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Abstract The technique of face attribute
manipulation has found increasing applications,
but remains challenging with the restriction of
editing the attributes while preserving its unique
details. In this paper, we introduce our method
named the Mask-Adversarial AutoEncoder (M-AAE)
which combines the Variational AutoEncoder (VAE)
and Generative Adversarial Network (GAN) for
photorealistic image generation. = We propose the
partial dilated layers to modify a modest amount of
pixels in the feature maps of an encoder, changing
the attribute strength continuously without hindering
global information. Our training objectives of VAE
and GAN are reinforced by the supervision of face
recognition loss and cycle consistency loss for faithful
preservation of face details. Moreover, we generate
facial masks to enforce background consistency, which
allows our training to focus on foreground face rather
than background. Experimental results demonstrate
that our method, can generate high-quality images
with varying attributes and outperform the existing
methods in detail preservation.
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1 Introduction

The task of face attribute manipulation is to edit
the face attributes shown in an image, e.g., hair color,
facial expression, age and so on. It has a wide range
of applications, such as data augmentation and age-
invariant face verification [3, 26, 29, 38]. Essentially,
this is an image generation problem. With the advent
of generative adversarial networks (GANs), the quality
of generated images improves over time [7, 41]. The
family of GAN methods can be mainly divided into two
categories: one with noise input [24, 37] and another
conditioned on input images [2, 4, 23]. Our method
falls into the second category, aiming to change the face
attributes in the input image while preserving high-
frequency details.

Normally, the neural network generate the result
images by manipulating all the pixels of the input
image. However, unlike the style translation task [5,
19], the attribute manipulation one is more challenging
due to the restriction of only modifying some image
features while keeping others unchanged (including
the image background). In this paper, we improve
the quality of the manipulated images from three
aspects: the concentration of attribute manipulation,
the preservation of facial details and the photorealistic
mechanism.

The concentration of attribute manipulation. The
manipulation method aims to focus on modifying
the target attributes while keep the common feature
unchanged. One simple choice to achieve this goal
is to use the conditional GAN framework [24, 39],
which concatenates the input image with an one-hot
attribute vector to encode the desired manipulation.
Another option is to directly learn the image-to-image
translation with respect to attributes. CycleGAN [42]
learns such translation rule from unpaired images with
a cycle consistency constraint. However, such global
transformation can neither guarantee common feature
preservation, nor make a continuous change in the
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attribute strength.

The preservation of facial details. Although
achieving promising results, the above methods have
one common drawback — there exists no mechanisms
to keep the unique facial traits while editing the
whole images. It may still change the non-targeted
features beyond the background, which is not preferred.
We especially note the importance of keeping the
background unchanged since it is often observed to be
changed along with the foreground face. This suggests
some efforts of face attribute manipulation are wasted
on the irrelevant regions. Moreover, the post-process
of overriding generated background with the original
one by a background mask would be less preferred, as
it needs better handling along the boundaries to avoid
visible seams.

The photorealistic mechanism.  The realistic of
the generated image is one of the most important
measurement of the image generation algorithm,
including the fidelity of face features, the -clarity
of images and so on. Since the features are
various, different methods are proposed to fit the
The method of [39] provides a
partial remedy by feeding the face images before and
after attribute manipulation into a face recognition
network and penalizing their feature distance. This
provides a good way to preserve facial identify
Recently, UNIT method [20] uses
generative adversarial networks (GANs) and variational

special tasks.

information.

autoencoders (VAEs) for robust modeling of different
image domains. Then the cycle consistency constraint
is also applied to learn domain translation effectively.
The method of [32] proposes to only learn the residual
image before and after attribute manipulation by
using two transformation networks, one for attribute
manipulation and another for its dual operation.
However, the methods mentioned above focus on the
single task.

In this paper,
simultaneously manipulate the target attributes of
a face image and keep its background untouched.
Firstly, we propose the patial dilated layer to modify
the minimum number of feature map pixels from

we train a neural network to

our encoder.
the global image information and enables attribute
change in a continuous manner. Secondly, we feed
the background mask into the network to coherently
penalize their differences before and after face attribute
manipulation. Finally, our method is based on the
VAE-GAN framework [20, 39] for strong modeling of
photorealistic images. To avoid loss of unique facial

It allows us to maximally preserve
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details during attribute editing, we employ a face
recognition loss and a cycle consistency loss (to ensure
image consistency after two inverse manipulations).
The proposed method is named as Mask-Adversarial
AutoEncoder (M-AAE) and the experimental results
demonstrate its effectiveness.

