. Experimental results demonstrate

that our method, can generate high-quality images

with varying attributes and outperform the existing

methods in detail preservation.

Keywords Face Attribute Manipulation; Generative

Adversarial Network(GAN); Variational

AutoEncoder(VAE); Partial Dilated

Layers; Photorealistic Mechanism.

1 Shanghai Jiao Tong University, Shanghai, 200240, China.

E-mail: Ruoqi Sun, ruoqisun7@sjtu.edu.cn; Hengliang

Zhu, hengliang zhu@sjtu.edu.cn; Lizhuang Ma, ma-

lz@cs.sjtu.edu.cn(�).

2 Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA, 15213, USA. E-mail: chen-

huang@apple.com.

Manuscript received: 2020-11-03; accepted: 2020-12-21.

1 Introduction

The task of face attribute manipulation is to edit

the face attributes shown in an image, e.g., hair color,

facial expression, age and so on. It has a wide range

of applications, such as data augmentation and age-

invariant face verification [3, 26, 29, 38]. Essentially,

this is an image generation problem. With the advent

of generative adversarial networks (GANs), the quality

of generated images improves over time [7, 41]. The

family of GAN methods can be mainly divided into two

categories: one with noise input [24, 37] and another

conditioned on input images [2, 4, 23]. Our method

falls into the second category, aiming to change the face

attributes in the input image while preserving high-

frequency details.

Normally, the neural network generate the result

images by manipulating all the pixels of the input

image. However, unlike the style translation task [5,

19], the attribute manipulation one is more challenging

due to the restriction of only modifying some image

features while keeping others unchanged (including

the image background). In this paper, we improve

the quality of the manipulated images from three

aspects: the concentration of attribute manipulation,

the preservation of facial details and the photorealistic

mechanism.

The concentration of attribute manipulation. The

manipulation method aims to focus on modifying

the target attributes while keep the common feature

unchanged. One simple choice to achieve this goal

is to use the conditional GAN framework [24, 39],

which concatenates the input image with an one-hot

attribute vector to encode the desired manipulation.

Another option is to directly learn the image-to-image

translation with respect to attributes. CycleGAN [42]

learns such translation rule from unpaired images with

a cycle consistency constraint. However, such global

transformation can neither guarantee common feature

preservation, nor make a continuous change in the
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attribute strength.

The preservation of facial details. Although

achieving promising results, the above methods have

one common drawback — there exists no mechanisms

to keep the unique facial traits while editing the

whole images. It may still change the non-targeted

features beyond the background, which is not preferred.

We especially note the importance of keeping the

background unchanged since it is often observed to be

changed along with the foreground face. This suggests

some efforts of face attribute manipulation are wasted

on the irrelevant regions. Moreover, the post-process

of overriding generated background with the original

one by a background mask would be less preferred, as

it needs better handling along the boundaries to avoid

visible seams.

The photorealistic mechanism. The realistic of

the generated image is one of the most important

measurement of the image generation algorithm,

including the fidelity of face features, the clarity

of images and so on. Since the features are

various, different methods are proposed to fit the

special tasks. The method of [39] provides a

partial remedy by feeding the face images before and

after attribute manipulation into a face recognition

network and penalizing their feature distance. This

provides a good way to preserve facial identify

information. Recently, UNIT method [20] uses

generative adversarial networks (GANs) and variational

autoencoders (VAEs) for robust modeling of different

image domains. Then the cycle consistency constraint

is also applied to learn domain translation effectively.

The method of [32] proposes to only learn the residual

image before and after attribute manipulation by

using two transformation networks, one for attribute

manipulation and another for its dual operation.

However, the methods mentioned above focus on the

single task.

In this paper, we train a neural network to

simultaneously manipulate the target attributes of

a face image and keep its background untouched.

Firstly, we propose the patial dilated layer to modify

the minimum number of feature map pixels from

our encoder. It allows us to maximally preserve

the global image information and enables attribute

change in a continuous manner. Secondly, we feed

the background mask into the network to coherently

penalize their differences before and after face attribute

manipulation. Finally, our method is based on the

VAE-GAN framework [20, 39] for strong modeling of

photorealistic images. To avoid loss of unique facial

details during attribute editing, we employ a face

recognition loss and a cycle consistency loss (to ensure

image consistency after two inverse manipulations).