In summary, the contributions of this paper are
as follows. (1) We present the partial dilated layers
to modify a modest amount of pixels in our learned
feature maps to realize continuous manipulation of
face attributes. (2) We propose a Mask-Adversarial
AutoEncoder (M-AAE) strategy to ensure faithful
facial detail preservation as well as background
consistency. (3) We combine the GAN, VAE, mask
loss, id loss, cycle consistency loss to generate the
photorealistic facial images. The proposed method
achieves state-of-the-art performance in photorealistic
attribute manipulation.

2 Related work

manipulation Considerable
progress has been made on face attribute
manipulation [1, 8, 9, 12, 17, 18]. Most methods
of face attribute manipulation are based on generative
models. There are two main groups of these methods:
the one with extra input vector [4, 6, 28, 39], and the
other group that directly learn the image-to-image
translation along attributes [20, 42]. The first group
often takes an attribute vector as the guidance for
manipulating the desired attribute. The CAAE
method [39] concatenates the one-hot age label with
latent image features to be fed into the generator for age
progression purposes. StarGAN [4] takes the one-hot

Face attribute

vector to represent domain information for ”domain
transfer”. However, such global transformation based
on external code usually cannot well preserve the
facial details after attribute manipulation. The second
group of methods only operate in image domains
and learn the image-to-image translation directly.
The CycleGAN [42] and UNIT method [20] are such
examples, supervised by a cycle consistency loss
that requires the manipulated image can be mapped
back to the original image.  [32] further proposed
to only learn the residual image before and after
attribute manipulation, which can be easier and lead
to higher-quality image prediction. Unfortunately,
these methods still have difficulty of manipulating the
target attribute while keeping others unchanged.

Image generation algorithm The Variational
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Fig. 1 Framework of the proposed Mask-Adversarial AutoEncoder (M-AAE) method. The encoder-decoder De(En(z)) of VAE for
input image « is treated as the generator G(z) of GAN, with a discriminator D(-) tells fake from real. We manipulate attributes by
modifying the encoded features En(z) by a relative value +§, and train using image pairs with opposite face attributes. Moreover,
the encoded features En(z) come from the partial dilated layer. Our training is supervised by 5 loss functions to both preserve facial
details and ensure background consistency (see text for details). We test only using the generator G(-).

AutoEncoder  (VAE) [16) and  Generative
adversarial network (GAN) [7] are the backbone
for image generation tasks nowadays, such as
image reconstruction [10, 31, 34, 36], image
synthesis [11, 30, 37] and image translation [14, 25, 33].
In VAE, the encoder maps images into a latent
feature space which is then mapped back to the image
domain through a decoder. The latent space contains
the global features extracted for input images. The
more recent GAN consists of the generator and the
discriminator networks to play a min-max game.
Specifically, the generator tries to produce synthesized
images to fool the discriminator that distinguishes
the synthesized images from real ones. GAN-based
methods have shown remarkable results in image
generation, and many improvements followed up.
DCGAN [30] trains stable in a purely convolutional
setting, while CGAN [24] generates visually compelling
images conditioned on extra input like class labels.
CycleGAN [42] and UNIT method [20] introduce a
cycle consistency loss to learn between any image
domains with even unpaired images. There is a recent
trend to combine the GAN with a VAE for robust
image modeling. For example, [18] combined GAN
and VAE by collapsing the VAE decoder and GAN
generator into one. One can tweak the generated
images by manipulating features in the latent feature
space. Such joint VAE-GAN model is also applied in

the works of [20, 39] for image translation. Recently,
it is possible to generate the human face images
in high quality by using GANs [35, 40]. Kim [13]
proposed to utilize the GAN to transfer the full 3D
head expression from the source actor to the target
This paper uses the VAE-GAN
model for face attribute manipulation, and proposes a
working method to modify latent VAE features so as
to change facial attributes but not irrelevant details.

3 Methodology

actor in the video.

Our goal is to manipulate the attribute of an input
face image and generate a new one, e.g., to change the
hair color from black to yellow. However, it is difficult
to generate photorealistic images as well as keep the
face faithful, i.e., the generated image should look real
and have its unique details preserved including the
background. To address these challenges we propose a
Mask-Adversarial AutoEncoder (M-AAE) method, as
will be detailed as follows.

3.1 Framework Overview

Our M-AAE method is based on the VAE-GAN
framework, as shown in Fig. 1. The encoder-decoder
De(En(x)) of VAE for input image z is treated as
GAN’s generator G(x). The discriminator D(-) of GAN
tells the generated image G(x) apart from real images.
To manipulate attributes of input image x, we design a
simple but effective mechanism to uniformly modify the

, |
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Fig. 2 The receptive fields of the four kinds of partial dilated layers (from bottom to top) of our Encoder (K, S, P denotes the
kernel size, stride and padding, respectively, see Table 1 for details). The padding area in each layer during recursive calculation
is not counted as the receptive field. The rightmost subfigure in the second row shows the global receptive field in raw pixels and
modified pixels in the partial dilated layer. It demonstrates our goal to find the minimum number of feature map pixels at the partial
dilated layer, whose receptive field covers the whole image in image domain.

encoded features En(x) by a relative value 44, which
is fed into the decoder to control the attribute strength
present in output G*(z)/G™ (z).

We propose the partial dilated layers to manipulate
the face preserving
the consistent of the global features during the
manipulation process. Furthermore, the mask-aware
method is utilized to separate the foreground and the
background of the input images. Thus, the method
can focus on the foreground images and manipulate
the chosen feature only in the foreground, which can
reduce the influence of the background. Modifying the
image features by using a small number of the features
instead of modifying the whole pixels of the images
can protect the image features. The proposed losses
focus on different aspects, including the identification
and the age of the faces, the clarity of the images and
so on. The combination of these losses achieves better

feature continuously while

performance on improving the quality of the image.

3.2 The Partial Dilated Layers for Attribute
Manipulation

To manipulate face attributes, rather than take a
one hot attribute vector as in [4, 39], we choose to
modify the hidden features in our encoder to be able

Fe -
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to continuously change the attribute strength. One
intuitive way is to uniformly increase or decrease the
responses of the entire feature map by a relative
We empirically observed a global change
of image tone by doing this. Instead, we propose
to only modify a minimum number of latent feature
map pixels in the CNN whose receptive field covers
the whole image in image domain. Fig. 2 illustrates
how to find such minimum pixels at the partial
dilated layer(the last layer of the encoder) recursively
from bottom layer.

value 4.

In this way, the image-level
manipulation can be operated efficiently with modest
feature modification. More importantly, we will avoid
a huge loss of image information. Our experiments will
show our efficacy in information preservation during
attribute manipulation.

In practice, the relative value 0 is chosen as half the
value range of the feature map pixels for reversing one
particular attribute (6 ~ 5 in our scenario). Then such
modified features are fed into the decoder to generate
output image GT(x) or G~ (x) with strengthened or
weakened attribute. For instance, adding the 0 means
strengthen the face attribute, otherwise weaken it. We
change the value in the training process(when we apply
the cycle consistency loss) to force saving the strength
information in it.
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Tab. 1 The network architecture of our Encoder, Decoder and GAN discriminator (channel number, kernel size).

Encoder En(-)

Decoder De(-)

GAN discriminator D(-)

Conv2d (64,7x7) + LeakyReLU

Residual Block (512,1x1)

Conv2d (64,3x3) + LeakyReLU

Conv2d (128,3%x3) + LeakyReL U

Residual Block (512,1x1)

Conv2d (128,3x3) + LeakyReLU

Conv2d (256,3%x3) + LeakyReLU

Residual Block (512,1x1)

Conv2d (256,3x3) + LeakyReLU

Residual Block (512,1x1)

Conv2d (256,3x3) + LeakyReLU

Conv2d (512,3x3) + LeakyReLU

Residual Block (512,1x1)

Conv2d (128,3x3) + LeakyReLU

Conv2d (1024,3x3) + LeakyReLU

Residual Block (512,1x1)

Conv2d (64,7x7) + LeakyReLU

Conv2d (1,2x2) + Sigmoid

3.3 The Mask-aware Algorithm for Facial
Detail Preservation

In some cases, we observed the image background would
change along with the foreground face by previous
attribute manipulation methods. This is not visually
pleasing and also suggests some manipulation efforts
are wasted in wrong regions. We claim that pasting the
original background around the manipulated face is not
ideal. Because the pixels in the final image coming from
images in different distribution seems incompatible.
More importantly, it is better to mask out background
at the algorithm level to focus our manipulation efforts
on foreground face. As a side effect, the background
gets unchanged as well. Here we propose the mask
loss to learn to change the foreground face attribute
and keep background the same in a coherent way.
We generate a facial mask (thus background mask as
well) by using FCN [22], and penalize the background
difference between input x and generated G(x):

Lask = ||[Mask(G(z)) — Mask(z)||1, (1)
where Mask(-) is the mask-out operator using the
generated background mask. Note the background
mask of input z is shared for both input x and output
G(x). We do not generate a separate mask for G(z)
which leads to inconsistent penalty.