The proposed method is named as Mask-Adversarial

AutoEncoder (M-AAE) and the experimental results

demonstrate its effectiveness.

In summary, the contributions of this paper are

as follows. (1) We present the partial dilated layers

to modify a modest amount of pixels in our learned

feature maps to realize continuous manipulation of

face attributes. (2) We propose a Mask-Adversarial

AutoEncoder (M-AAE) strategy to ensure faithful

facial detail preservation as well as background

consistency. (3) We combine the GAN, VAE, mask

loss, id loss, cycle consistency loss to generate the

photorealistic facial images. The proposed method

achieves state-of-the-art performance in photorealistic

attribute manipulation.

2 Related work

Face attribute manipulation Considerable

progress has been made on face attribute

manipulation [1, 8, 9, 12, 17, 18]. Most methods

of face attribute manipulation are based on generative

models. There are two main groups of these methods:

the one with extra input vector [4, 6, 28, 39], and the

other group that directly learn the image-to-image

translation along attributes [20, 42]. The first group

often takes an attribute vector as the guidance for

manipulating the desired attribute. The CAAE

method [39] concatenates the one-hot age label with

latent image features to be fed into the generator for age

progression purposes. StarGAN [4] takes the one-hot

vector to represent domain information for ”domain

transfer”. However, such global transformation based

on external code usually cannot well preserve the

facial details after attribute manipulation. The second

group of methods only operate in image domains

and learn the image-to-image translation directly.

The CycleGAN [42] and UNIT method [20] are such

examples, supervised by a cycle consistency loss

that requires the manipulated image can be mapped

back to the original image. [32] further proposed

to only learn the residual image before and after

attribute manipulation, which can be easier and lead

to higher-quality image prediction. Unfortunately,

these methods still have difficulty of manipulating the

target attribute while keeping others unchanged.

Image generation algorithm The Variational
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Fig. 1 Framework of the proposed Mask-Adversarial AutoEncoder (M-AAE) method. The encoder-decoder De(En(x)) of VAE for

input image x is treated as the generator G(x) of GAN, with a discriminator D(·) tells fake from real. We manipulate attributes by

modifying the encoded features En(x) by a relative value ±δ, and train using image pairs with opposite face attributes. Moreover,

the encoded features En(x) come from the partial dilated layer. Our training is supervised by 5 loss functions to both preserve facial

details and ensure background consistency (see text for details). We test only using the generator G(·).

AutoEncoder (VAE) [16] and Generative

adversarial network (GAN) [7] are the backbone

for image generation tasks nowadays, such as

image reconstruction [10, 31, 34, 36], image

synthesis [11, 30, 37] and image translation [14, 25, 33].

In VAE, the encoder maps images into a latent

feature space which is then mapped back to the image

domain through a decoder. The latent space contains

the global features extracted for input images. The

more recent GAN consists of the generator and the

discriminator networks to play a min-max game.

Specifically, the generator tries to produce synthesized

images to fool the discriminator that distinguishes

the synthesized images from real ones. GAN-based

methods have shown remarkable results in image

generation, and many improvements followed up.

DCGAN [30] trains stable in a purely convolutional

setting, while CGAN [24] generates visually compelling

images conditioned on extra input like class labels.

CycleGAN [42] and UNIT method [20] introduce a

cycle consistency loss to learn between any image

domains with even unpaired images. There is a recent

trend to combine the GAN with a VAE for robust

image modeling. For example, [18] combined GAN

and VAE by collapsing the VAE decoder and GAN

generator into one. One can tweak the generated

images by manipulating features in the latent feature

space. Such joint VAE-GAN model is also applied in

the works of [20, 39] for image translation. Recently,

it is possible to generate the human face images

in high quality by using GANs [35, 40]. Kim [13]

proposed to utilize the GAN to transfer the full 3D

head expression from the source actor to the target

actor in the video. This paper uses the VAE-GAN

model for face attribute manipulation, and proposes a

working method to modify latent VAE features so as

to change facial attributes but not irrelevant details.

3 Methodology

Our goal is to manipulate the attribute of an input

face image and generate a new one, e.g., to change the

hair color from black to yellow. However, it is difficult

to generate photorealistic images as well as keep the

face faithful, i.e., the generated image should look real

and have its unique details preserved including the

background. To address these challenges we propose a

Mask-Adversarial AutoEncoder (M-AAE) method, as

will be detailed as follows.