3.4 The Photorealistic Mechanism
VAE loss The VAE consists of an encoder that maps

q(z|x)
and a decoder that maps z back to image space x’ ~
De(z) = p(x|z). The VAE regularizes the encoder
by imposing a prior over the latent distribution p(z),
where z ~ N (0, ) is often assumed to have a Gaussian
distribution. VAE also penalizes the reconstruction
error between x and z’, and has loss function:

Lyar = MKL(g(2[2) (=) o)
_)‘QEINPdam(I) [IOg p(ac’|x)],
where A1 and Ao balance the prior regularization term

an image z to a latent feature z ~ En(x) =

and reconstruction error term, and KL is the Kullback-
Leibler divergence. The reconstruction error term is
actually equivalent to the L1 norm between z and z’,

since we assume p(z|z) has a Laplacian distribution.

GAN loss The GAN loss is introduced to improve the
photorealistic quality of the generated image. Since
the encoder-decoder of VAE is treated as the GAN
generator, we use the input image x and generated
image G(x) from VAE as the real and fake images for
discriminative training. The GAN loss function is as
follows:

Laan = Erpyy(@[log D(@)] 3

TEopaaalog (1 — D(G(x)))]-

The weights of the generator and discriminator are
updated alternatively in the training process.

Cycle consistency loss Other than identity
consistence, the consistency of facial characteristics
serves as a good constraint for attribute manipulation.
Since it is hard to keep track of those charecteristics
without supervision, we adopt cycle consistency similar
to [20, 42]. Specifically, we impose the cycle consistency
constraint along the dimension of attribute. We apply
two inverse transformations GT(-) and G~ (-) with
attribute strength +J and —4§ to an image x, and
ensure the resulting image G~ (G (z)) resembles the
input x. The circle consistency loss is defined as:
Loyae = [|GT(GF (1) — 21|l + [|GT(G™ (22)) — 22ll1,

(4)
where z; and zy are the training image pair with
opposite attribute labels,
consistency constraint for both of them. The L1 norm
is used to measure the image distance.

and we impose the circle

ID loss For face attribute manipulation, it is
not good enough to make the generated image look
photorealistic.
one perfectly realistic generated image does not keep

Considering an extreme case where

any unique traits about the face, it simply does
not look alike the original face at all. This is not
acceptable for faithful face manipulation. To preserve
personal information as much as possible, we use a
face recognition network [27] to penalize the shift of
face identity, which is one of the most important facial
features. Specifically, we extract identify features from

@@? 'EN$VIE§SITYI-I£IEIIE§AS @ Springer
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Fig. 3 Facial attribute manipulation results for the 7 typical attributes from CelebA dataset. We compare the state-of-the-art
results of (a) residual image GAN, (b) UNIT, (c) StarGAN (d) AttGAN with (e) ours (M-AAE). For each method, the results are
shown for the corresponding manipulation for the attributes in the chart (f).

Orginal face Pale skin
Blond hair Brown hair
-wr —
Mustache Mouth open/close
Eyeglasses Gender

Fig. 4 The manipulated attributes in the paper.

images before and after attribute manipulation, and
enforce them to be close to each other. The ID loss
function is then defined as:

Lrp = |[Fip(z) — Fio(G(2))]?, (5)
where Fyp(-) is the feature extractor from the face
recognition network.

(@) TSINGHUA &) Springer

3.5 Overall Training Procedure

Our final training objective is defined as follows:
minmax a1 Lvag + a2LcAN

(6)

+as3Llip + cuLlcyele + 05 Lask,

where the weights of a; ~ a5 balance the relative
importance of our 5 loss terms. The GAN
generator, i.e., the encoder-decoder are trained jointly,
while the GAN discriminator is trained alternatively.
Further details of the networks may be found in Table 1.
The face recognition network is only used to extract
We choose the
first 11 layers of the recognition network [27] as feature
extractor.

features and its weights are frozen.

4 Experiments

In this section, we first introduce our used
dataset and implementation details. Our M-AAE is
compared against state-of-the-arts both qualitatively
Ablation
study is conducted to demonstrate the contribution of

and quantitatively to show our advantage.

each component of our framework.
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Tab. 2 Image fidelity scores (0 to 1, the higher the better) of different methods for the multi-attribute manipulation task on CelebA
dataset.

Num of manipulated attributes 1 2 3 4
Residual image GAN 0.483 | 0.325 | 0.330 | 0.250
UNIT 0.478 | 0.344 | 0.374 | 0.356
StarGAN 0.382 | 0.344 | 0.316 | 0.249
M-AAE(Ours) 0.521 | 0.507 | 0.398 | 0.365

Tab. 3 AMT perceptual evaluation for ranking different methods on the multi-attribute manipulation task on CelebA. The average
rank (between 1 and 7, from best to worst) is shown in each case. The top cell compares state-of-the-art methods, while the bottom

cell compares several baselines of ours.

Num of manipulated attributes 1 2 3 4
Residual image GAN 100% | 95.8% | 63.9% | 33.3%
UNIT 16.7% | 87.5% | 55.5% | 22.9%
StarGAN 33.3% | 62.5% | 52.3% | 75.0%

Modify entire feature map 8.33% | 83.3% | 47.2% | 75.0%
Modify feature map sparsely 100% | 91.7% | 75.0% | 75.0%

ID loss 100% 70.8% 41.7% 62.5%
ID + Mask loss (Ours) 100% | 95.8% | 77.8% | 77.1%
4.1 Dataset and Implementation Details input to another network that edits the skin color.

This avoids enumerating all the label pairs which is
almost impossible. For inference, only the generator
(encoder-decoder) is used for image generation with

We evaluated on the CelebA dataset [21]. This
dataset contains 202599 face images of 10177
celebrities. Images are cropped and re-scaled to 348 x
348 pixels. FEach image is labeled with 40 binary
attributes, e.g., "hair color”, "age”, ”gender” and " pale
skin”.  We choose 7 typical attributes (see Fig. 3)
for our attribute manipulation experiments. For each
attribute, we select 1000 test images and train with the
remaining images in the dataset.

During training, the face identification network is
a model pretrained by using VGG16 which is fixed
in the process. Other network weights are initialized
from a zero-mean normal distribution with standard
deviation 0.02. The learning rate is always set to
0.0001. The loss weights in Eq. (6) are a; = 0.1,
as = 10, ag = 20, ay = a5 = 80, and the weights
in Eq. (2) are Ay = 0.1, Ay = 80. For training, we
use a batch size of 64 and the ADAM [15] optimizer,
with a learning rate of 0.0001, betas of 0.5 and 0.999.
We treat multi-labels as independent single labels. We
separately train one network for each attribute using
its available positive-negative sample pairs. During
test phase, we sequentially edit multi-labels, i.e., we
first change e.g. the hair color using the corresponding
network, and then take the generated image as the

varying attributes.

Training process Besides training with the VAE
and GAN loss functions, we also use the face
recognition loss and cycle consistency loss for faithful
preservation of face details. The face recognition
module extracts features from images before and after
attribute manipulation, and penalizes their feature
discrepancy to preserve identity information. While
the cycle consistency loss aims to preserve other unique
facial information by penalizing the difference between
input image x and the generated image after two
inverse attribute transformations G (z) and G~ (z).
To ensure background consistency, we further generate
facial masks to penalize the background difference
between input = and output G(zx).

Test process We simply feed the input image =z
through our generator G(z) = De(En(z)), changing
the relative attribute strength § in the latent features

{8) TSINGHUA &\ Springer
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Fig. 5 Comparison of our various baseline in manipulation of the 7 attributes from CelebA dataset. From top to bottom: (a)
modify entire feature map, (b) modify feature map sparsely, (c) (b)+ID loss, (d) (c)+Mask loss(concat, raw data), (e) (c)+Mask
loss(concat, feature), (f) (c)+Mask loss(Ours). The manipulated attributes for each method are shown in the attribute chart (e).

Fig. 6 Continuous manipulation of attributes of blond hair (first row) and mouth open (second row) by our method.