3.1 Framework Overview

Our M-AAE method is based on the VAE-GAN

framework, as shown in Fig. 1. The encoder-decoder

De(En(x)) of VAE for input image x is treated as

GAN’s generator G(x). The discriminator D(·) of GAN

tells the generated image G(x) apart from real images.

To manipulate attributes of input image x, we design a

simple but effective mechanism to uniformly modify the

3
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Fig. 2 The receptive fields of the four kinds of partial dilated layers (from bottom to top) of our Encoder (K, S, P denotes the

kernel size, stride and padding, respectively, see Table 1 for details). The padding area in each layer during recursive calculation

is not counted as the receptive field. The rightmost subfigure in the second row shows the global receptive field in raw pixels and

modified pixels in the partial dilated layer. It demonstrates our goal to find the minimum number of feature map pixels at the partial

dilated layer, whose receptive field covers the whole image in image domain.

encoded features En(x) by a relative value ±δ, which

is fed into the decoder to control the attribute strength

present in output G+(x)/G−(x).

We propose the partial dilated layers to manipulate

the face feature continuously while preserving

the consistent of the global features during the

manipulation process. Furthermore, the mask-aware

method is utilized to separate the foreground and the

background of the input images. Thus, the method

can focus on the foreground images and manipulate

the chosen feature only in the foreground, which can

reduce the influence of the background. Modifying the

image features by using a small number of the features

instead of modifying the whole pixels of the images

can protect the image features. The proposed losses

focus on different aspects, including the identification

and the age of the faces, the clarity of the images and

so on. The combination of these losses achieves better

performance on improving the quality of the image.

3.2 The Partial Dilated Layers for Attribute

Manipulation

To manipulate face attributes, rather than take a

one hot attribute vector as in [4, 39], we choose to

modify the hidden features in our encoder to be able

to continuously change the attribute strength. One

intuitive way is to uniformly increase or decrease the

responses of the entire feature map by a relative

value δ. We empirically observed a global change

of image tone by doing this. Instead, we propose

to only modify a minimum number of latent feature

map pixels in the CNN whose receptive field covers

the whole image in image domain. Fig. 2 illustrates

how to find such minimum pixels at the partial

dilated layer(the last layer of the encoder) recursively

from bottom layer. In this way, the image-level

manipulation can be operated efficiently with modest

feature modification. More importantly, we will avoid

a huge loss of image information. Our experiments will

show our efficacy in information preservation during

attribute manipulation.

In practice, the relative value δ is chosen as half the

value range of the feature map pixels for reversing one

particular attribute (δ ≈ 5 in our scenario). Then such

modified features are fed into the decoder to generate

output image G+(x) or G−(x) with strengthened or

weakened attribute. For instance, adding the δ means

strengthen the face attribute, otherwise weaken it. We

change the value in the training process(when we apply

the cycle consistency loss) to force saving the strength

information in it.

4
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Tab. 1 The network architecture of our Encoder, Decoder and GAN discriminator (channel number, kernel size).

Encoder En(·) Decoder De(·) GAN discriminator D(·)
Conv2d (64,7×7) + LeakyReLU Residual Block (512,1×1) Conv2d (64,3×3) + LeakyReLU

Conv2d (128,3×3) + LeakyReLU Residual Block (512,1×1) Conv2d (128,3×3) + LeakyReLU

Conv2d (256,3×3) + LeakyReLU Residual Block (512,1×1) Conv2d (256,3×3) + LeakyReLU

Residual Block (512,1×1) Conv2d (256,3×3) + LeakyReLU Conv2d (512,3×3) + LeakyReLU

Residual Block (512,1×1) Conv2d (128,3×3) + LeakyReLU Conv2d (1024,3×3) + LeakyReLU

Residual Block (512,1×1) Conv2d (64,7×7) + LeakyReLU Conv2d (1,2×2) + Sigmoid

3.3 The Mask-aware Algorithm for Facial

Detail Preservation

In some cases, we observed the image background would

change along with the foreground face by previous

attribute manipulation methods. This is not visually

pleasing and also suggests some manipulation efforts

are wasted in wrong regions. We claim that pasting the

original background around the manipulated face is not

ideal. Because the pixels in the final image coming from

images in different distribution seems incompatible.

More importantly, it is better to mask out background

at the algorithm level to focus our manipulation efforts

on foreground face. As a side effect, the background

gets unchanged as well. Here we propose the mask

loss to learn to change the foreground face attribute

and keep background the same in a coherent way.

We generate a facial mask (thus background mask as

well) by using FCN [22], and penalize the background

difference between input x and generated G(x):

LMask = ||Mask(G(x))−Mask(x)||1, (1)

where Mask(·) is the mask-out operator using the

generated background mask. Note the background

mask of input x is shared for both input x and output

G(x). We do not generate a separate mask for G(x)

which leads to inconsistent penalty.

3.4 The Photorealistic Mechanism

VAE loss The VAE consists of an encoder that maps

an image x to a latent feature z ∼ En(x) = q(z|x)

and a decoder that maps z back to image space x′ ∼
De(z) = p(x|z). The VAE regularizes the encoder

by imposing a prior over the latent distribution p(z),

where z ∼ N (0, I) is often assumed to have a Gaussian

distribution. VAE also penalizes the reconstruction

error between x and x′, and has loss function:

LVAE = λ1KL(q(z|x)||p(z))
−λ2Ex∼pdata(x)[log p(x′|x)],

(2)

where λ1 and λ2 balance the prior regularization term

and reconstruction error term, and KL is the Kullback-

Leibler divergence. The reconstruction error term is

actually equivalent to the L1 norm between x and x′,

since we assume p(x|z) has a Laplacian distribution.

GAN loss The GAN loss is introduced to improve the

photorealistic quality of the generated image. Since

the encoder-decoder of VAE is treated as the GAN

generator, we use the input image x and generated

image G(x) from VAE as the real and fake images for

discriminative training. The GAN loss function is as

follows:
LGAN = Ex∼pdata(x)[log D(x)]

+Ex∼pdata(x)[log (1−D(G(x)))].
(3)

The weights of the generator and discriminator are

updated alternatively in the training process.

Cycle consistency loss Other than identity

consistence, the consistency of facial characteristics

serves as a good constraint for attribute manipulation.

Since it is hard to keep track of those charecteristics

without supervision, we adopt cycle consistency similar

to [20, 42]. Specifically, we impose the cycle consistency

constraint along the dimension of attribute. We apply

two inverse transformations G+(·) and G−(·) with

attribute strength +δ and −δ to an image x, and

ensure the resulting image G−(G+(x)) resembles the

input x. The circle consistency loss is defined as:

LCycle = ||G−(G+(x1))− x1||1 + ||G+(G−(x2))− x2||1,
(4)

where x1 and x2 are the training image pair with

opposite attribute labels, and we impose the circle

consistency constraint for both of them. The L1 norm

is used to measure the image distance.

ID loss For face attribute manipulation, it is

not good enough to make the generated image look

photorealistic. Considering an extreme case where

one perfectly realistic generated image does not keep

any unique traits about the face, it simply does

not look alike the original face at all. This is not

acceptable for faithful face manipulation. To preserve

personal information as much as possible, we use a

face recognition network [27] to penalize the shift of

face identity, which is one of the most important facial

features. Specifically, we extract identify features from

5
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Fig. 3 Facial attribute manipulation results for the 7 typical attributes from CelebA dataset. We compare the state-of-the-art

results of (a) residual image GAN, (b) UNIT, (c) StarGAN (d) AttGAN with (e) ours (M-AAE). For each method, the results are

shown for the corresponding manipulation for the attributes in the chart (f).

Fig. 4 The manipulated attributes in the paper.

images before and after attribute manipulation, and

enforce them to be close to each other. The ID loss

function is then defined as:

LID = ‖FID(x)− FID(G(x))‖2, (5)

where FID(·) is the feature extractor from the face

recognition network.

3.5 Overall Training Procedure

Our final training objective is defined as follows:

min
G

max
D

α1LVAE + α2LGAN

+α3LID + α4LCycle + α5LMask,
(6)

where the weights of α1 ∼ α5 balance the relative

importance of our 5 loss terms. The GAN

generator, i.e., the encoder-decoder are trained jointly,

while the GAN discriminator is trained alternatively.

Further details of the networks may be found in Table 1.

The face recognition network is only used to extract

features and its weights are frozen. We choose the

first 11 layers of the recognition network [27] as feature

extractor.