(@) TSINGHUA &) Springer
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4.2 Qualitative Evaluation

Fig. 3 compares our M-AAE method qualitatively
with the state-of-the-art residual image GAN [32],
UNIT [20] and StarGAN [4] in the first row. The
recent residual image GAN and StarGAN achieve
top performance in image translation and attribute
manipulation. The UNIT method is similar to ours in
using the VAE-GAN framework and cycle-consistency
We observed that all these methods can
produce artifacts or lose personal features to some

constraint.
extent. Their performance is usually good on single
attribute manipulation or multi-attribute manipulation
when the target attributes are correlated (e.g., ”pale
skin” and ”gender”). the performance
deteriorates in more complex scenarios.

However,
Especially,
residual image GAN totally collapses while generating
images with eyeglass. The background generated by
previous methods are fuzzy and the color is changed.
Easpatially, the residual image GAN and the the
UNIT generate the unseen background when we change
the eyeglasses attribute.
AAE method (rightmost, bottom row) consistently
produces photorealistic and faithful
different attributes.

Ablation Study Fig. 5 compares our
baselines to demonstrate the contribution of our major
components. From the comparison of results in (a)
and (b), we can find that modifying a meaningful
subset of feature map pixels can better preserve global

In comparison, our M-
images with

various

face information (e.g., color tone) than modifying
the entire feature map. Note the two baselines
already use the cycle consistency loss in our VAE-GAN
framework, whose efficacy is validated by similar works
like UNIT [20]. Hence in (c), we further show that
adding an ID loss can enhance the identify preservation
while editing other attributes. When we use an extra
mask loss in (f), the background is made sharper and
the foreground facial details also get enhanced with
higher fidelity. From the comparison of results in
(d), (e) and (f), our method performs better than
concatenation ones by simply modifying a sparse set
of feature map pixels.

4.3 Image Fidelity Evaluation

To evaluate the fidelity of our generated face images,
we directly use our GAN discriminator to output a
fidelity score from 0 to 1. Note the GAN discriminator
is trained to distinguish the fake generation from the
real, and the higher the fidelity score the better. Table 2
compares the results of state-of-the-art algorithms. It
is shown in the table that when the number of changed

attribute is increased, the fidelity score is decreased,
and the gap between different methods is increasing.
The more attributes we change, the more changes the
image is get. It is shown that our joint loss can boost
the GAN performance, generating images of higher
fidelity scores (both on the single and multi-attribute
manipulation tasks).

4.4 User Study

We perform a user study by inviting volunteers to
evaluate the attribute manipulation results.
a set of generated images from different methods,
the volunteers are instructed to rank the methods

Given

based on perceptual realism, quality of transfered
attribute and preservation of personal features. The
generated images from different methods are shuffled
before presented. There are 30 validated volunteers
to evaluate results with the 7 attributes chosen from
CelebA. The average rank (between 1 and 7, then we
convert them to percentage data ) of each method
is calculated and shown in Table 3. Note that we
experiment with different numbers of manipulated
attributes from 1 to 4, which have gradually increasing
difficulty. The results demonstrate the effectiveness
of the proposed method over other alternatives with
respect to the rank, especially in the multi-attribute
manipulation cases. Our ID loss and Mask loss help
improve the results steadily due to their preservation
of foreground facial details and background scene.

4.5 Analysis

We show the capability of continuous manipulation
of attribute strength in Fig. 6. We achieve this
by adjusting the attribute strength between [-5,5] in
latent features, which is more favorable than prior
methods that take a fixed attribute vector as an
input. Moreover, the results in Fig. 7 demonstrate
the generalization ability of our method. Our method
performs well on the examples with a rich combination
of attributes, successfully preserving the unique facial
details and background in the generated image with a
different attribute.

5 Conclusion and Future Work

In this paper, we propose a Mask-Adversarial
AutoEncoder (M-AAE) method to effectively
manipulate human face attributes. Our method
is the well-extension of the VAE-GAN framework, and
we propose an effective method to modify a minimum
number of pixels in the feature maps of an encoder,
which allows us to change the attribute strength

{8) TSINGHUA &\ Springer
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Fig. 7 More results of face attribute manipulation by our M-AAE method. The manipulated attributes for male (first row) are the
same as those in Fig. 3, while the manipulated attributes for female (second row) are shown at top-right.

continuously without hindering global information.
The proposed network is specifically designed to
maintain facial image background
consistency. We introduce a face recognition loss and
a cycle consistency loss for faithful preservation of
face details, and also propose a mask loss to ensure
background consistency. Experiments show that our
method can generate highly photorealistic and faithful
images with varying attributes. In principle, our
method can be extended to deal with more image
translation tasks e.g., style transformation.
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