4 Experiments

In this section, we first introduce our used

dataset and implementation details. Our M-AAE is

compared against state-of-the-arts both qualitatively

and quantitatively to show our advantage. Ablation

study is conducted to demonstrate the contribution of

each component of our framework.

6
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Tab. 2 Image fidelity scores (0 to 1, the higher the better) of different methods for the multi-attribute manipulation task on CelebA

dataset.

Num of manipulated attributes 1 2 3 4

Residual image GAN 0.483 0.325 0.330 0.250

UNIT 0.478 0.344 0.374 0.356

StarGAN 0.382 0.344 0.316 0.249

M-AAE(Ours) 0.521 0.507 0.398 0.365

Tab. 3 AMT perceptual evaluation for ranking different methods on the multi-attribute manipulation task on CelebA. The average

rank (between 1 and 7, from best to worst) is shown in each case. The top cell compares state-of-the-art methods, while the bottom

cell compares several baselines of ours.

Num of manipulated attributes 1 2 3 4

Residual image GAN 100% 95.8% 63.9% 33.3%

UNIT 16.7% 87.5% 55.5% 22.9%

StarGAN 33.3% 62.5% 52.3% 75.0%

Modify entire feature map 8.33% 83.3% 47.2% 75.0%

Modify feature map sparsely 100% 91.7% 75.0% 75.0%

ID loss 100% 70.8% 41.7% 62.5%

ID + Mask loss (Ours) 100% 95.8% 77.8% 77.1%

4.1 Dataset and Implementation Details

We evaluated on the CelebA dataset [21]. This

dataset contains 202599 face images of 10177

celebrities. Images are cropped and re-scaled to 348 ×
348 pixels. Each image is labeled with 40 binary

attributes, e.g., ”hair color”, ”age”, ”gender” and ”pale

skin”. We choose 7 typical attributes (see Fig. 3)

for our attribute manipulation experiments. For each

attribute, we select 1000 test images and train with the

remaining images in the dataset.

During training, the face identification network is

a model pretrained by using VGG16 which is fixed

in the process. Other network weights are initialized

from a zero-mean normal distribution with standard

deviation 0.02. The learning rate is always set to

0.0001. The loss weights in Eq. (6) are α1 = 0.1,

α2 = 10, α3 = 20, α4 = α5 = 80, and the weights

in Eq. (2) are λ1 = 0.1, λ2 = 80. For training, we

use a batch size of 64 and the ADAM [15] optimizer,

with a learning rate of 0.0001, betas of 0.5 and 0.999.

We treat multi-labels as independent single labels. We

separately train one network for each attribute using

its available positive-negative sample pairs. During

test phase, we sequentially edit multi-labels, i.e., we

first change e.g. the hair color using the corresponding

network, and then take the generated image as the

input to another network that edits the skin color.

This avoids enumerating all the label pairs which is

almost impossible. For inference, only the generator

(encoder-decoder) is used for image generation with

varying attributes.

Training process Besides training with the VAE

and GAN loss functions, we also use the face

recognition loss and cycle consistency loss for faithful

preservation of face details. The face recognition

module extracts features from images before and after

attribute manipulation, and penalizes their feature

discrepancy to preserve identity information. While

the cycle consistency loss aims to preserve other unique

facial information by penalizing the difference between

input image x and the generated image after two

inverse attribute transformations G+(x) and G−(x).

To ensure background consistency, we further generate

facial masks to penalize the background difference

between input x and output G(x).

Test process We simply feed the input image x

through our generator G(x) = De(En(x)), changing

the relative attribute strength δ in the latent features

En(x).

7
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Fig. 5 Comparison of our various baseline in manipulation of the 7 attributes from CelebA dataset. From top to bottom: (a)

modify entire feature map, (b) modify feature map sparsely, (c) (b)+ID loss, (d) (c)+Mask loss(concat, raw data), (e) (c)+Mask

loss(concat, feature), (f) (c)+Mask loss(Ours). The manipulated attributes for each method are shown in the attribute chart (e).

Fig. 6 Continuous manipulation of attributes of blond hair (first row) and mouth open (second row) by our method.

8
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4.2 Qualitative Evaluation

Fig. 3 compares our M-AAE method qualitatively

with the state-of-the-art residual image GAN [32],

UNIT [20] and StarGAN [4] in the first row. The

recent residual image GAN and StarGAN achieve

top performance in image translation and attribute

manipulation. The UNIT method is similar to ours in

using the VAE-GAN framework and cycle-consistency

constraint. We observed that all these methods can

produce artifacts or lose personal features to some

extent. Their performance is usually good on single

attribute manipulation or multi-attribute manipulation

when the target attributes are correlated (e.g., ”pale

skin” and ”gender”). However, the performance

deteriorates in more complex scenarios. Especially,

residual image GAN totally collapses while generating

images with eyeglass. The background generated by

previous methods are fuzzy and the color is changed.

Easpatially, the residual image GAN and the the

UNIT generate the unseen background when we change

the eyeglasses attribute. In comparison, our M-

AAE method (rightmost, bottom row) consistently

produces photorealistic and faithful images with

different attributes.

Ablation Study Fig. 5 compares our various

baselines to demonstrate the contribution of our major

components. From the comparison of results in (a)

and (b), we can find that modifying a meaningful

subset of feature map pixels can better preserve global

face information (e.g., color tone) than modifying

the entire feature map. Note the two baselines

already use the cycle consistency loss in our VAE-GAN

framework, whose efficacy is validated by similar works

like UNIT [20]. Hence in (c), we further show that

adding an ID loss can enhance the identify preservation

while editing other attributes. When we use an extra

mask loss in (f), the background is made sharper and

the foreground facial details also get enhanced with

higher fidelity. From the comparison of results in

(d), (e) and (f), our method performs better than

concatenation ones by simply modifying a sparse set

of feature map pixels.

4.3 Image Fidelity Evaluation

To evaluate the fidelity of our generated face images,

we directly use our GAN discriminator to output a

fidelity score from 0 to 1. Note the GAN discriminator

is trained to distinguish the fake generation from the

real, and the higher the fidelity score the better. Table 2

compares the results of state-of-the-art algorithms. It

is shown in the table that when the number of changed

attribute is increased, the fidelity score is decreased,

and the gap between different methods is increasing.

The more attributes we change, the more changes the

image is get. It is shown that our joint loss can boost

the GAN performance, generating images of higher

fidelity scores (both on the single and multi-attribute

manipulation tasks).

4.4 User Study

We perform a user study by inviting volunteers to

evaluate the attribute manipulation results. Given

a set of generated images from different methods,

the volunteers are instructed to rank the methods

based on perceptual realism, quality of transfered

attribute and preservation of personal features. The

generated images from different methods are shuffled

before presented. There are 30 validated volunteers

to evaluate results with the 7 attributes chosen from

CelebA. The average rank (between 1 and 7, then we

convert them to percentage data ) of each method

is calculated and shown in Table 3. Note that we

experiment with different numbers of manipulated

attributes from 1 to 4, which have gradually increasing

difficulty. The results demonstrate the effectiveness

of the proposed method over other alternatives with

respect to the rank, especially in the multi-attribute

manipulation cases. Our ID loss and Mask loss help

improve the results steadily due to their preservation

of foreground facial details and background scene.

4.5 Analysis

We show the capability of continuous manipulation

of attribute strength in Fig. 6. We achieve this

by adjusting the attribute strength between [-5,5] in

latent features, which is more favorable than prior

methods that take a fixed attribute vector as an

input. Moreover, the results in Fig. 7 demonstrate

the generalization ability of our method. Our method

performs well on the examples with a rich combination

of attributes, successfully preserving the unique facial

details and background in the generated image with a

different attribute.

5 Conclusion and Future Work

In this paper, we propose a Mask-Adversarial

AutoEncoder (M-AAE) method to effectively

manipulate human face attributes. Our method

is the well-extension of the VAE-GAN framework, and

we propose an effective method to modify a minimum

number of pixels in the feature maps of an encoder,

which allows us to change the attribute strength

9
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Fig. 7 More results of face attribute manipulation by our M-AAE method. The manipulated attributes for male (first row) are the

same as those in Fig. 3, while the manipulated attributes for female (second row) are shown at top-right.

continuously without hindering global information.

The proposed network is specifically designed to

maintain facial features and image background

consistency. We introduce a face recognition loss and

a cycle consistency loss for faithful preservation of

face details, and also propose a mask loss to ensure

background consistency. Experiments show that our

method can generate highly photorealistic and faithful

images with varying attributes. In principle, our

method can be extended to deal with more image

translation tasks e.g., style transformation.
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